MECHANICS OF SOLID AND FLUID

Similar documents
MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS

9 MECHANICAL PROPERTIES OF SOLIDS

Chapter 10 - Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain

PROPERTIES OF BULK MATTER

Chapter -5(Section-1) Friction in Solids and Liquids

10 - FLUID MECHANICS Page 1

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Nicholas J. Giordano. Chapter 10 Fluids

Chapter 9: Solids and Fluids

SUMMER 17 EXAMINATION

7. Properties of Matter

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Chapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas

Thermal physics revision questions

Chapter 14. Fluid Mechanics

MECHANICAL PROPERTIES OF SOLIDS

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Chapter 9. Solids and Fluids

Tridib s Physics Tutorials visit

MECHANICAL PROPERTIES OF SOLIDS

For more info

DIVIDED SYLLABUS ( ) - CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL

CHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

Fluid Mechanics Vikasana Bridge Course 2012

WINTER 16 EXAMINATION

Thermal physics revision questions

Physics 201 Chapter 13 Lecture 1

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

Course: US01CPHY01 UNIT 1 ELASTICITY I Introduction:

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

Matter and Thermal Energy

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for

Chapter 17 Temperature and heat

Liquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...

CPO Science Foundations of Physics. Unit 8, Chapter 27

Important Instructions to the Examiners:

Fluids Bernoulli s equation

1. How much heat was needed to raise the bullet to its final temperature?

ICSE Board Class IX Physics Paper 2 Solution

Chapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation

Chapter 9. Solids and Fluids

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2

Lecture 8 Equilibrium and Elasticity

Answer: The relation between kelvin scale and Celsius scale is TK =TC => TC=TK

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

Chapter 10. Solids and Fluids

Chapter 10, Thermal Physics

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.

States of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!

Chapter -6(Section-1) Surface Tension

MODEL PAPER CLASS XI PHYSICS (GROUP 1) BLUEPRINT Name of chapter (1)

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í


Chapter 10. Solids & Liquids

ANSWERS 391. Chapter 9

Class XI Physics. Ch. 9: Mechanical Properties of solids. NCERT Solutions

2. For a S.H.O. determine, (a) the total energy (E), the kinetic and potential energies. of half amplitude:

Fluid Mechanics Introduction

cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

Grade XI. Physics Exam Preparation Booklet. Chapter-wise Important Questions. #GrowWithGreen

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

If there is convective heat transfer from outer surface to fluid maintained at T W.

Handout 10: Heat and heat transfer. Heat capacity

Chapter 13 ELASTIC PROPERTIES OF MATERIALS

MATTER IN OUR SURROUNDINGS

If we change the quantity causing the deformation from force to force per unit area, we get a relation that does not depend on area.


Physics 207 Lecture 18

OCR Physics Specification A - H156/H556

Fluid Mechanics. du dy

Question 9.1: Answer. Length of the steel wire, L 1 = 4.7 m. Area of cross-section of the steel wire, A 1 = m 2


Physics. Assignment-1(UNITS AND MEASUREMENT)

PAPER 2 THEORY QUESTIONS

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

GENERAL PHYSICS (3) LABORATORY PHYS 203 LAB STUDENT MANUAL

Name : Applied Physics II Exam One Winter Multiple Choice ( 7 Points ):

The triple points of neon and carbon dioxide are K and K respectively. Express these temperatures on the Celsius and Fahrenheit scales.

CHAPTER 1 Fluids and their Properties

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan

Chapter 12. Temperature and Heat

Class XI Chapter 9 Mechanical Properties of Solids Physics

ANSWERS 403 INDEX. Bulk modulus 238 Buoyant force 251

Unit 4: The Nature of Matter

Future coaching Institute Tirupur

WINTER 2015 EXAMINATION Subject Code: Model Answer Basic Science (Physics) Page No: 01/14 Que. No.

Question Figure shows the strain-stress curve for a given material. What are (a) Young s modulus and (b) approximate yield strength for this material?

