Quantum impurities in a bosonic bath

Similar documents
(r) 2.0 E N 1.0

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Numerical renormalization group method for quantum impurity systems

Numerical renormalization group method for quantum impurity systems

Curriculum Vitae. Ning-Hua Tong

DMFT for correlated bosons and boson-fermion mixtures

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Local moment approach to multi-orbital Anderson and Hubbard models

arxiv: v2 [cond-mat.str-el] 7 Sep 2010

Microscopic structure of entanglement in the many-body environment of a qubit

Spatial and temporal propagation of Kondo correlations. Frithjof B. Anders Lehrstuhl für Theoretische Physik II - Technische Universität Dortmund

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University

Solution of the Anderson impurity model via the functional renormalization group

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Electronic correlations in models and materials. Jan Kuneš

arxiv: v2 [cond-mat.str-el] 27 Feb 2013

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003

Local moment approach to the multi - orbital single impurity Anderson and Hubbard models

Linearized dynamical mean-field theory for the Mott-Hubbard transition

A theoretical study of the single-molecule transistor

An efficient impurity-solver for the dynamical mean field theory algorithm

Entanglement spectra in the NRG

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

Introduction to DMFT

arxiv: v2 [cond-mat.str-el] 3 Sep 2012

Quantum critical Kondo destruction in the Bose-Fermi Kondo model with a local transverse field

Part III: Impurities in Luttinger liquids

QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS

Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies

Anomalous Behavior in an Anderston-Holstein Model. for a Single Molecule Transistor

Quantum phase transitions and the Luttinger theorem.

w2dynamics : operation and applications

Present and future prospects of the (functional) renormalization group

Design and realization of exotic quantum phases in atomic gases

An introduction to the dynamical mean-field theory. L. V. Pourovskii

Magnetic Moment Collapse drives Mott transition in MnO

Dr. Andrew K. Mitchell

Role of Hund Coupling in Two-Orbital Systems

Open and Reduced Wilson Chains for Quantum Impurity Models

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Cluster Extensions to the Dynamical Mean-Field Theory

The bosonic Kondo effect:

Fate of the Kondo impurity in a superconducting medium

arxiv: v2 [cond-mat.str-el] 24 Oct 2008

An introduction to Dynamical Mean Field Theory (DMFT) and DFT+DMFT

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Time Evolving Block Decimation Algorithm

Coherence by elevated temperature

Numerical Renormalization Group for Quantum Impurities 1

Numerical renormalization group and multi-orbital Kondo physics

5 Numerical renormalization group and multiorbital

Phase Diagram of the Multi-Orbital Hubbard Model

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

Disordered Ultracold Gases

Diagrammatic Monte Carlo simulation of quantum impurity models

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Realistic Materials Simulations Using Dynamical Mean Field Theory

Anderson impurity model at finite Coulomb interaction U: Generalized noncrossing approximation

arxiv: v1 [cond-mat.str-el] 20 Mar 2008

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Effet Kondo dans les nanostructures: Morceaux choisis

arxiv: v1 [cond-mat.str-el] 14 Jun 2011

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Serge Florens. ITKM - Karlsruhe. with: Lars Fritz and Matthias Vojta

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Evidence for exhaustion in the conductivity of the infinite-dimensional periodic Anderson model

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Quantum gases in the unitary limit and...

Diagrammatic Monte Carlo methods for Fermions

Lecture 2: Open quantum systems

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Can electron pairing promote the Kondo state?

The Hubbard model in cold atoms and in the high-tc cuprates

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Purely electronic transport in dirty boson insulators

Metal-Insulator Transitions at Surfaces

Cooperative Phenomena

1 Wilson s Numerical Renormalization Group

Quantum Criticality and Emergent Phases in Heavy Fermion Metals

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

LECTURE 3 WORM ALGORITHM FOR QUANTUM STATISTICAL MODELS

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Quantum magnetism and the theory of strongly correlated electrons

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction

Dynamical Mean Field within Iterative Perturbation Theory

Orthogonality Catastrophe

Quantum many-body systems and tensor networks: simulation methods and applications

