Molecular properties in quantum chemistry

Similar documents
Other methods to consider electron correlation: Coupled-Cluster and Perturbation Theory

Methods for Treating Electron Correlation CHEM 430

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Coupled-Cluster Perturbative Triples for Bond Breaking

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

Introduction to Computational Chemistry

Electron Correlation - Methods beyond Hartree-Fock

Wave function methods for the electronic Schrödinger equation

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Coupled-Cluster Theory. Nuclear Structure

Electron Correlation

Faddeev Random Phase Approximation (FRPA) Application to Molecules

COUPLED-CLUSTER CALCULATIONS OF GROUND AND EXCITED STATES OF NUCLEI

Quantum Chemistry Methods

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Beyond the Hartree-Fock Approximation: Configuration Interaction

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Computational Methods. Chem 561

Coupled-cluster and perturbation methods for macromolecules

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

Convergence properties of the coupled-cluster method: the accurate calculation of molecular properties for light systems

Using BLIS for tensor computations in Q-Chem

Introduction to Computational Quantum Chemistry: Theory

Introduction to Hartree-Fock Molecular Orbital Theory

1 Rayleigh-Schrödinger Perturbation Theory

Electron Correlation Methods

Introduction to Computational Chemistry: Theory

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Ab Initio Electromagnetic Transitions with the IMSRG

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

Electric properties of molecules

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

The Hartree-Fock approximation

Direct Minimization in Density Functional Theory

Introduction to density-functional theory. Emmanuel Fromager

Introduction to Electronic Structure Theory

Internally Contracted Multireference Coupled Cluster Theory. Computer Aided Implementation of Advanced Electronic Structure Methods.

The Accurate Calculation of Molecular Energies and Properties: A Tour of High-Accuracy Quantum-Chemical Methods

Computational Chemistry I

Full configuration interaction potential energy curves for breaking bonds to hydrogen: An assessment of single-reference correlation methods

Predictive Computing for Solids and Liquids

COUPLED-CLUSTER BASED METHODS FOR EXCITED STATE ENERGIES AND GRADIENTS STEVEN RAY GWALTNEY

Lecture 4: Hartree-Fock Theory

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Molecular Simulation I

Strassen-like algorithms for symmetric tensor contractions

Chemistry 4560/5560 Molecular Modeling Fall 2014

Exercise 1: Structure and dipole moment of a small molecule

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Accurate description of potential energy surfaces by ab initio methods : a review and application to ozone

The Rigorous Calculation of Molecular Properties to Chemical Accuracy. T. Helgaker, Department of Chemistry, University of Oslo, Norway

$ ARO $ University of Florida: Quantum Theory Project

Introduction to Density Functional Theory

Calculations of electron-molecule scattering cross sections using the Rmatrix method

Highly accurate quantum-chemical calculations

THE QUANTUM CHEMISTRY OF OPEN-SHELL SPECIES

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

ELECTRONIC STRUCTURE CALCULATIONS OF OPEN-SHELL MOLECULES. Lyudmila V. Slipchenko. A Dissertation Presented to the FACULTY OF THE GRADUATE SCHOOL

Jack Simons Henry Eyring Scientist and Professor Chemistry Department University of Utah

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Solution of the Electronic Schrödinger Equation. Using Basis Sets to Solve the Electronic Schrödinger Equation with Electron Correlation

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE

AB INITIO STUDIES OF MOLECULES

Benchmark studies of variational, unitary and extended coupled cluster methods

Introduction to Electronic Structure Theory

Computational Chemistry

Computational chemistry with GAMESS: a very brief overview with examples

Orbital dependent correlation potentials in ab initio density functional theory

H 2 in the minimal basis

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

The calculation of the universal density functional by Lieb maximization

Coupled Cluster Theory and Tensor Decomposition Techniques

Performance of Hartree-Fock and Correlated Methods

THE DEVELOPMENT OF THE CBS-Wes METHOD

v(r i r j ) = h(r i )+ 1 N

Time-independent molecular properties

The Nuclear Many Body Problem Lecture 4. Coupled Cluster theory and its application to medium sized nuclei.