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Each of the following questions (1-15) is worth 6 points

Liquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.

TRANSMISSION OF HEAT

Chapter: States of Matter

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

Way to Success Model Question Paper. Answer Key

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

Transcription:

MECHANICS OF SOLID AND FLUID Deforming force:- A force acting on a body which produces change in its shape of body instead of its state of rest or uniform motion of the body. Elasticity:-The property of matter by virtue which it regains its original shape and size, when the deforming forces are removed is called elasticity. Plasticity:- The inability of a body to return to its original shape and size, when the deforming forces are removed is called plasticity. Hooke s law:- when a wire is loaded within elastic limit, the extension produced in wire is directly proportional to the load applied. OR Within elastic limit stress α strain Stress = Constant Strain Stress :- Restoring force set up per unit area when deforming force acts on the body Stress = Restoring force Area S.I Unit of stress = N/m 2 or Pascal (Pa) Dimensional formula = M a L b T c Stress Types of stress:- Normal stress Tensile stress(when there is an increase in dimension of the body along the direction of force ) Compression stress(when there is decrease in dimension ) Tangential stress (When deforming force acts tangential to the surface of body ) Strain:- The ratio of change in dimension to the original dimension is called strain

Types of strain:- It has no unit Longitudinal strain= Volumetric strain = Sharing Strain = φ =, Where =displacement of the face on which force is applied and L is the height of the face Hooke s L aw:- Within elastic limit, stress α strain = Constant (Modulus of Elasticity) Modulus of elasticity are of 3 types. (1) Young s Modulus (Y) = (2) Bulk Modulus (K) = (3) Modulus of rigidity modulus (ƞ) = Compressibility : the reciprocal of bulk modulus of a material is called its compressibility Compressibility = 1/K Stress Strain- diagram Proportionality limit(p) The stress at the limit of proportionality point P is known as proportionality limit Elastic limit - the maximum stress which can be applied to a wire so that on unloading it return to its original length is called the elastic limit Yield point(y)- The stress, beyond which the length of the wire increase virtually for no increase in the stress Plastic region- the region of stress- strain graph between the elastic limit and the breaking point is called the plastic region.

Fracture point or Breaking point(b)- the value of stress corresponding to which the wire breaks is called breaking point Work done in stretching a wire per unit volume/energy sored per unit volume of specimen = ½ x stress x strain Elastic after effect:- The delay in regaining the original state by a body after the removal of the deforming force is called elastic after effect. Elastic fatigue:- the loss in strength of a material caused due to repeated alternating strains to which the material is subjected. Poisson s ratio(ϭ) :- The ratio of lateral strain to longitudinal strain is called Poisons ratio = Relation between Y,K,, ϭ 1. Y=3K(1-2 ϭ) 2. Y=2 (1+ ϭ) 3. ϭ = + 4. = 1/K +3/ Applications of elasticity 1. Metallic part of machinery is never subjected to a stress beyond the elastic limit of material. 2. Metallic rope used in cranes to lift heavy weight are decided on the elastic limit of material 3. In designing beam to support load (in construction of roofs and bridges) 4. Preference of hollow shaft than solid shaft 5. Calculating the maximum height of a mountain MECHANICS OF FLUID Pressure :The force/threat acting per unit area is called pressure S.I Unit of pressure is N/M 2 or pascal (Pa)

