ABJM 行列模型から. [Hatsuda+M+Okuyama 1207, 1211, 1301]

Similar documents
Instanton Effects in Orbifold ABJM Theory

Non-perturbative Effects in ABJM Theory from Fermi Gas Approach

Large N Non-Perturbative Effects in ABJM Theory

M-theoretic Matrix Models

arxiv: v1 [hep-th] 7 Jun 2013

Non-perturbative effects in ABJM theory

Quantum gravity at one-loop and AdS/CFT

Matrix models from operators and topological strings

arxiv: v3 [hep-th] 7 May 2015

1 What s the big deal?

A supermatrix model for ABJM theory

Non-perturbative effects in string theory and AdS/CFT

The Partition Function of ABJ Theory

arxiv: v2 [hep-th] 4 Jun 2016

Dualities and Topological Strings

Topological String Theory

Counting black hole microstates as open string flux vacua

Resurgence Structure to All Orders of Multi-bions in Deformed SUSY Quantum Mechanics

Duality Chern-Simons Calabi-Yau and Integrals on Moduli Spaces. Kefeng Liu

ABJM Baryon Stability at Finite t Hooft Coupling

How to resum perturbative series in supersymmetric gauge theories. Masazumi Honda ( 本多正純 )

Anomalies, Gauss laws, and Page charges in M-theory. Gregory Moore. Strings 2004, Paris. Related works: Witten , , ,

Elements of Topological M-Theory

Superconformal Partition Functions and Non-perturbative Topological Strings

Fixing all moduli in F-theory and type II strings

(Quantum) Super-A-polynomial

arxiv: v2 [hep-th] 12 Jan 2012

Integrable spin systems and four-dimensional gauge theory

Ω-deformation and quantization

Nonperturbative Study of Supersymmetric Gauge Field Theories

Knot Contact Homology, Chern-Simons Theory, and Topological Strings

Localization and Conjectures from String Duality

Resurgent Transseries: Beyond (Large N) Perturbative Expansions

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

arxiv: v4 [hep-th] 17 Mar 2009

Thermodynamics of black branes as interacting branes

Seiberg Duality in Matrix Model

Knot Homology from Refined Chern-Simons Theory

Topological Strings and Donaldson-Thomas invariants

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley

Cold Holographic matter in top-down models

Topological vertex and quantum mirror curves

M-theory S-Matrix from 3d SCFT

Think Globally, Act Locally

One Loop Tests of Higher Spin AdS/CFT

Affine SU(N) algebra from wall-crossings

Refined Chern-Simons Theory, Topological Strings and Knot Homology

Supermatrix Models * Robbert Dijkgraaf Ins$tute for Advanced Study

September 29, Gaussian integrals. Happy birthday Costas

Gökçe Başar. University of Maryland. July 25, Resurgence in Gauge and String Theories, Lisboa, 2016

Planar Limit Analysis of Matrix Models

Branes in Flux Backgrounds and Dualities

Higher Spin AdS/CFT at One Loop

Singularities in String Theory

Holographic Anyons in the ABJM theory

The Affleck Dine Seiberg superpotential

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Lecture 12 Holomorphy: Gauge Theory

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Knot invariants, A-polynomials, BPS states

Supersymmetric Gauge Theories in 3d

Free fermion and wall-crossing

Open/Closed Duality in Topological Matrix Models

t Hooft loop path integral in N = 2 gauge theories

Chern-Simons Theory & Topological Strings

Techniques for exact calculations in 4D SUSY gauge theories

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Gauge Threshold Corrections for Local String Models

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli

Topological Holography and Chiral Algebras. Work in progress with Kevin Costello

String Duality and Localization. Kefeng Liu UCLA and Zhejiang University

THE MASTER SPACE OF N=1 GAUGE THEORIES

On Flux Quantization in F-Theory

Factorisation of N = 2 theories on the squashed 3-sphere

2d SCFT from M2-branes

Topological Strings, D-Model, and Knot Contact Homology

Chern-Simons Theories and AdS/CFT

An introduction to heterotic mirror symmetry. Eric Sharpe Virginia Tech

Discrete symmetries in string theory and supergravity

1 Electrons on a lattice, with noisy electric field

5d SCFTs and instanton partition functions

Heterotic Torsional Backgrounds, from Supergravity to CFT

String Duality and Moduli Spaces

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

F- 理論におけるフラックスコンパクト化. Hajime Otsuka( 大塚啓 ) (Waseda U.) Physics Lett. B. 774 (2017) 225 with Y. Honma (National Tsing-Hua U.) Sangyo U.