Chemistry 433 Computational Chemistry Fall Semester 2002 Dr. Rainer Glaser

7.1 Creation and annihilation operators

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Tailoring BKL to Loop Quantum Cosmology

Self-consistent intermediate Hamiltonians: A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing

AB INITIO METHODS IN COMPUTATIONAL QUANTUM CHEMISTRY

Chemistry 334 Part 2: Computational Quantum Chemistry

A practical view on linear algebra tools

PHY305: Notes on Entanglement and the Density Matrix

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Ch 125a Problem Set 1

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Software implementation of correlated quantum chemistry methods. Exploiting advanced programming tools and new computer architectures

Transcription:

Molecular properties in quantum chemistry Monika Musiał Department of Theoretical Chemistry

Outline 1 Main computational schemes for correlated calculations 2 Developmentoftheabinitiomethodsforthe calculation of molecular properties. Monika Musiał Molecular properties 2/ 40

Literature L. Piela, Idee Chemii Kwantowej, PWN, Warszawa, 2003. R.J.Bartlett,M.Musial,Rev.Mod.Phys.,79, 291-352(2007). M. Musiał, Mol. Phys., 108, 2921(2010). M. Jaworska, M. Musiał, T. Pluta, Wybrane zagadnienia chemii kwantowej, Uniwersytet Śląski(2009). J.F.Stanton,R.J.Bartlett,J.Chem.Phys., 98, 7029(1993). J.F.Stanton,J.Chem.Phys.,99,8840(1993). Monika Musiał Molecular properties 3/ 40

Computational methods of quantum chemistry basedonthewavefunction Ψ Born-Oppenheimer approximation Electronic Schrödinger equation: HΨ = EΨ Monika Musiał Molecular properties 4/ 40

Computational strategy in the wave function based calculations Two-step approach to the solution of the Schrödinger equation: 1 construction of the wave function within the 1-electron approximation(independent particle model): Hartree-Fock method 2 post-hartree-fock approach: determination of electronic correlation Monika Musiał Molecular properties 5/ 40

Computational strategy in the wave function based calculations Hartree-Fock (alsoknownasameanfieldapproach) Determination of(spin)orbitals Self Consistent Field(SCF) method E HF 99%oftotalenergy Monika Musiał Molecular properties 6/ 40

RHFvs.UHF RHF(Restricted Hartree-Fock)- closed shell molecules, N 2 orbitals(doublyoccupied) UHF(Unrestricted Hartree-Fock)- open shell molecules, l spinorbitals with the α spin andkspinorbitalswiththeβspin (DODS- Different Orbitals for Different Spins) Monika Musiał Molecular properties 7/ 40

RHFvs.UHF RHF UHF α β Monika Musiał Molecular properties 8/ 40

UHF UHF cons: incorrect spin problems with convergence UHF pros: size-consistent(extensive) RHF RHF cons: incorrect dissociation limit(in standard formulation) RHF pros: well defined spin good convergence for HF equations Monika Musiał Molecular properties 9/ 40

RHFvs.UHF -14.800-14.820-14.840-14.860-14.880 E (a.u.) -14.900-14.920-14.940-14.960 RHF -14.980 UHF FCI -15.000 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 R (a.u.) Monika Musiał Molecular properties 10/ 40

Computational strategy in the wave function based calculations Determination of correlation energy Perturbation theory(mpn) Configuration Interaction(CI) Coupled Cluster(CC) Monika Musiał Molecular properties 11/ 40

Correlation energy HΨ=EΨ ExpressingthewavefunctionΨasalinear combination of(ground and excited) state configurations: Ψ = Φ o +Σ a,i c a i Φa i +Σ a,b,i,j c ab ij Φab ij +Σ a,b,c,i,j,k c abc ijk Φabc ijk +... Monika Musiał Molecular properties 12/ 40

Configurations... c. b. a. i. j. k 2. 1. Φ o Φ a i Φ ab ij Φ abc ijk ˆT 1 ˆT 2 ˆT 3 Ĉ 1 Ĉ 2 Ĉ 3 CCD,CCSD,CCSDT,CCSDTQ,...,FULLCC CID,CISD,CISDT,CISDTQ,...,FULLCI Monika Musiał Molecular properties 13/ 40

Expansion coefficients are obtained using: 1 perturbation theory Moeller-Plesset corrections: MP2, MP3,... 1 (J q K q ) r ij q V= i>j 2 linear parametrization of the wave function Ψ=(1+C)Φ o Configuration Interaction method 3 exponential parametrization of the wave function Ψ=exp(T)Φ o Coupled Cluster method Monika Musiał Molecular properties 14/ 40

