degenerate Fokker-Planck equations with linear drift

Similar documents
Hypocoercivity for kinetic equations with linear relaxation terms

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Entropy-dissipation methods I: Fokker-Planck equations

ON THE RATES OF DECAY TO EQUILIBRIUM IN DEGENERATE AND DEFECTIVE FOKKER-PLANCK EQUATIONS 1. INTRODUCTION

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Semigroup factorization and relaxation rates of kinetic equations

Entropic structure of the Landau equation. Coulomb interaction

Decay rates for partially dissipative hyperbolic systems

Entropy Methods for Reaction-Diffusion Equations with Degenerate Diffusion Arising in Reversible Chemistry

INTERPOLATION BETWEEN LOGARITHMIC SOBOLEV AND POINCARÉ INEQUALITIES

Quantum Fokker-Planck models: kinetic & operator theory approaches

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Workshop on CENTRAL Trends in PDEs Vienna, November 12-13, 2015

A REVIEW ON RESULTS FOR THE DERRIDA-LEBOWITZ-SPEER-SPOHN EQUATION

Discrete entropy methods for nonlinear diffusive evolution equations

Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Explosive Solution of the Nonlinear Equation of a Parabolic Type

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

Speeding up Convergence to Equilibrium for Diffusion Processes

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

QUANTUM MODELS FOR SEMICONDUCTORS AND NONLINEAR DIFFUSION EQUATIONS OF FOURTH ORDER

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

Convergence to equilibrium of Markov processes (eventually piecewise deterministic)

Anomalous transport of particles in Plasma physics

Mildly degenerate Kirchhoff equations with weak dissipation: global existence and time decay

Lecture No 1 Introduction to Diffusion equations The heat equat

ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN

COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX

hal , version 1-22 Nov 2009

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

Logarithmic Sobolev Inequalities

Intertwinings for Markov processes

On the bang-bang property of time optimal controls for infinite dimensional linear systems

Discrete Ricci curvature via convexity of the entropy

Holder regularity for hypoelliptic kinetic equations

Ordinary Differential Equations II

Exponential approach to equilibrium for a stochastic NLS

Conservative Control Systems Described by the Schrödinger Equation

analysis for transport equations and applications

Sectorial Forms and m-sectorial Operators

Velocity averaging a general framework

WEAK POINCARÉ INEQUALITIES FOR CONVERGENCE RATE OF DEGENERATE DIFFUSION PROCESSES

The Kato square root problem on vector bundles with generalised bounded geometry

The Kato square root problem on vector bundles with generalised bounded geometry

Linear Algebra Practice Problems

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

Nonlinear stabilization via a linear observability

Discrete entropy methods for nonlinear diffusive equations

for all subintervals I J. If the same is true for the dyadic subintervals I D J only, we will write ϕ BMO d (J). In fact, the following is true

Traveling waves dans le modèle de Kuramoto quenched

curvature, mixing, and entropic interpolation Simons Feb-2016 and CSE 599s Lecture 13

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

Kinetic theory of gases

LARGE-TIME BEHAVIOR OF NON-SYMMETRIC FOKKER-PLANCK TYPE EQUATIONS

2 Formal derivation of the Shockley-Read-Hall model

Some New Results on Global Nonexistence for Abstract Evolution Equations with Positive Initial Energy

Inégalités spectrales pour le contrôle des EDP linéaires : groupe de Schrödinger contre semigroupe de la chaleur.

Lecture 1: Review of linear algebra

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

2012 NCTS Workshop on Dynamical Systems

LECTURE 3: DISCRETE GRADIENT FLOWS

Effective dynamics for the (overdamped) Langevin equation

Linear-quadratic control problem with a linear term on semiinfinite interval: theory and applications

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Eigenvectors. Prop-Defn

An Observation on the Positive Real Lemma

Stabilization of second order evolution equations with unbounded feedback with delay

6 Inner Product Spaces

Lecture Notes on PDEs

Discrete Ricci curvature: Open problems

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory

Nonlinear Diffusion. Journal Club Presentation. Xiaowei Zhou

LMI Methods in Optimal and Robust Control

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling

ORNSTEIN-UHLENBECK PROCESSES ON LIE GROUPS

Invariances in spectral estimates. Paris-Est Marne-la-Vallée, January 2011

Mathematical modelling of collective behavior

Eigenvalues and Eigenvectors

Separation of Variables in Linear PDE: One-Dimensional Problems

Heat Flows, Geometric and Functional Inequalities

Classical inequalities for the Boltzmann collision operator.