Dimensional formula (ML -1 T -2 ) Pascal s law:- Pressure applied to an enclosed fluid is transmitted to all part of the fluid and to the wall of the container. Application of Pascal s law:- (1) Hydraulic lift, presses etc. (2) Hydraulic brakes Pressure exerted by liquid column:- P = hρg, where h= depth of liquid, ρ=density, g=acc n. due to gravity. Variation of pressure with depth: P = P a + hρg, where P a =atmospheric pressure Atmospheric pressure:- The pressure exerted by atmosphere is called atmospheric pressure. At sea level, atmospheric pressure= 0.76m of Hg column Mathematically 1 atm = 1.013 x 10 5 Nm -2 Archimedes principle:- It states that when a body is immersed completely or partly in a fluid, it loses in weight equal to the weight of the fluid displaced by it. Mathematically: Apparent weight = True weight Vρg Where V is volume of fluid displaced, ρ is its density. Viscosity:- It is the property of liquid (or gases) due to which a backward dragging force acts tangentially between two layers of liquid when there is relative motion between them. Newton s formula for Viscous force:- the viscous force between two liquid layer each of area A and having a velocity gradient dv/dx is F = ƞ A (dv/dx), where ƞ is coefficient of viscosity Coefficient of viscosity:- It is define as the tangential viscous force which maintains a unit velocity gradient between two parallel layers each of unit area S.I unit of coefficient of viscosity is poiseuille or pascal-second

Poiseuille s equation:- when a liquid of coefficient of viscosity flows through a tube of length l and radius r, then the volume of liquid following out per second is given V = πpr 4 /8 ƞl, Where P is the difference of pressure between the two ends of the tube. Stoke s law: The backward dragging force acing on a small sphere of radius r falling with uniform velocity v through a medium of coefficient of viscosity is given by F = 6π ƞrv Terminal velocity:- It is the maximum constant velocity acquired by the body while falling freely in a viscous medium The terminal velocity v of a spherical body of radius r and density ϭ while falling freely in a viscous medium of viscosity, density is given by V = ( ) Stream line:- It is the path, straight or curved, the tangent at any point to which given the direction of the flow of liquid at that point Tube of flow:- A tube of flow is a bundle of stream lines having the same velocity of fluid elements over any cross section perpendicular to the direction of flow Stream line flow:- the flow of the liquid in which each molecule of the liquid passing through a point travels along the same path and with the some velocity as the preceeding molecule passing through the same point Laminar flow:- the flow of liquid, in which velocity of the layer varies from maximum at the axis to minimum for the layer in contact with the wall of the tube is called laminar flow. Turbulent flow:- It is the flow of liquid in which a liquid moves with a velocity greater than its critical velocity. The motion of the particles of liquid becomes disorderly or irregular.

Critical velocity:- It is that velocity of liquid flow, upto which the flow of liquid is streamlined and above which its flow becomes turbulent. Critical velocity of a liquid (V c ) flowing through a tube is given by V c = Kƞ/ ρ r Where ρ is the density of liquid following through a tube of radius r and ƞ the coefficient of viscosity of liquid Reynold s umber:- It is a pure number which determines the nature of flow of liquid through a pipe Quantitatiively Renold s number N = ρ D V c / ƞ Where ƞ is coefficient of viscosity of liquid, ρ is density of liquid D is the diameter of the tube, V c is critical velocity For stream line flow, Reynold s number <2000 For turbulent flow, Reynold s number > 3000 For uncertain flow, 2000<Reynold s number<3000 Theorem of continuity : If there is no source or sink of the fluid along the length of the pipe, the mass of the fluid crossing any section of the pipe per second is always constant Mathematically a 1 v 1 ρ 1 = a 2 v 2 ρ 2 It is called the equation of continuity For in compressible liquid ρ 1= ρ 2 becomes Therefore the equation continuity a 1 v 1 = a 2 v 2 Bernoulli s theorem:- It states that for an in compressible non-viscous liquid in steady flow, the total energy i.e. pressure energy, potential energy and kinetic energy remains constant its flow. Mathematically ρ + gh + ½ v2 = Constant ρ + h + = Constant

