Magnetism of ultrathin films: Theory and Experiment

Similar documents
SPIN DYNAMICS IN NANOSCALE MAGNETISM BEYOND THE STATIC MEAN FIELD MODEL. Handbook of Magnetism Adv. Magn.. Mater. (Wiley & Sons 2007) Klaus Baberschke

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM?

WHY ARE SPIN WAVE EXCITATIONS ALL IMPORTANT IN NANOSCALE MAGNETISM?

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals

WHAT IS THE DIFFERENCE IN MAGNETISM OF SIZE CONTROLLED AND OF BULK MATERIAL?

Lecture 2: Magnetic Anisotropy Energy (MAE)

Lecture 6: Spin Dynamics

Lectures on magnetism at the Fudan University, Shanghai October 2005

A15. Circular dichroism absorption spectroscopy and its application

physica status solidi REPRINT basic solid state physics Why are spin wave excitations all important in nanoscale magnetism?

Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory

Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance

Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification

Damping of magnetization dynamics

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

On the temperature dependence of multiple- and single-scattering contributions in magnetic EXAFS

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

Influence of ferromagnetic antiferromagnetic coupling on the antiferromagnetic ordering temperature in Ni/Fe x Mn 1 x bilayers

Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films

Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering

Influence of ferromagnetic-antiferromagnetic coupling on the antiferromagnetic ordering temperature in NiÕFe x Mn 1 x bilayers

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

X-ray Imaging and Spectroscopy of Individual Nanoparticles

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Mesoscopic Spintronics

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

arxiv:cond-mat/ v1 9 Feb 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003

Spin-resolved photoelectron spectroscopy

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Probing Magnetic Order with Neutron Scattering

Ferromagnetic resonance in Yttrium Iron Garnet

Theory of carbon-based magnetism

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Gianluca Gubbiotti. CNR-Istituto Officina dei Materiali (IOM) -Unità di Perugia. Italian School on Magnetism, Pavia 8 th February 2011

Coupled perpendicular magnetization in Fe/Cu/Fe trilayers

Energy Spectroscopy. Ex.: Fe/MgO

Electronic, magnetic and spectroscopic properties of free Fe clusters

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

Angle dependence of the ferromagnetic resonance linewidth in easy-axis and easy-plane single crystal hexagonal ferrite disks

Self-organized growth on the Au(111) surface

Giant Magnetoresistance

Electron spins in nonmagnetic semiconductors

Magnetic domain theory in dynamics

introduction: what is spin-electronics?

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal

Cover Page. The handle holds various files of this Leiden University dissertation

Pressure dependence of Curie temperature and resistivity of complex Heusler alloys

Spin pumping and spin transport in magne0c metal and insulator heterostructures. Eric Montoya Surface Science Laboratory Simon Fraser University

Theory of electric transport through Fe/V/Fe trilayers including the effect of impurities

Low dimensional magnetism Experiments

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

arxiv:cond-mat/ v1 1 Dec 1999

R. Ramesh Department of Materials Engineering, University of Maryland at College Park, College Park, Maryland 20742

Magnetic recording technology

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Interfacial effects on magnetic relaxation in CoÕPt multilayers

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

7. Basics of Magnetization Switching

Magnetism and Magnetic Switching

Magnetism at finite temperature: molecular field, phase transitions

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information.

Size- and site-dependence of XMCD spectra of iron clusters from ab-initio calculations

Macroscopic properties II

arxiv:cond-mat/ v1 7 Aug 1996

An Overview of Spintronics in 2D Materials

AG Kuch Scientific Activity Report 2007

High-frequency measurements of spin-valve films and devices invited

Neutron and x-ray spectroscopy

ESR spectroscopy of catalytic systems - a primer

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Competing Ferroic Orders The magnetoelectric effect

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

Ferromagnetic resonance in the epitaxial system Fe/ MgO/ Fe with coupled magnetic layers

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

Magnetization dynamics for the layman: Experimental Jacques Miltat Université Paris-Sud & CNRS, Orsay

Radboud Universeit Nijmegen

MAGNETIC ANISOTROPY IN TIGHT-BINDING

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS

Unidirectional spin-wave heat conveyer

The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Theory of magnetoelastic dissipation due to domain wall width oscillation

Skyrmions à la carte

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks.

Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet. Levente Rózsa Supervisor: László Udvardi

Surface Characte i r i zat on LEED Photoemission Phot Linear optics

.O. Demokritov niversität Münster, Germany

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Transcription:

1/23 Magnetism of ultrathin films: Theory and Experiment Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin

2/23 New and fundamental aspects are found in nanomagnetism with no counterpart in bulk materials 281. WE-Heraeus-Seminar Spin-Orbit Interaction and Local Structure in Magnetic Systems with Reduced Dimensions June 22 in Wandlitz

3/23 For thin films the Curie temperature can be manipulated 6 4 Ni(1)/Cu(1) Paramagn. d=7.6 T=3K finite size M 2 M Ferromagn. 5 1 thickness (ML) P. Poulopoulos and K. B. J. Phys.: Condens. Matter 11, 9495 (1999) T T C ( ) TC ( d) 1/ C ( ) cd Yi Li, K. B., PRL 68, 128 (1992)

4/23 New artificial structures, like tetragonal (fct) Ni, Fe, Co are grown vacuum K S1 2 = -3.2% volume, and surface MAE K i = K i V S K + 2 i d C. Uiberacker et al. Phys. Rev. Lett. 82, 1289 (1999) Cu(1)/Ni 12 / Vac K S2 substrate 1 = +2.5% Ni 2.49 Å Cu 2.55 Å.1 E b (mev). -.1 -.2 Cu(1) substrate 12 ML Ni unrelaxed relaxed -2.5 % relaxed -5.5 % vacuum -.3 2 4 6 8 1 12 14 16 18 layer

Interlayer Exchange Coupling and f (T) Freie Universität Berlin UC Irvine 26.-28. May 21 5/23 full trilayer grows in fct structure T C Co T C Ni J inter Co Cu Ni IEC LEED I(V) Intensity (arb. units) x 1.5 Cu Ni 6 9 Ni 9 d=1.7 ij Cu(1) d ij=1.81 Å 2 4 Energy (ev) Ni Cu Ni 8 6 9 Å 6 R. Nünthel, PhD Thesis FUB 23 A trilayer is a prototype to study magnetic coupling in multilayers. What about element specific Curie-temperatures? Two trivial limits: (i) d Cu = direct coupling like a Ni-Co alloy (ii) d Cu = large no coupling, like a mixed Ni/Co powder BUT d Cu 2 ML?

6/23 2. 16 M (arb. units) 1.75.75.5.25 2.8 ML Cu 4.8 ML Ni Cu(1) T C Ni = 275K 2.8 ML Co 2.8 ML Cu 4.8 ML Ni Cu(1) 37K T * Ni 15 2 25 3 35 T (K) P. Poulopoulos, K. B., Lecture Notes in Physics 58, 283 (21) M (ka/m) 12 3 2 1 3. ML Cu 2.8 ML Ni Cu (1) T* C,Ni T C,Ni T C,Ni 38 K 3 6 9 12 15 18 21 24 T (K) A. Scherz et al. PRB 65, 24411 (25) The large shift of T C Ni can NOT be explained by the static exchange field of Co. 2. ML Co 3. ML Cu 2.8 ML Ni Cu (1)

7/23 Crossover of M Co (T) and M Ni (T) Norm. XMCD Difference (arb.units) 2-2 -4-6 Co L 3,2 -edges Ni L 3,2 -edges 45K 2.1ML Cu 4ML Ni Cu(1) x2 76 8 84 88 Photon Energy (ev) 1.3ML Co 2.1ML Cu 4 ML Ni Cu(1) Magnetization M (Gauss) 1 75 5 3 2 1 M sat M sat Two order parameter of T C Ni and T C Co A further reduction in symmetry happens at T c low A. Scherz et al. J. Synchrotron Rad. 8, 472 (21) AFM M Ni 4 8 12 16 2 24 Temper ature (K) L. Bergqvist, O. Eriksson J. Phys. Conds. Matter 18,4853 (26) [ 11] 2 [1] easy M Co [11] ext H, k easy M Ni