Math 350 Fall 2011 Notes about inner product spaces. In this notes we state and prove some important properties of inner product spaces.

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Elliptic Operators with Unbounded Coefficients

b i (µ, x, s) ei ϕ(x) µ s (dx) ds (2) i=1

A note on W 1,p estimates for quasilinear parabolic equations

Convex Optimization M2

Traveling waves of a kinetic transport model for the KPP-Fisher equation

Heat equation and the sharp Young s inequality

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations:

Follow links Class Use and other Permissions. For more information, send to:

Hypocoercivity. Cédric Villani

Entropy method and the large-time behavior of parabolic equations

Half of Final Exam Name: Practice Problems October 28, 2014

1 Lyapunov theory of stability

16. Local theory of regular singular points and applications

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

Transcription:

TECHNISCHE UNIVERSITÄT WIEN Entropy method for hypocoercive & non-symmetric Fokker-Planck equations with linear drift Anton ARNOLD with Jan Erb; Franz Achleitner Paris, April 2017 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 1 / 32

degenerate Fokker-Planck equations with linear drift evolution of probability density f(x,t), x R n, t > 0: ( ) f t = div D f +Cx f f(x,0) = f 0 (x) (1) D R n n... symmetric, const in x, degenerate C R n n... const in x Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 2 / 32

degenerate Fokker-Planck equations with linear drift evolution of probability density f(x,t), x R n, t > 0: ( ) f t = div D f +Cx f f(x,0) = f 0 (x) (1) D R n n... symmetric, const in x, degenerate C R n n... const in x goals: existence & uniqueness of steady state (x); convergence f(t) t with sharp rates; complete theory for the equation class (1) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 2 / 32

hypocoercive example from plasma physics kinetic Fokker-Planck equation for f(x,v,t), x,v R n : f t + v x f }{{} free transport x V v f }{{} influence of potential V(x) steady state: (x,v) = c e ν σ V(x)... given confinement potential [ v 2 2 +V(x) ] = σ v f }{{} +ν div v (vf) }{{} diffusion, σ>0 friction, ν>0 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 3 / 32

hypocoercive example from plasma physics kinetic Fokker-Planck equation for f(x,v,t), x,v R n : f t + v x f }{{} free transport x V v f }{{} influence of potential V(x) steady state: (x,v) = c e ν σ V(x)... given confinement potential [ v 2 2 +V(x) ] rewritten (with x, v variables): [ ( ) 0 0 f t = div x,v 0 σi }{{} =:D...diffusion ( x,v f + explicit Green s function for V not quadratic! = σ v f }{{} +ν div v (vf) }{{} diffusion, σ>0 friction, ν>0 ) v x V +νv }{{} drift ] f Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 3 / 32

Outline: 1 hypocoercivity, prototypic examples 2 review of standard entropy method for non-degenerate Fokker-Planck equations 3 decay of modified entropy dissipation functional 4 mechanism of new method Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 4 / 32

(hypo)coercivity 1 example 1: standard Fokker-Planck equation on R n : ( ) f t = div f +x f =: Lf... symmetric on H := L 2 (f 1 ) (x) = ce x 2 2, kerl = span( ) L is dissipative, i.e. Lf,f H 0 f D(L) L is coercive (has a spectral gap), in the sense: Lf,f H f 2 L 2 (f 1 ) f { } Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 5 / 32

(hypo)coercivity 2 example 2: ( ) f t = div D f +Cx f =: Lf (2) with degenerate D is degenerate parabolic; (symmetric part of) L is not coercive. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 6 / 32