The term ρ, h and are called pressure head, gravitational head and velocity head respectively. Application of Bernoull s theorem (i) Working of Bunsen burner (ii) Lift of an air foil (iii) Spinning of ball (Magnus effect) (iv) Sprayer (v) Ping pong ball in air jet. Toricelli s theorem/speed of efflux:-it states that the velocity of efflux i.e. the velocity with which the liquid flows out of an orifice (i.e. a narrow hole) is equal to that which is freely falling body would acquire in falling through a vertical distance equal to the depth of orifice below the free surface of liquid. Quantitatively velocity of efflus V = Venturimeter:- It is a device use to measure the rate of flow of liquid. Venturimeter consists of a wide tube having a constriction in the middle. If a 1 and a 2 are the areas of cross section of the wide end and the threat, p 1 and p 2 are the pressure of liquid, then velocity of the liquid entering at the wide end is given by V 1 =a 2 2(P 1 -P 2 ) ρ(a 2 1 -a 2 2 ) Surface tension (T) :- It is the property of a liquid by virtue of which, it behaves like an elastic stretched membrane with a tendency to contract so as to occupy a minimum surface area Mathematically T = F/l S.I Unit is : Nm -1 Dimensional formula : ML 0 T -2 Surface Energy : The potential energy per unit area of the surface film is called the surface energy. Surface energy =

Surface tension is numerally equal to surface energy Excess of pressure inside a drop and double:- There is excess of pressure on concave side of a curved surface 1. Excess of pressure inside a liquid drop = 2T/R 2. Excess of pressure inside a liquid bubble = 4T/R 3. Excess of pressure inside an air bubble = 2T/R, Where T is the surface tension, R = radius of liquid drop Angle of contact:- The angle which the tangent to the free surface of the liquid at the point of contact makes with the wall of the containing vessel, is called the angle of contact For liquid having convex meniscus, the angle of contact is obtuse and for having concave meniscus, the angle of contact is acute. Capillary tube:- A tube of very fine bore is called capillary tube Capillarity:-The rise or fall of liquid inside a capillary tube when it is dipped in it is called capillarity Ascent formula:- when a capillary tube of radius r is dipped in a liquid of density s and surface tension T, the liquid rises or depresses through a height, H= 2Tcosθ /r ρ g There will be rise a liquid when angle of contact θ is acute. There will be fall in liquid when angle of contact θ is obtuse. Thermal expansion and calorimetry Heat- it is a form of energy, which produce in us the sensation of warmth Temperature:- The degree of hotness or coldness of a body is called temperature Thermometer- It is a device used to measure the temperature of a body Scales of temperature:- there are four scales of temperature. Given below is scales of temp with lower and upper fixed point Temperature scales Lower fixed point (Melting point office) Upper fixed point (Boiling point of water)

1. Celsius 0 0 C 100 0 C 2. Fahrenheit 32 0 F 212 0 F 3. Reamur 0 0 R 80 o R 4. Kelvin 273K 373K Relation between the various temperature scales If C,F, R and K are temperature of a body on Celsius, Fahrenheit, Reumer and Kelvin scale, then C/5 = F-32/9 = R/4 = K -273 /5 Thermal expansion:- all solid expands on heating. There are three types of expansion. (1) Liner expansion- When a solid rod of initial length l is heated through a temperature then its new length l = l( 1+α ), where α is called coefficient of liner expansion (2) Superficial expansion- when a solid of initial surface area A is heated through temperature then its new Area is A = A (1 + β ), where β is coefficient of superficial expansion (3) Cubical expansion- when a solid of initial volume V is heated through a temperature then its new volume is V = V ( 1 + ),where ϒ is the coefficient of cubical expansion. Relation between α,β and ϒ α= β/2 =ϒ/3 In case of liquid ϒr= ϒ a + ϒ g Where ϒ r =Coefficient of real expansion of a liquid ϒ a = Coefficient of apparent expansion of liquid ϒ g = Coefficient of cubical expansion of the vessel Thermal capacity = It is the amount of heat required to raise its temperature through one degree Water equivalent :- It is the mass of water which absorbs or emits the same amount of heat as is done by the body for the same rise or fall in temperature. It is represented by W = mc

