The applications of Complexity Theory and Tsallis Non-extensive Statistics at Space Plasma Dynamics

Similar documents
Tsallis non - Extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar Flares dynamics

From time series to superstatistics

arxiv:cond-mat/ v1 8 Jan 2004

Weak chaos, infinite ergodic theory, and anomalous diffusion

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Stochastic equations for thermodynamics

Intermittency, Fractals, and β-model

Helicity fluctuation, generation of linking number and effect on resistivity

Multifractal Models for Solar Wind Turbulence

Scale invariance of cosmic structure

Fractals and Multifractals

Preferred spatio-temporal patterns as non-equilibrium currents

The Physics of Fluids and Plasmas

Generalized Statistical Mechanics at the Onset of Chaos

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Lagrangian intermittency in drift-wave turbulence. Wouter Bos

Generalized Classical and Quantum Dynamics Within a Nonextensive Approach

Magnetic Reconnection: Recent Developments and Future Challenges

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Superdiffusive and subdiffusive transport of energetic particles in astrophysical plasmas: numerical simulations and experimental evidence

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Statistical physics models belonging to the generalised exponential family

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Solar Flares and Particle Acceleration

F r (t) = 0, (4.2) F (t) = r= r a (t)

Fractional Diffusion Theory and Applications Part II

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization

arxiv: v1 [nlin.cd] 22 Feb 2011

Delay Coordinate Embedding

NPTEL

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Algorithms for Ensemble Control. B Leimkuhler University of Edinburgh

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

Non-equilibrium phase transitions

arxiv: v1 [cond-mat.stat-mech] 3 Apr 2007

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Reduced MHD. Nick Murphy. Harvard-Smithsonian Center for Astrophysics. Astronomy 253: Plasma Astrophysics. February 19, 2014

Collective Effects. Equilibrium and Nonequilibrium Physics

16. Working with the Langevin and Fokker-Planck equations

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

However, in actual topology a distance function is not used to define open sets.

Magnetic Reconnection in Laboratory, Astrophysical, and Space Plasmas

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization

Superstatistics: theory and applications

COMPARATIVE STUDY OF SOLAR FLARE NORTH-SOUTH HEMISPHERIC AND K-INDEX GEOMAGNETIC ACTIVITY TIME SERIES DATA USING FRACTAL DIMENSION

Wavelets and Fractals

Anomalous transport of particles in Plasma physics

Statistical mechanics of random billiard systems

The weather and climate as problems in physics: scale invariance and multifractals. S. Lovejoy McGill, Montreal

Onsager theory: overview

Abstracts. Furstenberg The Dynamics of Some Arithmetically Generated Sequences

Reconstruction Deconstruction:

Entropy-dissipation methods I: Fokker-Planck equations

Non-equilibrium phenomena and fluctuation relations

= w. These evolve with time yielding the

Introduction to Magnetohydrodynamics (MHD)

Elementary Lectures in Statistical Mechanics

LANGEVIN EQUATION AND THERMODYNAMICS

Kinetic Alfvén waves in space plasmas

Solar Wind Turbulence

entropy The Nonadditive Entropy S q and Its Applications in Physics and Elsewhere: Some Remarks Entropy 2011, 13, ; doi:10.

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 May 2000

Anomalous diffusion of volcanic earthquakes

dynamical zeta functions: what, why and what are the good for?

Table of Contents [ntc]

Space Plasma Physics Thomas Wiegelmann, 2012

Stochastic thermodynamics

Multifractal Structures Detected by Voyager 1 at the Heliospheric Boundaries

Fractional and fractal derivatives modeling of turbulence

Solar eruptive phenomena

Columbia University Department of Physics QUALIFYING EXAMINATION

Heat bath models for nonlinear partial differential equations Controlling statistical properties in extended dynamical systems

Hierarchical Modeling of Complicated Systems

From normal to anomalous deterministic diffusion Part 3: Anomalous diffusion

Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch

Synchro-Betatron Motion in Circular Accelerators

Plasma Physics for Astrophysics

Anomalous diffusion in biology: fractional Brownian motion, Lévy flights

Weak Ergodicity Breaking WCHAOS 2011

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

Collective Effects. Equilibrium and Nonequilibrium Physics

Statistical Mechanics

Cosmic rays propagation in Galaxy: A fractional approach

Characterizing chaotic time series

Statistical Mechanics of Active Matter

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Turbulence models of gravitational clustering

SAMPLE PATH PROPERIES OF RANDOM TRANSFORMATIONS.