(hypo)coercivity 2 example 2: ( ) f t = div D f +Cx f =: Lf (2) with degenerate D is degenerate parabolic; (symmetric part of) L is not coercive. Definition 1 (Villani 2009) Consider L on Hilbert space H with K = kerl; let H K (densely) (e.g. H... weighted L 2, H... weighted H 1 ). L is called hypocoercive on H if λ > 0, c 1: e Lt f H ce λt f H f H typically c > 1 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 6 / 32

Steady state of (non)degenerate FP equations: standard Fokker-Planck equation f t = div( f +x f) : unique steady state (x) = c e x 2 /2 as a balance of drift & diffusion; sharp decay rate = 1 n = 2: x 2 drift diffusion x 1 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 7 / 32

degenerate prototype: degenerate diffusion (1D Fokker-Planck) + rotation [ ( ) ( ) 1 0 x1 ωx f t = div f + 2 0 0 ωx 1 }{{}}{{} =D =Cx (x) = c e x 2 /2 ω R (unique for ω 0); sharp decay rate = 1 2 (= minrλ C) for fast enough rotation ( ω > 1 2 ) x 2 ] f x 1 equilibration by drift/diffusion Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 8 / 32

degenerate prototype: degenerate diffusion (1D Fokker-Planck) + rotation [ ( ) ( ) 1 0 x1 ωx f t = div f + 2 0 0 ωx 1 }{{}}{{} =D =Cx (x) = c e x 2 /2 ω R (unique for ω 0); sharp decay rate = 1 2 (= minrλ C) for fast enough rotation ( ω > 1 2 ) x 2 ] f x 1 equilibration by drift/diffusion ω = 1 2 : C has a Jordan block (sharp) decay rate = 1 2 ε Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 8 / 32

y degenerate prototype with ω = 1: [ ( 1 0 f t = div 0 0 ) f + ( 1 1 1 0 ) x f x 2 -axis: drift characteristics of ẋ = Cx tangent to level curve of x : ] x = x + y y = x Drift characteristic Level curve of P norm 3 2 1 0 1 2 3 4 3 2 1 0 1 2 3 4 x level curve of distorted vector norm x P x; P = Ref: [Dolbeault-Mouhot-Schmeiser] 2015 ( 2 1 1 2 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 9 / 32 )

coefficients C, D in Fokker-Planck equation ( ) f t = div D f +Cx f =: Lf Condition A: No (nontrivial) subspace of kerd is invariant under C. (equivalent: L is hypoelliptic.) Proposition 1 Let Condition A hold. a) Let f 0 L 1 (R d ) f C (R n R + ). [Hörmander 1969] b) Let f 0 L 1 +(R d ) f(x,t) > 0, t > 0. (Green s fct > 0) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 10 / 32

coefficients C, D in Fokker-Planck equation ( ) f t = div D f +Cx f =: Lf Condition A: No (nontrivial) subspace of kerd is invariant under C. (equivalent: L is hypoelliptic.) Proposition 1 Let Condition A hold. a) Let f 0 L 1 (R d ) f C (R n R + ). [Hörmander 1969] b) Let f 0 L 1 +(R d ) f(x,t) > 0, t > 0. (Green s fct > 0) Condition B: Condition A + let C be positively stable (i.e. Rλ C > 0) confinement potential; drift towards x = 0. hypoelliptic + confinement = hypocoercive (for FP eq.) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 10 / 32

steady state ( ) f t = div D f +Cx f (3) Theorem 2 (3) has a unique (normalized) steady state L 1 (R n ) iff Condition B holds. Then: (x) = c K e x K 1 x 2... non-isotropic Gaussian 0 < K R n n... unique solution of 2D = CK+KC (continuous Lyapunov equation) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 11 / 32

normalization of Fokker-Planck equations f t = div ( D f +Cx f ) with (x) = c K e x K 1 x 2 transformations: 1 y := K 1 x g t = div y ( D y g + Cy g ) with g (x) = ce y 2 2, D = C S Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 12 / 32