Specific heat :- It is the amount of heat required to raise the temperature of unit mass of substance through unit degree Celsius C = / Latent heat :- It is define as the quantity of heat required to change the unit mass of the substance from its one state completely to another state at constant temperature Mathematically Q = ML Latent heat of fusion (L f ) Types of Latent heat Latent heat of vaporization (L v ) Calorimeter :- Device used for measuring heat Principle of calorimetry :- Heat loss by hot body = Heat gain by cold body Transfer of heat :- there are three modes by which heat transfer takes place (1) Conduction:- It is the process by which heat is transmitted from one point to another through a substance in the direction of fall of temperature without the actual motion of the particles of the substance. When two opposite faces of a slab, each of cross section A and separated by a distance d are maintained at temperature T 1 and T 2 (T 1 >T 2 ), then amount of heat that flows in time t Q =K A (T 1 T 2 )t/d Where K is coefficient of thermal conductivity of the mater Coefficient of thermal conductivity:- It may be defined as the quantity of heat energy that flows in unit time between the opposite faces of a cube of unit side, the faces being kept at one degree difference of temperature S.I unit of coefficient of thermal conductivity : J S -1 m -1 K -1 or W m -1 K -1 (2) Convection:- It is the process by which heat is transmitted through a substance from one point to another due to the bodily motion of the heated particles of the substance. (3) Radiation:- It is the process by which heat is transmitted from one place to another without heating the intervening medium

Newton s laws of cooling:- It states that the rate of loss of heat or rate of cooling of a body is directly proportional to the temperature difference between the body and the surrounding, provided the temperature difference is small Mathematically -dq/dt = K(T-T 0 ) Perfect black body:- It is a body which absorbs heat radiations of all the wavelengths, which fall on it and emits the full radiation spectrum on being heated. Stefan s law:- It states that the total amount of heat energy radiated per unit area of a perfect black body is directly proportional to the fourth power of the absolute temperature of the substance of the body Mathematically E α T 4 E = Σ T 4 Where is called Stefan s constant It s value is 5.67 x 10-8 JS -1 m -2 k -4 Wein s displacement law:- According to this law, the wavelength λ m of maximum intensity of emission of black body radiation is inversel y proportional to absolute temperature (T) of black body. λ m α λ m T = b where b is wien s constant Questions with **(mark) are HOTs Question 1 MARK QUESTIONS Q.1 A wire is stretched by a force such that its length becomes double. How will the Young s modulus of the wire be affected? Ans. Young s modulus remains the same. Q.2 How does the Young s modulus change with rise in temperature?

Ans. Young s modulus of a material decreases with rise in temperature. Q.3 Which of the three modulus of elasticity Y, K and η is possible in all the three states of matter (solid, liquid and gas)? Ans. Bulk modulus (K) Q.4 The Young s modulus of steel is much more than that for rubber. For the same longitudinal strain, which one will have greater stress? Ans. Stress= Y X longitudinal strain. So steel will have greater stress. Q.5 Which of the two forces deforming or restoring is responsible for elastic behavior of substance? Ans. Restoring force. Q.6. Which mode of transfer of heat is the quickest? Ans. Radiation. ** Q. 7 A boat carrying a number of large stones is floating in a water tank. What will happen to the level of water if the stones are unloaded into the water? Ans. The level of water will fall because the volume of the water displaced by stones in water will be less than the volume of water displaced when stones are in the boat. Q.8. A rain drop of radius r falls in air with a terminal velocity v. What is the terminal velocity of a rain drop of radius 3r? Ans. ( ) v α r 2 = ( ) v 2 =( )v 1 2 =9v 1 **Q. 9 When air is blown in between two balls suspended close to each other, they are attracted towards each other. Why?