arxiv:hep-th/ v1 20 Nov 2002

On the BCOV Conjecture

t Hooft Loops and S-Duality

Web Formalism and the IR limit of massive 2D N=(2,2) QFT. collaboration with Davide Gaiotto & Edward Witten

Two Dimensional Yang-Mills, Black Holes. and Topological Strings

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

Symmetries Then and Now

Overview of classical mirror symmetry

String-Theory: Open-closed String Moduli Spaces

Disk Instantons, Mirror Symmetry and the Duality Web

Higher Spin Black Holes from 2d CFT. Rutgers Theory Seminar January 17, 2012

New Anomalies in Topological String Theory

Localization and Conjectures from String Duality

Six-point gluon scattering amplitudes from -symmetric integrable model

Disk Instantons, Mirror Symmetry and the Duality Web

Transcription:

ABJM 行列模型から 位相的弦理論へ Sanefumi Moriyama (NagoyaU/KMI) [Hatsuda+M+Okuyama 1207, 1211, 1301] [HMO+Marino 1306] [HMO+Honda 1306]

Lessons from '90s String Theory As Unified Theory String Theory, NOT JUST "A Theory Of Strings" Only Sensible After NonPerturbative Branes Various Perturbative String Theories Various Vacua Of "A Unique Theory" Further Unification By M theory

ABJM for NonPerturbative Strings ABJM Theory [N=6 Super Chern Simons Theory] N x M2 branes on C 4 /Z k ( CP 3 xs 1 as k ) To Understand Better M Theory (NonPerturbative Strings) Roles of ABJM Theory?

Yes Partition Function (Normalization = Free of Physical Poles) A Non Trivial Cancellation Mechanism Strings & Membranes: Poles Strings + Membranes: Cancel

Contents 1. Introduction 2. ABJM & Two Instanton Effects 3. Instantons from Numerics 4. Refined Topological Strings 5. Discussions

ABJM Matrix Model Partition Function of ABJM Theory Due to SUSY, Localized to Matrix Model Z(N) = N 1 =N 2 =N g s =2πi/k

't Hooft Expansion N Expansion with λ=n/k Fixed Genus Expansion F = N 2 F 0 (λ) + N 0 F 1 (λ) + N 2 F 2 (λ) + N 4 F 3 (λ) +... = N 2 [F pert 2 4 0 (λ) + # e 2π 2λ + # e 4π 2λ +...] + N 0 [F 1 pert (λ)+ # e 2π 2λ + # e 4π 2λ +...] +...... Sum Up To Airy Function! [Fuji Hirano M] Worldsheet Instanton e 2π 2λ = exp[ T F1 Area(CP 1 )] F String Wrapping CP 1 CP 3

M theory Expansion M theory Background: C 4 /Z k N with k Fixed Close To 't Hooft Limit But Not Exactly N M theory Regime k: Fixed k 't Hooft Regime λ=n/k Fixed but Large

Fermi Gas Formalism [Marino Putrov] Rewriting Partition Function Regarding as Fermi Gas with Density Matrix ρ Z(N) = (N!) 1 σ S(N) ( 1) σ i dq i q i ρ q σ(i) ρ = (2 cosh q/2) 1/2 (2 cosh p/2) 1 (2 cosh q/2) 1/2 [p,q] = i 2πk Introducing Grand Potential e J(μ) = dt(1 N=0 Z(N) e μn = det + e μ ρ) )

WKB (small k) expansion J(μ) = k 1 J 0 (μ) + k 1 J 1 (μ) + k 3 J 2 (μ) + k 5 J 3 (μ) +... = k 1 [ J pert 0 (μ) + (#μ 2 +#μ+#)e 2μ + (...) e 4μ +... ] + k [ J pert 1 (μ) + (#μ 2 +#μ+#)e 2μ + (...) e 4μ +... ] +...... = (#μ 3 +#μ+#) + (#μ 2 +#μ+#)e 2μ + (...)e 4μ +... Airy Function Reproduced [Marino Putrov, Honda et al] Membrane Instanton e 2μ e π 2Nk = exp[ T D2 Area(RP 3 )] D2 brane Wrapping RP 3 CP 3 [Drukker Marino Putrov]