normalization of Fokker-Planck equations f t = div ( D f +Cx f ) with (x) = c K e x K 1 x 2 transformations: 1 y := K 1 x g t = div y ( D y g + Cy g ) with g (x) = ce y 2 2, D = C S 2 rotation of y Ď = diag(d 1,..., d k, 0,..., 0) }{{} n k [normalization from now on assumed] Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 12 / 32

review of entropy method: linear symmetric Fokker-Planck equations evolution of probability density f(x,t), x R n, t > 0: ( ) f t = div D [ f +f A(x)] =: Lf f(x,0) = f 0 (x); f 0 L 1 +(R n ), f 0 dx = 1 f(x,t) 0 R n Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 13 / 32

review of entropy method: linear symmetric Fokker-Planck equations evolution of probability density f(x,t), x R n, t > 0: ( ) f t = div D [ f +f A(x)] =: Lf f(x,0) = f 0 (x); f 0 L 1 +(R n ), f 0 dx = 1 f(x,t) 0 R n (x) = e A(x)... (unique) normalized steady state ( Lf = div D f )... symmetric in L 2 (R n,f 1 ) D > 0... positive definite matrix A(x)... scalar confinement potential, i.e. A(x) as x ; idea : A(x) c x 2 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 13 / 32

admissible relative entropies (for entropy method) for probability densities f 1,2 : e ψ (f 1 f 2 ) := ( f1 ψ R n ) f 2 dx 0 f 2 ψ : R + 0 R+ 0... entropy generators ψ 0, ψ(1) = 0, ψ > 0, (ψ ) 2 1 2 ψ ψ IV... relative entropy Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 14 / 32

admissible relative entropies (for entropy method) for probability densities f 1,2 : e ψ (f 1 f 2 ) := ( f1 ψ R n ) f 2 dx 0 f 2 ψ : R + 0 R+ 0... entropy generators ψ 0, ψ(1) = 0, ψ > 0, (ψ ) 2 1 2 ψ ψ IV... relative entropy examples: 1) ψ 1 (σ) = σlnσ σ +1 2) ψ p (σ) = σ p 1 p(σ 1), 1 < p 2 ψ(σ) ϕ...quadr. e ψ (f 1 f 2 ) = 0 f 1 = f 2 σ 1 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 14 / 32

entropy dissipation Lemma 1 ( ) Let f(t) solve Fokker-Planck equation f t = div D [ f +f A(x)] d dt e ψ(f(t) ) = ψ R n ( f(t) ) f(t) D f(t) dx =: I ψ (f(t) ) 0... (negative) Fisher information Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 15 / 32

Step 1: exponent. decay of entropy dissipation for D const D = const. in x, (x) = e A(x) Theorem 3 Let I ψ (f 0 ) <. Let D,A satisfy a Bakry - Emery condition 2 A(x) x 2 λ 1 D 1 x R n (4) >0 I ψ (f(t) ) e 2λ 1t I ψ (f 0 ), t 0 A...uniformly convex if D = I Ref s: [Bakry-Emery] 1984/85; [Arnold-Markowich-Toscani-Unterreiter] Comm. PDE 2001 robust w.r.t. many nonlinear perturbations Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 16 / 32

Step 2: exponential decay of relative entropy for D const Theorem 4 Let D, A satisfy BEC 2 A(x) x 2 λ 1 D 1 e ψ (f(t) ) e 2λ 1t e ψ (f 0 ), t 0 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 17 / 32

Step 2: exponential decay of relative entropy for D const Theorem 4 Let D, A satisfy BEC 2 A(x) x 2 λ 1 D 1 e ψ (f(t) ) e 2λ 1t e ψ (f 0 ), t 0 Proof: from proof of Theorem 3 : d dt I(t) 2λ 1 I(t) }{{} = e (t) t... dt Since I(t), e(t) t 0: d dt e(t) 2λ 1e(t) (5) (+ density argument) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 17 / 32

problem of entropy decay (cp. standard entropy method) decay of quadratic entropy e 2 (t) = f(t) 2 L 2 (f 1 ) : standard Fokker-Planck equation: non-degenerate e(t) is convex; entropy dissip. e (t) < 0 f ; e µe possible (with µ > 0) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 18 / 32