Ans. On blowing air between the two balls, the air velocity increases, decreasing pressure. The pressure on the outer side of the ball being more will exert forces on the balls, so they move towards each other. Q.10. Why does air bubble in water goes up? Ans. The terminal velocity, ( ) As the density of air is less than density of water, the terminal velocity is negative. For this reason air bubbles moves upward. 2 MARKS QUESTIONS Q.11 Steel is more elastic than rubber. Explain. Ans. Consider two wire, one of steel and another of rubber having equal length L and cross sectional area A. When subjected to same deforming force F, the extension produce in steel is l S and in rubber is l R such that l R >l S. Then = and = = As < > Hence steel is more elastic. Q.12. A wire stretches by a certain amount under a load. If the load and radius are both increased to four times, find the stretch caused in the wire. Ans. For a wire of radius r stretched under a force F, Y= or l = four times, Let l be the extension when both the load and the radius are increased to

Then, l = ( ) = = Q. 13. Calculate the percentage increase in the length of a wire of diameter 2mm stretched by a force of 1kg F. Young s modulus of the material of wire is 15 X 10 10 Nm -2. Ans. F = 1 Kg F = 9.8N Y = 15 X 10 10 Nm -2 r = = 1mm = 10-3 m Cross section of wire, πr 2 = π X (10-3 ) 2 = π X 10-6 m 2 Now Y = = = = 2.1 X 1 Percentage increase = 2.1 X 1 X 100 = 0.0021% Q. 14. The pressure of a medium is changed from 1.01 X 1 pa to 1.165 X 1 pa and changed in volume is 10% keeping temperature constant. Find the bulk modulus of the medium. Ans. Here Δp = 1.165 X 1 1.01 X 1 = 0.155 X 1 pa = 10 % = 0.1 Now K = = = 1.55 X 1 pa Q.15. 27 identical drops of water are falling down vertically in air each with a terminal velocity of 0.15m/s. If they combine to form a single bigger drop, what will be its terminal velocity? Ans. Let r = radius of each drop, v = 0.15 m/s Now ( ) -------------------------------------(1) Let R be the radius of the big drop.

Volume of big drop = Volume of 27 small drops π = 27 X π R = 3r Let v 1 be the terminal velocity of bigger drop v 1 = ( ) ------------------------------------(2) = = 9 v 1 = 9v = 9 X 0.15 = 1.35 m/s Q.16. Water flows through a horizontal pipe line of varying cross section at the rate of 0.2m 3 s -1. Calculate the velocity of water at a point where the area of cross section of the pipe is 0.02m 2. Ans. Rate of flow = av v = Rate of flow = 0.2m 3 s -1 a = 0.02m 2 v = = 10 ms -1 Q. 17. A cylinder of height 20m is completely filled with water. Find the efflux water (in m s-1) through a small hole on the side wall of the cylinder near its bottom. Given g = 10m/s. Ans Here h = 20m, g = 10 m/s Velocity of efflux, v = = 1 = 20m/s

**Q.18. At what common temperature would a block of wood and a block of metal appear equally cold or equally hot when touched? Ans. When touched an object appear cold if heat flows from our hand to the object. On the other hand it appears hot, if heat flows from the object towards our hand. Therefore a block of wood and block of metal will appear equally cold or equally hot if there is no exchange of heat between hand and the block. So the two blocks will appear equally cold or equally hot if they are at the same temperature as that of our hands i.e. the temperature of our body. Q.19. A piece of chalk immersed into water emits bubbles in all directions. Why? Ans. A piece of chalk has extremely narrow capillaries. As it is immersed in water, water rises due to capillary action. The air present in the capillaries in the chalk is forced out by the rising water. As a result bubbles are emitted from the chalk in all the directions. 3 MARKS Q. 20. Water at a pressure of 4 X 10 4 Nm-2 flows at 2ms -1 through a pipe of 0.02m 2 cross sectional area which reduces to 0.01m 2. What is the pressure in the smaller cross section of the pipe? Ans. a 1 v 1 = a 2 v 2 = = = 4m/s Again + = + = - ς ( - ) = 3.4 X 10 4 Nm -2