The Mott Metal-Insulator Transition

Advanced Computation for Complex Materials

Kondo satellites in photoemission spectra of heavy fermion compounds

Metal - Insulator transitions: overview, classification, descriptions

Transcription:

Ralf Bulla Institut für Theoretische Physik Universität zu Köln 27.11.2008

contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

contents introduction quantum impurity systems numerical renormalization group bosonic NRG spin-boson model bosonic single-impurity Anderson model summary

quantum impurity systems quantum impurity systems impurity bosonic bath fermionic bath small system large system - might have a complicated structure - small number of degrees of freedom - simple structure - continuous spectrum of degrees of freedom

quantum impurity systems impurities in a fermionic bath Kondo effect A.C. Hewson, The Kondo Problem to Heavy Fermions temperature dependence of resistivity ρ metal 0 T

quantum impurity systems impurities in a fermionic bath Kondo effect A.C. Hewson, The Kondo Problem to Heavy Fermions temperature dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c f f f metal 0 T

quantum impurity systems impurities in a fermionic bath Kondo effect A.C. Hewson, The Kondo Problem to Heavy Fermions temperature dependence of resistivity scattering processes of conduction electrons at magnetic impurities ρ c V U V c f f f T K metal screening of magnetic moments due to singlet formation 0 T 1 ` f c f c 2

quantum impurity systems impurities in a bosonic bath example: spin-boson model D bosonic bath A H = 1 2 σx + 1 2 ɛσz + X i + 1 X 2 σz λ i (a i + a i ) i ω i a i a i [A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987)] describes two-level systems in a dissipative environment (qubits, electron transfer systems, etc.) σ x oscillations σ z(a i + a i ) friction (dissipation)

quantum impurity systems impurities in a bosonic bath example: spin-boson model 1 0.8 D bosonic bath A describes two-level systems in a dissipative environment (qubits, electron transfer systems, etc.) σ x oscillations σ z(a i + a i ) friction (dissipation) P(t) 0.6 0.4 0.2 α=0.1 α=0.3 α=0.5 α=0.7 α=1.4 0 0 50 100 150 200 t [F.B. Anders, A. Schiller, Phys. Rev. B 74, 245113 (2006)]

quantum impurity systems electron transfer P(t) occupation at donor site D A P(t) e kt donor bridge acceptor t

quantum impurity systems electron transfer P(t) occupation at donor site D A P(t) e kt donor bridge acceptor quantum-mechanical description: tunneling t ψ D ψ A P 2 σ c Dσ c Aσ + c Aσ c Dσ

quantum impurity systems coupling to the environment [R.A. Marcus, J. Chem. Phys. 24, 966 (1956)] D A = dissipation of the energy modeled by the coupling to a bosonic bath [A. Garg, J.N. Onuchic, V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985)] X ω nb nb n + 1 2 (n D n A ) X n n λ n b n + b n

quantum impurity systems coupling to the environment [R.A. Marcus, J. Chem. Phys. 24, 966 (1956)] D A = dissipation of the energy modeled by the coupling to a bosonic bath [A. Garg, J.N. Onuchic, V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985)] X ω nb nb n + 1 2 (n D n A ) X n n λ n b n + b n

bosonic NRG numerical renormalization group (NRG) K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975) Kondo problem review: R. Bulla, T. Costi, and Th. Pruschke, Rev. Mod. Phys. 80, 395 (2008) (ω) conduction band 1 0 1 ω impurity

0 E N (r) V ε 0 ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N ε N ε N+1 after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ 1 1 1 Λ (ω) 1. NRG-discretization parameter Λ > 1 (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t 2 1 Λ 1 Λ 2 Λ 3... Λ 3 Λ 2 Λ 1 1 ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

0 E N (r) V ε 0 ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N ε N ε N+1 after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ 1 1 1 Λ 2. logarithmic discretization (ω) (ω) 1 1 ω ε0 ε1 ε2 ε3 V t 0 t 1 t 2 1 1 ω H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