Coupled cluster method exponential parametrization of the wave function Ψ o =e T Φ o T = T 1 +T 2 +T 3...+T N wheret n n-tupleexcitationoperator T n = (n!) 2 Σ ab... Σ ij... t ab... ij...a b...ji andt ab... ij...a b...ji-coefficients(amplitudes)tobedetermined Monika Musiał Molecular properties 15/ 40

Coupled cluster method amplitude equation: Φ ab... ij... e T He T Φ o = Φ ab... ij... H Φ o =0 energy expression: E = Φ o e T He T Φ o = Φ o H Φ o where H similarity transformed Hamiltonian. Monika Musiał Molecular properties 16/ 40

Coupled cluster method SR CCD (Bartlett, Purvis, 1978; Pople et al. 1978) CCSD (Purvis, Bartlett, 1982) CCSDT (Noga, Bartlett, 1987; Watts, Bartlett, 1989) CCSDTQ (Kucharski Bartlett, 1992) CCSDTQP (Musiał, Kucharski, Bartlett, 2002) S Singles D Doubles T Triples Q Quadruples P Pentuples Monika Musiał Molecular properties 17/ 40

Coupled cluster method size-extensivity Correctscalingoftheenergywiththesizeof the system = correct separation of the non-interacting fragments. FortheABmoleculecomposedofthe non-interacting fragments A and B assuming that Φ AB =Φ A Φ B weget: Ψ AB =exp(t AB ) Φ AB =exp(t A ) Φ A exp(t B ) Φ B =Ψ A Ψ B E AB CC=E A CC+E B CC Monika Musiał Molecular properties 18/ 40

Important quantity in the CC theory: H- similarity transformed Hamiltonian H=e T He T =(He T ) c H operator includes one-body, two-body and also higher(three, four,...)-body elements. Monika Musiał Molecular properties 19/ 40

Howdoweobtain Hoperator? Get T amplitudes from the CC amplitude equations: Φ ab... ij... e T He T Φ o =0 With T amplitudes construct H: H=(He T ) c Monika Musiał Molecular properties 20/ 40

EOM-CC method Equation-Of-Motion CC (EOM-CC) method Monika Musiał Molecular properties 21/ 40

EOM-CC method EOM-CC method CI-like calculations for the H operator Reminder: Standard CI are based on the regular Hamiltonian (H). Monika Musiał Molecular properties 22/ 40

EOM-CC method Wave function: Ψ k = R(k) Ψ o k=1,2,... Schrödinger equation: HR(k) Ψ o =E k R(k) Ψ o R(k)H Ψ o =E o R(k) Ψ o Equation-of-motion: [H,R(k)] Ψ o =ω k R(k) Ψ o Monika Musiał Molecular properties 23/ 40

EOM-CC method Since Ψ o =e T Φ o weobtain-aftersimple algebra- eigenvalue equation: ( HR(k)) c Φ o =ω k R(k) Φ o orinmatrixform: HR(k)=ω k R(k) Monika Musiał Molecular properties 24/ 40

EOM-CC method R EE (k) = r o (k)+σ a Σ i r a i(k)a i+ 1 4 Σ abσ ij r ab ij(k)a b ji + 1 36 Σ abcσ ijl r abc ijl (k)a b c lji+... R IP (k) = Σ i r i (k)i+ 1 2 Σ aσ ij r a ij (k)a ji + 1 12 Σ abσ ijl r ab ijl (k)a b lji+... R EA (k) = Σ a r a (k)a + 1 2 Σ abσ i r ab i (k)a b i + 1 12 Σ abcσ ij r abc ij (k)a b c ji+... Monika Musiał Molecular properties 25/ 40

EOM-CC method R DIP (k) = 1 r ij (k)ji+ 1 r a 2 ij 6 ijl(k)a lji+... a ijl R DEA (k) = 1 r ab (k)a b + 1 r abc i (k)a b c i+... 2 ab 6abc i Monika Musiał Molecular properties 26/ 40

EOM-CC method EOM-CCSD model H= S H S S H D D H S D H D S Φ j D Φ a ij Ionizationpotential(IP) S Φ b D Φ ab i Electron affinity(ea) S Φ a i D Φ ab ij Excitation energy(ee) Monika Musiał Molecular properties 27/ 40