Introduction to Dynamical Systems Basic Concepts of Dynamics

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

Calculation of diffusive particle acceleration by shock waves using asymmetric skew stochastic processes

Collective Effects. Equilibrium and Nonequilibrium Physics

Statistical Mechanics

Entropy Balance, Multibaker Maps, and the Dynamics of the Lorentz Gas

If we want to analyze experimental or simulated data we might encounter the following tasks:

On the (multi)scale nature of fluid turbulence

Transcription:

The applications of Complexity Theory and Tsallis Non-extensive Statistics at Space Plasma Dynamics Thessaloniki, Greece Thusday 30-6-2015 George P. Pavlos Democritus University of Thrace Department of Electrical and Computer Engineering Xanthi, Greece

DRIVEN SYSTEMS (LOADING - UNLOADING) Solar Dynamics Description of Sun s Interior Input (Solar Radiation) Driven System (Photosphere) SunSpots Prominence Flares Description of Sun s Photosphere

Solar Wind

Complexity Theory Entropy Principle = W = max n k S q q min 1 = = = q q q q q Z n TS U F β 1 1 = = q p k p n p k S q i i q i q i q q q q q opt Z e Z q P Ε = Ε = β β 1/1 ] ) (1 [1 Ε = β Z q e q F q (Free energy) = minimum => Nonequilibrium stationary states (NESS) q=1 => Boltzman Gibbs Theory Tsallis Non-extensive Statistical Mechanics Nonequilibrium self-organization

THEORETICAL CONCEPTS Near Thermodynamic Equilibrium Linear Dynamics Euclidean Geometry-Topology Smooth Functions Smooth differential Equations Normal derivatives-integrals Far from Thermodynamic Equilibrium Non-Linear Dynamics Fractal Geometry -singular functions Fractional differential-integral equations MHD Vlason-Blotzman theory Normal diffusion-brownian motion Gaussian statistics-dynamics Normal Langevin-FP equations Extensive statistics BG entropy Infinite dimensional noise White-colored noise Normal Central Limit Theorem (CLT) Fractional MHD theory Anomalous diffusion motion Strange Kinetics Non-Gaussian statistics-dynamics Fractional Langevin-FP equations Non-Extensive statistics Extremization of Tsallis entropy q-extended CLT Intermittent turbulence Normal Liouville theory Locality in space and time Separation of time-spatial scales Microscopic-macroscopic locality Equilibrium RG Fractional Liouville theory (multi)fractal Topology Power laws mulitscale processes Memory long range correlations Nonlocality in space and time Non-Equilibrium RG

Renormalization Group Theory (RGT) (Chang, 1992) ϕ t i i (,, ) (, ) = f t + n t Non-Equilibrium Non-linear Space Plasma Physics φx i x i = 1, 2,... Generalized Langevin Stochastic Equation P ( φ( x, t) ) = { } ( ) exp (,, ) D x i L φφx dx dt Random Field Distribution Function Plasma System Stochastic Lagrangian Scale Invariance - RGT - Fixed Points (SOC, Chaos, Intermittency etc.) L/ l = RL L'/ dl = R L' dp / dl = Σ( R ) P ' ' m L mn n L L'( l) =Σ V( lu ) =ΣV exp( λ lu ) ή k k k0 k k Non-equilibrium Non-extensive Random Field Theory (Partition Function Theory)

x Dynamical Bifurcation dx / dt = f ( x, λ) Non Linear Dynamics (A) Gaussian Equilibrium Critical States Equilibrium Phase Transition Power Laws Α Β (B) Self-Organization Structure Dissipative Structures Long Range Correlations C F C Β Α λ(i) λ Critical Points Bifurcation Points (C) Spatiotemporal Chaos Strange Dynamics (Attractors) Levy Processes Scale Invariance Intermittent Turbulence Tsallis Entropy Fractal Topology Anomalous Diffussion

Poincare Section of Phase Space Intermittency in Phase Space Stochastic Sea Fractal Set (Island, Cantori) Trapping Stickiness Levy flights Lyapunov Exponents 0 Strange Topology Strange Dynamics Scale Invariance (RGT) Levy Distribution Anomalous Diffusion

Basic Space Plasma Theory BBGKY Hierarchy Boltzmann - Vlassov, MHD Theory Scale Invariance - Singularities α 1 τ = λτ t = λ = 1 /3 ht t λ α /3 = = b = λ b α /3 h u λ u λ u Fractional Extension Fractional Real - Space Derivative Fractional Time Derivative x β β i β r 2β r f 1, = Γ 1 ( t r ) r β β r 2β 2β e ˆ i dx ( β ) x ( x x ) i, k i x i δ β, k β i Riesz Weyl operator x i i β i i i 2β x x β i Levy flights Levy walks Power Law distribution 1 ( ) = 1 2 ϕ + β β k f ( t, r ) t a f ( t, r ) = Γ 1 m dr m ( m a) t ( t r) Riemann Liouville operator t 0 1+ a m Fractal time random walks (FTRW) Fractal active time (Cantor set) f ( t, r ) 1 a r persistent (super-diffusive) process 0 a 1 anti-persistent (sub-diffusive) process Waiting time Power Law distribution φ 1 r ( r ) ~ 1+ a

FRACTIONAL KINETIC EQUATION (FRACTIONAL FOKKER PLANCK KOLMOGOROV EQUATION) Zaslavsky G.M., Chaos, fractional kinetics, and anomalous transport, Physics Reports 371, 461-580, 2002.