0 E N (r) V ε 0 ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N ε N ε N+1 after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ 1 1 1 Λ 3. mapping on semi-infinite chain (ω) 1 1 ω ε ε ε ε 0 1 2 3 ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s N+1 : r N s (N+1) H N+1: V t 0 t N 1 t N a) b) c) d)

0 E N (r) V ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ 1 1 1 Λ 4. iterative diagonalization (ω) ε 0 εn 1 1 ω H : N V t 0 t N 1 ε 0 ε N ε0 ε1 ε2 ε3 V t 0 t 1 t 2 V t 0 t N 1 H N : ε0 ε V t 0 t N 1 r,s N+1 : r N s (N+1) t 0 t N 1 r,s N+1 : r N s (N+1) ε 0 ε N ε N+1 ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N a) b) c) d) H N+1 : V t 0 t N 1 t N

0 E N (r) V ε 0 1/2 Λ E N (r) 3 E N+1 (r) N ε N after truncation bosonic NRG (ω) 2... ω Λ Λ 1 Λ 3 Λ 2 Λ 1 1 1 Λ 5. truncation (ω) a) E N (r) b) c) d) 1/2 Λ E N (r) E N+1 (r) after truncation 1 1 ω ε ε ε ε V t 0 t 1 t 2 H N : ε0 ε V t 0 t N 1 t 0 t N 1 r,s : r s (N+1) N+1 N ε 0 ε N ε N+1 H N+1: V t 0 t N 1 t N 0 a) b) c) d)

bosonic NRG bosonic NRG bath spectral function J(ω) ε ε ε 0 1 2 3 4 t t t t 0 1 ε 2 3 ε... 0 Λ 2 Λ 1 1 ω in contrast to fermionic case: keep only a finite number of boson states for each added site: N b 10 for details see: R. Bulla, H.-J. Lee, N.-H. Tong, M. Vojta, Phys. Rev. B 71, 045122 (2005)

bosonic NRG important: choice of the basis for the added site "standard" basis: s(n + 1) = { n N+1 } with b N+1 b N+1 n N+1 = n n N+1 n = 0, 1,... N b 1 works very well...

bosonic NRG important: choice of the basis for the added site "standard" basis: s(n + 1) = { n N+1 } with b N+1 b N+1 n N+1 = n n N+1 n = 0, 1,... N b 1 works very well...... except for displacement = general question: how to construct the optimal basis?

bosonic NRG applications of the bosonic NRG spin-boson model bosonic single-impurity Anderson model electron transfer systems - S. Tornow, N.-H. Tong, R. Bulla, Europhys. Lett. 73, 913 (2006) - S. Tornow, R. Bulla, F.B. Anders, A. Nitzan, Phys. Rev. B 78, 035434 (2008) Bose-Fermi Kondo model - M.T. Glossop, K. Ingersent, Phys. Rev. Lett. 95, 067202 (2005) Kondo lattice model within extended DMFT - M.T. Glossop, K. Ingersent, Phys. Rev. Lett. 99, 227203 (2007) - J.-X. Zhu, S. Kirchner, R. Bulla, Q. Si, Phys. Rev. Lett. 99, 227204 (2007)

T = 0 phase diagram of the spin-boson model J (ω) = 2παω s ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic

T = 0 phase diagram of the spin-boson model J (ω) = 2παω s ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic α 1.5 1.0 0.5 A.J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987) =10-1 =10-3 =10-5 localized delocalized 0.0 0.0 0.5 1.0 1.5 s phase transition only in the ohmic case (s=1) calculations valid in the limit 0

T = 0 phase diagram of the spin-boson model J (ω) = 2παω s R. Bulla, N.-H. Tong, and M. Vojta Phys. Rev. Lett. 91, 170601 (2003) 1.5 ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic α 1.0 0.5 =10-1 =10-3 =10-5 localized delocalized 0.0 0.0 0.5 1.0 1.5 s line of quantum critical points for 0 < s < 1 terminating at s = 1 α c 1 s, this means: α c( 0) = 0 for 0 < s < 1