problem of entropy decay (cp. standard entropy method) decay of quadratic entropy e 2 (t) = f(t) 2 L 2 (f 1 ) : standard Fokker-Planck equation: non-degenerate e(t) is convex; entropy dissip. e (t) < 0 f ; e µe possible (with µ > 0) degenerate prototype ex.: e(t) is not convex; e (t) = 0 for some f ; e µe wrong (in general) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 18 / 32

entropy decay in inhomogeneous Boltzmann equation simulation of 1+2 D Boltzmann equation: wavy entropy decay H g (t): relative entropy w.r.t. the global Maxwellian Ref: [Filbet-Mouhot-Pareschi] 2006 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 19 / 32

new entropy method for degen. FP: f t = div(d f +Cx f) e (t) = 0 for some f entropy dissipation: ( ) d f dt e ψ = ψ f D R n }{{} f dx =: I ψ (f) 0 is useless as Lyapunov functional. 0 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 20 / 32

new entropy method for degen. FP: f t = div(d f +Cx f) e (t) = 0 for some f entropy dissipation: ( ) d f dt e ψ = ψ f D R n }{{} f dx =: I ψ (f) 0 is useless as Lyapunov functional. define modified entropy dissipation as auxiliary functional: ( ) f S ψ (f) := f P }{{} f dx 0 R n ψ d goal: estimate between S(f(t)), dts(f(t)) for good choice of P > 0. Then: P c P D S ψ (f) c P I ψ (f) ց 0 0 >0 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 20 / 32

modified entropy dissipation S ψ (f) : choice of P Lemma 2 Let Q be positively stable, i.e. µ := min{rλ Q } > 0. 1 If all λ min Q {λ σ(q) Rλ = µ} are non-defective (i.e. geometric = algebraic multiplicity) P R n n, P > 0 : PQ+Q P 2µP. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 21 / 32

modified entropy dissipation S ψ (f) : choice of P Lemma 2 Let Q be positively stable, i.e. µ := min{rλ Q } > 0. 1 If all λ min Q {λ σ(q) Rλ = µ} are non-defective (i.e. geometric = algebraic multiplicity) P R n n, P > 0 : PQ+Q P 2µP. 2 If (at least) one λ min Q is defective ε > 0 P = P(ε) > 0 : PQ+Q P 2(µ ε)p. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 21 / 32

modified entropy dissipation S ψ (f) : choice of P Lemma 2 Let Q be positively stable, i.e. µ := min{rλ Q } > 0. 1 If all λ min Q {λ σ(q) Rλ = µ} are non-defective (i.e. geometric = algebraic multiplicity) P R n n, P > 0 : PQ+Q P 2µP. 2 If (at least) one λ min Q is defective ε > 0 P = P(ε) > 0 : PQ+Q P 2(µ ε)p. Proof: P can be constructed explicitly; e.g. for Q non-defective / diagonalizable: n P := z j z j ; z j... eigenvectors of Q j=1 P not unique; but the decay rates µ (or µ ε) are independent of P. application with Q := C. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 21 / 32

Step 1: exponential decay of auxiliary functional S ψ (f) S ψ (f) := R n ψ ( f ) f P f dx 0 Proposition 2 µ := min{rλ C }. Let f 0 satisfy: ( ) ψ f0 f 0 2 dx < ( weighted H 1 seminorm) 1 If all λ min C are non-defective S(f(t)) e 2µt S(f 0 ), t 0; Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 22 / 32

Step 1: exponential decay of auxiliary functional S ψ (f) S ψ (f) := R n ψ ( f ) f P f dx 0 Proposition 2 µ := min{rλ C }. Let f 0 satisfy: ( ) ψ f0 f 0 2 dx < ( weighted H 1 seminorm) 1 If all λ min C are non-defective S(f(t)) e 2µt S(f 0 ), t 0; 2 If one λ min C is defective S(f(t),ε) e 2(µ ε)t S(f 0,ε), t 0. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 22 / 32

Proof of Proposition 2 modified entropy method d dt S(f(t)) = 2 ψ ( f ) [ ] u PC+C P }{{} 2µP... replaces BEC u dx Tr(XY) dx 2µS(f(t)); u = f }{{} 0 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 23 / 32