8/23 P. Bruno, PRB 52, 411 (1995); V. Drchal et al. PRB 6, 9588 (1999) N.S. Almeida et al. PRL 75, 733 (1995) J =J Interlayer exchange coupling and its T-dependence. inter inter, [ ] T/T T = hv F / 2 kbd sinh(t/t ) 3/2 J =J [ ] inter inter, 1-(T/T C )

9/23 in-situ FMR in coupled films IEC => f(t) in µev/ particle Advantage: FM and AFM theory FMR in-situ UHV-experiment J. Lindner, K. B. Topical Rev., J. Phys. Condens. Matter 15, R193-R232 (23)

1/23 J in ter (µev/atom) 2 1 Ni 7 Cu 9 Co 2 /Cu(1) T=55K - 332K T=294K 8 v=2.8 1cm/s F v =2.8 1 cm/s T 5/2 T 3/2 2 4 6 8 T 3/2 F 7 J inter (µev/atom) 15 1 5 (Fe 2 V 5 ) 5 T=15K - 252K, T C =35K 5/2 (T/T C) 6 v F=5.3 1 cm/s 3/2 (T/T C ).2.4.6.8 3/2 (T/T ) C

11/23

12/23 J(T) 1- A(d)T n, with n 1.5 A(d) const. A(d) linear function A(d) osc. function (interface) (electronic bandstructure) (spin wave excitation)

See yesterdays talk by Talat Rahman 13/23 Freie Universität Berlin UC Irvine 26.-28. May 21

14/23 Manipulation of surface MAE, K S by adsorbed molecules, metal cap and surfactant growth constant K V KNi cubic K (µev/atom) 2 25 2 15 1 5-5 -1-15 d(ml) 1 7 5 2 M 2 t=.75 Ni vacuum Ni + Cu cap Ni + O surfactant -2.5.1 1/d (1/ML) Ni/Cu(1) J. Lindner et al. Surf. Sci. Lett. 523, L65 (23).15.2 Ni/vacuum Ni/Cu Ni/CO (van Dijken et al.) Ni/H 2 Ni/O K i = K i V S K + 2 i d Interface (van Dijken et al.) (surfactant) K S ( ev/atom) -17-59 -81-7 -17 d C (ML) 1.8 7.6 7.3 6.8 4.9 Changes of K S shift the spin reorientation transition d C K. B. Handbook of Magnetism and Advanced Magnetic Materials, Vol. 3 Ed. Kronmüller and Parkin, 27 John Wiley & Sons, Ltd.

15/23 Results of ab initio calculations R. Q. Wu & coworkers Phys. Rev. Lett. 92, 14722 (24) 4 MAE along X axis MAE (µev / atom) 3 2 1 O/Ni /O n Cu /Ni 5 n MAE (mev) 2 1 O/Ni clean Ni X -1.2.4.6.8.1.12 1/d (1/ML) clean Ni n Ni n slabs, n = 9, 11, 13: clean, Ni n Cu 5 superlattice, and c(2x2) O/Ni n on each side O-induced surface state seen in the vicinity of X-point is responsible for change in MAE

16/23 Spin Dynamics: Damping and Scattering Landau-Lifshitz-Gilbert equation(1935) dm dt m H eff m dm dt Gilbert damping M =const. M spirals on a sphere into z- axis Bloch-Bloembergen Equation (1956) dm dt dm z dt x, y ( m H eff ( m H ) eff z ) x, y m z M T m 1 T x, y 2 S spin-lattice relaxation (longitudinal) spin-spin relaxation (transverse) M z =const.