Q.21. What is surface tension and surface energy? Derive the relation between surface tension and surface energy. Q.22. Derive equation of continuity for steady and irrotational flow of a perfectly mobile and incompressible fluid. What conclusion is drawn from it? Q.23 What is Stoke s law? Derive the relation by the method of dimension. Q.24. A piece of iron of mass 0.1 kg is kept inside a furnace, till it attains the temperature of the furnace. The hot piece of iron is dropped into a calorimeter containing 0.24 Kg of water at 20. The mixture attains an equilibrium temperature of 60. Find the temperature of the furnace. Given water equivalent of calorimeter = 0.01 kg and specific heat of iron = 470 J Kg -1 K -1. Ans. Let be the temperature of the furnace i.e of the piece of iron. Heat lost by the piece of iron Q = M 1 C 1 ( ) Here M 1 = 0.1 Kg C 1 = 470 J Kg -1 K -1 Q = 0.1 X 470 ( ) = 47 ( ) ------------------------- (1) Heat gain by water and the calorimeter, Q = (M 2 + w) C 2 ( ) M 2 = 0.24 Kg w = 0.01 Kg = 20 C 2 = Specific heat of water = 4200 J Kg -1 K -1 Q = (0.24 + 0.01) x 4200 X (60 20) = 42000 -------------------------(2) From (1) and (2) 47 ( ) = 42000 = 953.62 **Q. 25. Calculate the energy spent in spraying a drop of mercury of 1 cm radius into 10 6 droplets all of same size. Surface tension of mercury is 35 x 10-3 Nm -1. Ans. T = 35 x 10-3 Nm -1 R = 1 cm

Let r be the radius of each small drop, when the original drop is spitted into 10 6 small drops. Then 10 6 X r 3 = R 3 r = 10-2 R r = 10-2 X 1 = 10-2 cm Initial surface area of the original drop = 4 R 2 = 4 X 1 2 = 4 cm 2 Final surface area of the 10 6 small drops = 10 6 X r 2 = 10 6 X 4 X ( 10-2 ) 2 = 400 cm 2 Therefore increase in surface area = 400-4 = 396 cm 2 = 396 X 10-4 m 2 Therefore energy spent = T X increase in surface area = 35 X 10-3 X 396 X 10-4 = 4.354 X 10-3 N Q.26. A liquid takes 10 minutes to cool from 70 to 50. How much time will it take to cool from 60 to 40? The temperature of the surrounding is 20. Ans. 1 st case = 70 0 C = 50 0 C = 20 t = 10 minutes Using = k ( ), we get = k (60 20) = 40 k K = For 2 nd case = 60 0 C = 40 0 C = 20 t =? Using = k ( ), we get = (50 20) = t = = 13.33 minutes

**Q. 28. A slab of stone of area 0.36m 2 and thickness of 0.1m is exposed to the lower surface of steam at 100. A block of ice at 0 rest on the upper surface of the slab. In one hour 4.8 Kg of ice is melted. Calculate the thermal conductivity of stone. Ans. Here A = 0.36m 2, d = 0.1m, T 1 T 2 = 100 0 = 100 t = 1hr = 3600 sec Mass of ice melted M = 4.8 Kg We know Latent heat of ice L = 336 X 10 3 J Kg -1 Heat required to melt the ice Q = ML = 4.8 X 336 X10 3 = 1.613 X 10 6 K Now Q = ( ) 1.613 X 10 6 = K = 1.245 wm -10 C -1 5 MARKS Q. 28. Define capillarity and angle of contact. Derive an expression for the ascent of liquid inside a capillary tube where it is dipped in a liquid. Q. 29. Show that there is always excess of pressure on the concave side of the meniscus of a liquid. Obtain the expression for the excess of pressure inside (i) a liquid drop (ii) liquid bubble. Q. 30. State and prove the Bernoulli s principle. Give two practical application of it. Q.31. Define terminal velocity. Show that the terminal velocity v of a sphere of radius r, density ς falling vertically through a viscous fluid of density σ and coefficient of viscosity η is given by

v = ( ) Q. 32. State and explain Hooke s law. A wire is fixed at one end and is subjected to increasing load at the other end. Draw a curve between stress and strain. With the help of the curve, explain the term elastic limit, yield point, breaking point and permanent set. How this curve does may be used to distinguish between ductile and brittle substances.