T = 0 phase diagram of the spin-boson model J (ω) = 2παω s R. Bulla, N.-H. Tong, and M. Vojta Phys. Rev. Lett. 91, 170601 (2003) 1.5 ω s < 1: sub-ohmic s = 1: ohmic s > 1: super-ohmic α 1.0 0.5 =10-1 =10-3 =10-5 localized delocalized 0.0 0.0 0.5 1.0 1.5 s existence of a phase transition in the sub-ohmic case: S. Kehrein and A. Mielke, Phys. Lett. A 219, 313 (1996)

evidence for a line of critical points: structure of the fixed points calculation of physical properties example: entropy 0.80 s=0.8, =0.01 S imp 0.60 0.40 0.20 α=0.1233 α=0.1252 α=0.1254 α=0.1255 α=0.1255160 α=0.1255170 α=0.12553 α=0.1257 α=0.1259 α=0.129 0.00 10 12 10 8 10 4 10 0 critical exponents T M. Vojta, N.-H. Tong, and R. Bulla, Phys. Rev. Lett. 94, 070604 (2005)

Failure of quantum-classical mapping? spin-boson model one-dimensional Ising model H I = P ij J ijs z i S z j J(ω) ω s J ij = J/ i j 1+s (long range) Ising model: 0 < s < 1/2 : mean-field exponents, β = 1/2, ν = 1/s 1/2 < s < 1 : non-trivial exponents critical exponents defined by M loc (α > α c, T = 0, ε = 0) (α α c) β, T α α c ν

A. Winter, H. Rieger, M. Vojta, and R. Bulla The quantum phase transition in the sub-ohmic spin-boson model: Quantum Monte-Carlo study with a continuous imaginary time cluster algorithm arxiv:0807.4716

Bose-Hubbard model µ /V H = X i + 1 2 V X i µb i b i J X <ij> b i b j b i b i b i b i 1 3 MI N=3 2 1 MI N=2 SF MI N=1 M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989) J/V

Is it possible to develop a dynamical mean-field theory for the Bose-Hubbard model? there are many open questions: limit of infinite dimensionality? proper treatment of the superfluid phase? selfconsistency equations? structure of the effective impurity model? K. Byczuk, D. Vollhardt, Phys. Rev. B 77, 235106 (2008)

bosonic single-impurity Anderson model H = ε 0 b b + 1 2 Ub b b b 1 + X k ε k b k b k + X k V k b k b + b b k (ω) = π X k Vk 2 δ(ω ε k ) = 2π α ωc 1 s ω s, 0 < ω < ω c H.-J. Lee and R. Bulla Quantum Phase Transitions in the Bosonic Single-Impurity Anderson Model Eur. Phys. J. B 56, 199 (2007)

phase diagram T = 0, s = 0.6, U = 0.5 Mott phases separated from BEC phase by lines of quantum critical points 4 3 4 -ε 0 /U 2 1 0 3 2 1 BEC n imp =0 n imp =1 n imp =2 n imp =3 n imp =4-1 0-2 0 0.1 0.2 0.3 0.4 αω c /U

impurity occupation 2 1.5 α=0 α=0.007 α=0.014 α=0.028 n imp (T=0) 1 0.5 0-0.5 0 0.5 1 1.5 -ε 0 /U symbols: Mott phase (non-integer values!) dashed lines: BEC phase

impurity spectral function 20 10 V=0.01, U=0.5, ε=-0.7 (b=0.3) V=0.07, U=0.5, ε=-0.7 (b=0.4) V=0.15, U=0.5, ε=-0.7 (b=0.5) A(ω) 0-10 -0.5 0 0.5 1 ω

What do we expect for the spectral function in the Mott phase? Α(ω) µ ω spectral weight below the chemical potential A(ω) density of states of the non-interacting bosonic bath in DMFT = mapping on an effective impurity model does not work!

summary numerical renormalization group calculations for quantum impurities in a bosonic bath spin-boson model bosonic single-impurity Anderson model the next steps: How to construct the optimal basis? Bose-Hubbard model within DMFT generalized spin-boson models: - coupled spins - nonlinear coupling thanks to: F. Anders, T. Costi, H.-J. Lee, Th. Pruschke, N.-H. Tong, S. Tornow, M. Vojta