Proof of Proposition 2 modified entropy method d dt S(f(t)) = 2 ψ ( f ) [ ] u PC+C P }{{} 2µP... replaces BEC u dx Tr(XY) dx 2µS(f(t)); u = f }{{} 0 use X := ( ψ ψ ψ 1 2 ψiv ) ( f ) 0, since det X = 1 2 ψ ψ IV (ψ ) 2 0 (for admissible rel. entropies) ; Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 23 / 32

Proof of Proposition 2 modified entropy method d dt S(f(t)) = 2 ψ ( f ) [ ] u PC+C P }{{} 2µP... replaces BEC u dx Tr(XY) dx 2µS(f(t)); u = f }{{} 0 use X := ( ψ ψ ψ 1 2 ψiv ) ( f ) 0, since det X = 1 2 ψ ψ IV (ψ ) 2 0 (for admissible rel. entropies) ; ( Tr(D u x P u x ) u D u x Pu ) Y := with Cauchy-Schwarz u D u x Pu (u Pu)(u Du) 0, Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 23 / 32

Step 2: exponential decay of relative entropy Theorem 5 Let f 0 satisfy: ( ) ψ f0 u 0 2 dx <. e(f(t) ) c S(f(t)) ce 2µt S(f 0 ), t 0 ( reduced rate for a defective λ min C : 2(µ ε) ) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 24 / 32

Step 2: exponential decay of relative entropy Theorem 5 Let f 0 satisfy: ( ) ψ f0 u 0 2 dx <. e(f(t) ) c S(f(t)) ce 2µt S(f 0 ), t 0 ( reduced rate for a defective λ min C : 2(µ ε) ) Proof: Consider non-degenerate (auxiliary) symmetric FP equation: ( g t = div }{{} P ( g ) ) ; g = = c e x 2 /2 = c e A(x) (6) >0 It satisfies the Bakry-Emery condition 2 A x 2 = I λ P P 1. convex Sobolev inequality: e ψ (g ) 1 2λ P S ψ (g) g Remark: S ψ (g) is the true entropy dissipation for (6)! Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 24 / 32

(parabolic) regularization of semigroup e Lt Proposition 3 The Hörmander order m [1,n k] (k =rank D) is the minimum such that m C j D(C ) j κi for some κ > 0. j=0 (Existence of m is equivalent to Condition A, i.e. hypoellipticity of L.) S ψ (f(t)) c t (2m+1) e ψ (f 0 ), 0 < t 1. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 25 / 32

(parabolic) regularization of semigroup e Lt Proposition 3 The Hörmander order m [1,n k] (k =rank D) is the minimum such that m C j D(C ) j κi for some κ > 0. j=0 (Existence of m is equivalent to Condition A, i.e. hypoellipticity of L.) S ψ (f(t)) c t (2m+1) e ψ (f 0 ), 0 < t 1. Ref s: Prop. 3 is generalization to all admissible relative entropies of: [Hérau] JFA 2007; [Villani] book 2009 (only for quadratic & logarithmic entropies) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 25 / 32

exp. decay of rel. entropy for f t = div(d f +Cx f) =: Lf combination of regularization for initial time with Th.5 (entropy decay) Theorem 6 (Arnold-Erb 2014) Let L satisfy Condition B; µ := min{rλ C }. c > 0: e ψ (f(t) ) ce 2µt e ψ (f 0 ), t 0 ( reduced rate for a defective λ min C : 2(µ ε) ) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 26 / 32

exp. decay of rel. entropy for f t = div(d f +Cx f) =: Lf combination of regularization for initial time with Th.5 (entropy decay) Theorem 6 (Arnold-Erb 2014) Let L satisfy Condition B; µ := min{rλ C }. c > 0: e ψ (f(t) ) ce 2µt e ψ (f 0 ), t 0 ( reduced rate for a defective λ min C : 2(µ ε) ) Proof: e(t) CSI 1 S(f(t)) decay 2λ P 1 e 2µ(t δ) S(f(δ)) regularization c(δ)e 2µt e(0) 2λ P Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 26 / 32