EOM-CC method EOM-CCSDT model H= IP: T Φ ab ijl EA:T Φ abc ij EE:T Φ abc ijl S H S S H D S H T D H S D H D D H T T H S T H D T H T Monika Musiał Molecular properties 28/ 40

EOM-CC method EOM-CCSDforDIPandDEA H= [ D H D ] D Φ ij Doubleionizationpotential(DIP) D Φ ab Doubleelectronaffinity(DEA) Monika Musiał Molecular properties 29/ 40

EOM-CC method EOM-CCSDT for DIP and DEA H= D H D D H T T H D T H T DIP: T Φ a ijk DEA:T Φ abc i Monika Musiał Molecular properties 30/ 40

EOM-CC method Efficient technique used to diagonalize large matrices: Davidson method generalized for non-hermitian matrices. Monika Musiał Molecular properties 31/ 40

EOM-CC method A crucial step in the Davidson procedure is taking productoftheamplitudevectorrandthematrixtobediagonalized- H x k = HR k Monika Musiał Molecular properties 32/ 40

EOM-CC method Theproduct HR k cannotbetakendirectlyas a matrix product. Why? Rankof H goesintomilions. Weknow Hoperatorbutwedonotconstruct H matrix. Thusourequationscanbeseenas: Monika Musiał Molecular properties 33/ 40

EOM-CC method EE-EOM-CCSDT equations R(k) = R o (k)+r 1 (k)+r 2 (k)+r 3 (k) x a i(k)= Φ a i ( H N R(k)) c Φ o x ab ij (k)= Φab ij ( H N R(k)) c Φ o x abc ijl (k)= Φabc ijl ( H N R(k)) c Φ o x a i,xab ij,xabc ijl elementsofthex k vector Monika Musiał Molecular properties 34/ 40

EOM-CC method The diagrammatic representation of the elements of H N used in derivation of the EE-EOM-CCSDT equations. one-body I 1 : I 1 1 + I1 2 a b j i i a I a b I i j I i a a i b c I ab ci j k a i I ia jk two-body I 2 : I 2 1 + I2 2 + I2 3 + I2 4 a b k l a i a i c d i j b j b c I ab cd I ij kl I aj bi I ai bc k j i a i a j b I ij ka I ij ab i b j c a d i I abc dij a l k j I ajk ilb b i k a l b j i I iab jkl a b j c I abj icd d three-body I 3 : I 3 1 + I 3 2 + I 3 3 m a k l a j k b i j c i I ija klm I aib cjk a b i c d e I abc dei i j bk c l d a I ibcd ajkl four-body I 4 : I 4 2 + I4 3 j c k d l b m c b i k a e i a j I ibcd aejk I ijbc aklm Monika Musiał Molecular properties 35/ 40

EOM-CC method S D T I 1 1 I 1 2 I 2 4 S I 2 2 I 2 3 I1 2 I1 I2 1 D I2 3 I2 I3 2 I3 I1 3 I1 2 I1 T I2 4 I2 3 I2 I3 4 I3 Monika Musiał Molecular properties 36/ 40

EOM-CC method Diagrammatic form of the standard EE-EOM-CCSDT equations. = + + + + + + = + + + + + + + a + b +c + + + Monika Musiał Molecular properties 37/ 40

EOM-CC method = d + + e + f + + g + + + h + i + j + k + + + + + Monika Musiał Molecular properties 38/ 40

EOM-CC method H operator 1 H is non-hermitian 2 It includes three-, four- and higher-body elements H=e T He T =(He T ) c Expanding H N intoone-body,two-body, three-body,... etc. contributions we get: H N =I o + 2 k=0 I 1 k + 4 k=0 I 2 k + 3 k=0 I 3 k + 3 k=0 I 4 k + Monika Musiał Molecular properties 39/ 40

EOM-CC Computational strategy Steps applied in the standard EOM-CC method: solve the standard CCSD(or CCSDT) equations for the ground state problem usingtheconvergedt 1,T 2 (ort 3 )amplitudes constructall Helements apply a generalized Davidson diagonalization procedure to obtain eigenvalues of the H matrix. Monika Musiał Molecular properties 40/ 40