17/23 Gilbert damping versus magnon-magnon scattering. In nanoscale magnetism path 2 has been discussed very very little. Mostly an effective damping (path 1) is modeled/fitted. Path 3: magnon-phonon scattering, see Bovensiepen PRL 28

18/23 FMR Linewidth - Damping Landau-Lifshitz-Gilbert-Equation 2-magnon-scattering 1 M t = _ (M H G M M eff ) + 2 ( M ) S t viscous damping, energy dissipation R. Arias, and D.L. Mills, Phys. Rev. B 6, 7395 (1999); D.L. Mills and S.M. Rezende in Spin Dynamics in Confined Magnetic Structures, edt. by B. Hillebrands and K. Ounadjela, Springer Verlag (k ) k > c k < FMR c Gilbert-damping ~ k Gil H ( ) = G 2 M S H 2Mag ( ) = arcsin 2 2 1/2 +( /2) ] - /2 2 2 1/2 +( /2) ] + /2 = (2K2-4 M S), =( B/h)g K - uniaxial anisotropy constant 2 M - saturation magnetization Which (FMR)-publication has checked (disproved) quantitatively this analytical function? S

19/23 Gilbert damping contribution: linear in frequency two-magnon excitations (thin films): non-linear frequency dependence H 2 magnon with ( ) arcsin 2 ( / 2) 2 ( / 2) / 2 / 2 Meff R. Arias et al., PRB 6, 7395 (1999) 2 2 K. Lenz et al., PRB 73, 144424 (26) 2 H H H (Oe) 1 H * H 2-magnon H inhom H Gilbert + H inhom inhomogeneous broadening 2 4 6 8 /2 (GHz)

2/23 HPP(Oe) 4 2 8 4 15 Oe! 4 8 5 1 15 2 f (GHz) two-magnon scattering observed in Fe/V superlattices J. Lindner et al., PRB 68, 612 (23) real relaxation no inhomogeneous broadening two-magnon damping dominates Gilbert damping by two orders of magnitude: 1/T 2 ~1 9 s -1 vs. 1/T 1 ~1 7 s -1 G H (koe) (1 8 s -1 ) (1 8 s -1 ) (1-3 ) (Oe) Fe 4 V 2 ; H [1].27 5..26 1.26 Fe 4 V 4 ; H [1].139 26.1.45 2.59 Fe 4 V 2 ; H [11].15 27.9.22 1.6 Fe 4 V 4 ; H [11].45 8.4.77 4.44 Fe 4 V 4 ; H [1].76 4.38 5.8 G isotropic dissipation and anisotropic spin wave scattering

21/23 Angular- and frequency-dependent FMR on Fe 3 Si binary Heusler structures epitaxially grown on MgO(1) d = 4nm Kh. Zakeri et al. PRB 76,14416 (27) PRB 8, 5991 (29) Angular dependence at 9 and 24 GHz (26 53) 1 7 sec -1, anisotropic G 5 1 7 sec -1, isotropic A phenomenological effective Gilbert damping parameter gives very little insight into the microscopic relaxation and scattering.

22/23

Doug, we wish you all the best! Freie Universität Berlin UC Irvine 26.-28. May 21 23/23

24/23 Magnetism of ultrathin Ferromagnets: Theory and Experiment Klaus Baberschke Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany Ultrathin films of few atomic layers thickness only, are a new type of designer materials. They have no counterpart in bulk magnetism; they offer the opportunity to study new fundamental aspects of magnetism: The critical temperature Tc changes as function of the thickness from Tcbulk to zero. Modification of the n.n. distance by few hundreds of Å may change the magnetic part of the free energy by orders of magnitude. In multilayer ferromagnetic- and antiferromagnetic-coupling can be manipulated via the spacer thickness. The unusual static properties as well as dynamic characteristics (magnons) are investigated by theory and experiment. Recent specific example will be discussed1,2. This field of low dimensional magnetism demonstrates the very successful collaboration between theory and experiment, and gives some insight for the fundamental understanding of magnetism. 1 D. L. Mills and S. M. Rezende in Spin dynamics in confined magnetic structures II Topics in Applied Physics vol. 87, p.27 Springer 23 2 K. Baberschke in Handbook of magnetism and advanced magnetic materials vol. 3, p.1617 John Wiley & Sons 27 ^ UCI 28.5.21