exp. decay of rel. entropy for f t = div(d f +Cx f) =: Lf combination of regularization for initial time with Th.5 (entropy decay) Theorem 6 (Arnold-Erb 2014) Let L satisfy Condition B; µ := min{rλ C }. c > 0: e ψ (f(t) ) ce 2µt e ψ (f 0 ), t 0 ( reduced rate for a defective λ min C : 2(µ ε) ) Proof: e(t) CSI 1 S(f(t)) decay 2λ P 1 e 2µ(t δ) S(f(δ)) regularization c(δ)e 2µt e(0) 2λ P Remark: Rate µ is sharp, but constant c is not. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 26 / 32

kinetic Fokker-Planck eq. with non-quadratic potential f t +v x f x V(x) v f = σ v f +ν div v (vf); x,v R n steady state factors in x, v: (x,v) = c e ν σ [ v 2 2 +V(x) ] Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 27 / 32

kinetic Fokker-Planck eq. with non-quadratic potential f t +v x f x V(x) v f = σ v f +ν div v (vf); x,v R n steady state factors in x, v: (x,v) = c e ν σ f t = div x,v [ ( 0 σ ν I σ ν I σi [ v 2 2 +V(x) ] ) x,v ( f ) f ] Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 27 / 32

kinetic Fokker-Planck eq. with non-quadratic potential f t +v x f x V(x) v f = σ v f +ν div v (vf); x,v R n steady state factors in x, v: (x,v) = c e ν σ f t = div x,v [ ( 0 σ ν I σ ν I σi [ v 2 2 +V(x) ] ) x,v ( f ) f ] Theorem 7 (Arnold-Erb, Achleitner-Arnold 2015) Let n = 1; V(x) = ω2 0 2 x 2 +Ṽ(x)... given confinement potential with maxv (x) minv (x) ν e ψ (f(t) ) c S ψ (f 0 )e 2κt, t 0 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 27 / 32

kinetic Fokker-Planck eq. with non-quadratic potential f t +v x f x V(x) v f = σ v f +ν div v (vf); x,v R n steady state factors in x, v: (x,v) = c e ν σ f t = div x,v [ ( 0 σ ν I σ ν I σi [ v 2 2 +V(x) ] ) x,v ( f ) f ] Theorem 7 (Arnold-Erb, Achleitner-Arnold 2015) Let n = 1; V(x) = ω2 0 2 x 2 +Ṽ(x)... given confinement potential with maxv (x) minv (x) ν e ψ (f(t) ) c S ψ (f 0 )e 2κt, t 0 Ṽ... O(1) perturbation Greens function not explicit Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 27 / 32

local vs. global decay rate in non-symmetric FP equations decay of logarithmic entropy for the non-symmetric FP equation [ ( ) ( ) 1/4 0 1/4x1 4x ] f t = div f + 2 f 0 1 4x 1 +x 2 with (x) = ce x 2 /2 = e A(x) : find e(f(t) ) c e(0)e λt Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 28 / 32

local vs. global decay rate in non-symmetric FP equations decay of logarithmic entropy for the non-symmetric FP equation [ ( ) ( ) 1/4 0 1/4x1 4x ] f t = div f + 2 f 0 1 4x 1 +x 2 with (x) = ce x 2 /2 = e A(x) : find e(f(t) ) c e(0)e λt standard entropy method: BEC 2 A = I λd 1 yields sharp x 2 local decay rate: λ l = 1 4 ; c = 1 Hypocoercive method yields sharp global decay rate: λ g = 5 8 ; c > 1 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 28 / 32

local vs. global decay rate in non-symmetric FP equations decay of logarithmic entropy for the non-symmetric FP equation [ ( ) ( ) 1/4 0 1/4x1 4x ] f t = div f + 2 f 0 1 4x 1 +x 2 with (x) = ce x 2 /2 = e A(x) : find e(f(t) ) c e(0)e λt standard entropy method: BEC 2 A = I λd 1 yields sharp x 2 local decay rate: λ l = 1 4 ; c = 1 Hypocoercive method yields sharp global decay rate: λ g = 5 8 ; c > 1 Lemma: 2D, admissible P: multiplicative constant S(0) 2λ P is sharp. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 28 / 32