Summary J(μ) ) = J pert (μ) + J WS (μ) + J MB (μ) +... J pert (μ) = C μ 3 /3 + B μ + A e 2π 2λ e 4μ/k J WS (μ) = m=1 d (m) k e m x 4μ/k J MB (μ) = l=1 (a (l) 2 + b (l) + c (l) e l x 2μ k μ k μ k ) WS Instantons from Topological Strings d k (m) = g d m ( 1) m/d N g d/d (2 Sin[2πd/k]) 2g 2 N g d: Gopakumar Vafa Invariant on F 0 =P 1 xp 1

Contents 1. Introduction 2. ABJM & Two Instanton Effects 3. Instantons from Numerics 4. Refined Topological Strings 5. Discussions

Partition Function Z(N) with Fixed k Example: (For k=1) ) Z(1) = 1/4 Z(2) = 1/16π Z(3) = (π 3)/2 6 π Z(4) = ( π 2 +10)/2 10 π 2 Z(5) ( ) = ( 9π 2 +20π+26)/2 12 π 2 Z(6) = (36π 3 121π 2 +78)/2 14 3 2 π 3 Z(7) = ( 75π 3 +193π 2 +174π 126)/2126)/2 16 3π 3 Z(8) = (1053π 4 2016π 3 4148π 2 +876)/2 21 3 2 π 4 Z(9) = (5517π 4 13480π 3 15348π 2 +8880π+4140)/2 23 3 2 π 4

Exact Values From Numerical Studies Define Approximate Grand Potential J(μ) = log[ Nmax Z(N) e μn N=0 ( ) ] Compare with Expectation J(μ)=(#μ )(# 3 +#μ+#)+ #) m 4 #) l 2 m=1 #e mx4μ/k + l=1 (#μ 2 +#μ+#)e lx2μ Read off Exact Values of Coefficients

Results (Schematically) J 4μ 8μ 12μ k=1 (μ) = [#μ 2 +#μ+#]e + [#μ 2 +#μ+#]e + [#μ 2 +#μ+#]e +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e 4μ/3 + [#]e 8μ/3 + [#μ 2 +#μ+#]e 4μ +... J k=4 (μ) = [#]e [] μ + [#μ μ 2 +#μ+#]eμ 2μ + [#]e [] 3μ +...... J 2μ/3 4μ/3 2μ k=6 (μ) = [#]e + [#]e + [#μ 2 +#μ+#]e +... WS(1) WS(2) WS(3)

Comparison with WS Instanton (Top String) J 4μ 8μ 12μ k=1 (μ) = [#μ 2 +#μ+#]e + [#μ 2 +#μ+#]e + [#μ 2 +#μ+#]e +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e 4μ/3 + [#]e 8μ/3 + [#μ 2 +#μ+#]e 4μ +... J k=4 (μ) = [#]e [] μ + [#μ μ 2 +#μ+#]eμ 2μ + [#]e [] 3μ +...... J 2μ/3 4μ/3 2μ k=6 (μ) = [#]e + [#]e + [#μ 2 +#μ+#]e +... WS(1) WS(2) WS(3) : Match : Divergent : Not Match

Divergences Cancelled by MB Instanton J 4μ 8μ 12μ k=1 (μ) = [#μ 2 +#μ+#]e + [#μ 2 +#μ+#]e + [#μ 2 +#μ+#]e +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e 4μ/3 + [#]e 8μ/3 + [#μ 2 +#μ+#]e 4μ +... J k=4 (μ) = [#]e [] μ + [#μ μ 2 +#μ+#]eμ 2μ + [#]e [] 3μ +... k=4... MB(2) J 2μ/3 4μ/3 2μ k=6 (μ) = [#]e + [#]e + [#μ 2 +#μ+#]e +... WS(1) WS(2) WS(3) MB(1)

1 Membrane Instanton Vanishing in k=odd Canceling Divergence @ k=2m Matching the WKB data a k (1) = 4(π 2 k) 1 Cos[πk/2] b k (1) = 2π 1 Cot[πk/2] Cos[πk/2] k [ / ] [ / ] c k (1) =...