Why does the hypocoercive method work? algebraic essence: comparison of the spectral gaps of a non-symmetric matrix Q and its symmetric part Q s := 1 2 (Q+QT ). motivation: entropy method operates mostly with quadratic functionals (e.g. e 2 (f ); I ψ = ψ ( f ) T f D f dx ) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 29 / 32

Why does the hypocoercive method work? algebraic essence: comparison of the spectral gaps of a non-symmetric matrix Q and its symmetric part Q s := 1 2 (Q+QT ). motivation: entropy method operates mostly with quadratic functionals (e.g. e 2 (f ); I ψ = ψ ( f ) T f D f dx ) Lemma 3 Let Q be positively stable, i.e. µ := min{rλ Q } > 0. λ min (Q s ) µ ( typically strict inequality) Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 29 / 32

Why does the hypocoercive method work? algebraic essence: comparison of the spectral gaps of a non-symmetric matrix Q and its symmetric part Q s := 1 2 (Q+QT ). motivation: entropy method operates mostly with quadratic functionals (e.g. e 2 (f ); I ψ = ψ ( f ) T f D f dx ) Lemma 3 Let Q be positively stable, i.e. µ := min{rλ Q } > 0. λ min (Q s ) µ ( typically strict inequality) Lemma 4 ( = Lemma 2 for choice of P) P > 0 such that the similar matrix Q := PQ P 1 satisfies: λ min ( Q s ) = µ ( λ min ( Q s ) = µ ε in the defective case ) So: a similarity transformation such that Q, Q, Q s have the same spectral gap. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 29 / 32

Application to f t = div(d f +Cxf) = Lf Decay estimate of the drift characteristics ẋ = Cx: Let x 2 P := x,px. d dt x 2 P = 2x T PCx = ( Px) T ( PC P 1 + P 1 C T ) P ( Px) }{{} :=2 C s 2µI 2µ x 2 P carries over to all invariant eigenspaces of L Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 30 / 32

Conclusion new entropy method for degenerate Fokker-Planck eq. (+ linear drift) key tool: modified entropy dissipation functional diff. inequal. Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 31 / 32

Conclusion new entropy method for degenerate Fokker-Planck eq. (+ linear drift) key tool: modified entropy dissipation functional diff. inequal. extension to kinetic Fokker-Planck eq. (with non-quadratic potential) extension to non-degenerate, non-symmetric Fokker-Planck equations sharp envelope for global decay 2017: (1+t 2 )e 2κt decay for defective case [AA-Einav-Wöhrer] Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 31 / 32

Conclusion new entropy method for degenerate Fokker-Planck eq. (+ linear drift) key tool: modified entropy dissipation functional diff. inequal. extension to kinetic Fokker-Planck eq. (with non-quadratic potential) extension to non-degenerate, non-symmetric Fokker-Planck equations sharp envelope for global decay 2017: (1+t 2 )e 2κt decay for defective case [AA-Einav-Wöhrer] References A. Arnold, J. Erb: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift, arxiv 2014 F. Achleitner, A. Arnold, D. Stürzer: Large-time behavior in non-symmetric Fokker-Planck equations, Rivista di Matematica della Univ. di Parma, 2015 F. Achleitner, A. Arnold, E. Carlen: On linear hypocoercive BGK models, Springer Proc. in Math. & Stat., 2016 Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 31 / 32

References: [Villani] 2009: exponential decay in weighted H 1, but no sharp rates [Dolbeault-Mouhot-Schmeiser] Trans. AMS 2015: kinetic models, exponential decay in modified L 2 norm; m = 1 [Gadat-Miclo] KRM 2013: sharp rates for 2 Fokker-Planck toy models [Baudoin] 2014: Γ 2 formalism, includes auxiliary gradient functional Anton ARNOLD (TU Vienna) hypocoercive Fokker-Planck/entropy meth. 32 / 32