How About? (l, m) Bound State? e (m x 4μ/k + l x 2μ) Ex: e 3μ Effects in k=4 Sector From Both (0,3) & (1,1) Contribution frombound States J(μ) = J pert (μ) + J MB (μ) + J WS (μ) + J bnd (μ) J bnd (μ) = m=1 l=1 # e (m x 4μ/k + l x 2μ)

Bound States J(μ) = J pert (μ) + J MB (μ) + J WS (μ) + J bnd (μ) Bound States Incorporated by μ μ eff J WS (μ)+ J bnd (μ) = J WS (μ eff ) μ eff = μ + l=1 a (l) k e l x 2μ All in Effective Chemical Potential J(μ) = J pert (μ eff ) + J' MB (μ eff ) + J WS (μ eff ) J' MB (μ (b~ +c~ eff ) = l=1 (l) k μ eff (l) k ) e l x 2μeff Membrane Instanton in Linear Functions c~ k (l) = k 2 k [b~ k (l) /k] Only a k (l) & b k (l) NonTrivial

Summary Exact Values From Numerical Study Poles Cancellation Requirement Explicit First Few Membrane Instantons Bound States (Neither fromgenus OR WKB) No Other Contributions

Contents 1. Introduction 2. ABJM & Two Instanton Effects 3. Instantons from Numerics 4. Refined Topological Strings 5. Discussions

Refined Topological Strings a (l) k & b (l) k A & B Periods of Q Spectral Curve! Classical Spectral Curve 1 + e x + e p + z 1 e x + z 2 e p = 0 Quantum Spectral Curve ( 1+e x +z 1 e x )Ψ(x)+Ψ(x+ )+z 2 Ψ(x )=0 Quantization Refined Topological String of Spectral Curve in Nekrasov Shatashivili Limit [Mironov Morozov, Aganagic Cheng Dijkgraaf Krefl Vafa]

All Explicitly In Topological Strings J(μ)=J pert (μ eff )+J WS (μ eff )+J' MB (μ eff ) J pert (μ)=cμ 3 /3+Bμ+A J WS (μ eff )=F T top (T eff 1,T eff 2,λ) J' MB (μ eff )=(2πi) 1 λ [λf NS (T 1 eff /λ,t 2 eff /λ,1/λ)] F(T 1,T 2,τ 1,τ 2 ): Free Energy of Refined Top Strings T 1,T 2 : Kahler Moduli τ 1,τ 2 : Coupling Constants T eff 1 =4μ eff /k iπ T eff 2 =4μ eff /k+iπ λ=2/k Topological Limit F top (T 1,T 2,τ)=lim τ1 τ,τ2 τ F(T 1,T 2,τ 1,τ 2 ) NS Limit F NS (T 1,T 2,τ)=lim τ1 τ,τ2 0 2πiτ 2 F(T 1,T 2,τ 1,τ 2 )

Triple Sine Function Triple Sine Function Defined frommultiple Zeta Function All Poles Cancelled Formally log S 3 (z;ω)= z + z + Sign Modifications Pole Cancellation Still Holds! z /ω ω 1,ω 3 /ω 2 ω 2,ω 1 /ω 3 ω 3,ω 2 1

Relation to Triple Sine Function F 1 top + (2πi) 1 λ [ λ F NS ] = lim τ1 τ,τ2 τ d j N d j log S 3 ω z z z 3 /ω ω 1 ω 2 ω 1,ω 3 /ω 2 ω 2,ω 1 /ω 3 ω 3,ω 2 1 F F top NS Before The Limit? Ellipsoid S 3? Squashed S 3? Similar to M5 Partition Function? Duality???

Contents 1. Introduction 2. ABJM & Two Instanton Effects 3. Instantons from Numerics 4. Refined Topological Strings 5. Discussions

Summary Instanton Bound States of WS & MB Neither from Genus Exp OR WKB Exp An Explicit Formula for ABJM Matrix Model Perturbative: Cubic Function WS Instanton: Top String MB Instanton: Refined Top String in NS Limit Partition Function (& Wilson Loop)

Punch Lines M theory / Nonperturbative Strings String Theory, NOT JUST A Theory Of Strings Only Sensible After NonPerturbative Branes ABJM Matrix Model Poles from WS & MB Cancel Only After Sum Cancellation Mechanism Raison D'Etre DEtrefor M theory First Few Membrane Instantons Infinite i Cancellation in General lformula

Thank you for your attention.