Mean square displacement Normal Anomalous Diffusion < x 2 µ 2H ( t) > Dt = Dt, 0 H 1 β ds 2 µ =, 1 µ 2 α = df = 2 + θ < (Non Gaussian dynamics) µ = 2H, d s =spectral fractal dimension θ=connectivity index d f = Hausdorff fractal dimension of space H=Hurst exponent d w =1/H=fractal dimension of trajectories µ = 1, H = 1/2, dw = 2 Normal diffusion (Gaussian dynamics) μ={competition between FTRW Levy process} θ > 0, μ < 1 subdiffusion µ 1, θ < 0, μ > 1 superdiffusion

Fractional Solar Plasma (1999,2004) Solar Photosphere Magnetic Flux - Fractal Distribution Solar Wind Fracton Theory Intermittent Turbulence

Turbulence Intermittent Turbulence Uriel Frisch Turbulence (The Legacy of A.N. Kolmogorov) Eddies Transformation mother eddy daughters Space filling Cascade over Energy dissipation (K41)

Uriel Frisch Turbulence (The Legacy of A.N. Kolmogorov) mother eddy daughters β-model cascade (eddies without space filling) (β-model) Brownian self similarity (probability density) p-model

Multifractal intermittency velocity structure Uriel Frisch Turbulence (The Legacy of A.N. Kolmogorov) Bifractal β Model singularity manifold fractal set-fractal dimension bifractal model singular exponent multiscaling exponents spectrum

Multifractal β model Uriel Frisch Turbulence (The Legacy of A.N. Kolmogorov) Legendre transformation Legendre transform

Multifractal Intermittent Energy Dissipation Velocity Energy Dissipation Multifractal Structures Space time scale envariance Intermittent vortex filaments. Three dimensional turbulence simulation

Multifractal Theory Theiler J., Vol. 7, No. 6/June 1990/J. Opt. Soc. Am. A, 1055 generalized dimensions most-dence points least-dence points Information entropy Information dimension Rényi entropy

Multifractal Theory Theiler J., Vol. 7, No. 6/June 1990/J. Opt. Soc. Am. A, 1055

Tsallis Extension of Statistics Nonextensive Statistical Mechanics Microscopic Level Macroscopic Level Quantum Complexity Quantum Phase Transition (Q.P.T.) Equilibrium Phase Transition (E.P.T.) Non Equilibrium Phase Transition (N.E.P.T.)

Tsallis Theory Nonextensive Statistical Mechanics Generalized Fokker-Planck Equations Levy Distribution q-gaussian Distribution

q-extension of thermodynamics Z q q q( Ei Vq) e β q conf = q β = β / p β = 1/ KT conf i q q E pe/ p = U q conf i i i q conf q-extension of central limit theorem q-independent random variables 1 F U TS = ln qz β 1 Sq U q = ln qzq, = β T U q q q q δ U F Cq T = = T T T T 2 q q q 2 q

q-triplet Tsallis One-Dimensional Systems (Timeseries) q rel q ent =q sen q stat S q t

The q-triplet of Tsallis q - CLT (q k-1, q k, q k+1 )= qstat, qrel, qsen) Gaussian-BG equilibrium (qstat=qsen=qrel=1) Nonequilibrium (qstat, qsen, qrel) (qstat, qsen, qrel) Equilibrium PDF Metaequilibrium PDF (qstat) Equilibrium BG entropy production Metaequilibrium q-entropy production (qsen) Equilibrium relaxation process Metaequilibrium nonextensive relaxation process (qrel)

Intermittent Turbulence Tsallis Theory fd( a) = aq ( q 1)( Dq d + 1) + d 1 d a = [( q 1)( Dq d + 1)] dq f ( a) = aq τ ( q), d d a = [( q 1) Dq ] ( q) dq = dq τ q = Fractal dissipation of Energy n ε df ( a) da ~ ε α 1 ( l ) 0 l n / n q d ( q 1) Dn τ ( q) nln ~ ln ln 0 ε = dn d ( ) ( α ) ~ l f n α d α Tsallis Entropy Extremization - Singular Spectrum 2 1 1 ( a a0) 1 q q Pa ( ) = Z [1 (1 q) ] 2X ln 2 2 ( a a ) f( a) = D0 + log 2[1 (1 q) o ] / (1 q) 2X ln 2 2 2Xq 1 0 2 τ ( q) = qa 1 [1 log (1 Cq )] 1+ C 1 q + aq a0 = (1 Cq ) / [ q(1 q) ln 2] 1 1 1 = 1 q a a q + Intermittence Turbulence Spectrum n Sp( l ) =< δu p n > p J( p) = 1 + τ ( q = ) 3 2 ap 0 2Xp 1 J( p) = [1 log 2 (1 + Cp/3 )] 3 q(1+ C 1 q p/3 p J p = + T p + T p 3 ( u) ( F) ( ) ( ) ( ) 1

FLOW CHART OF NON LINEAR ANALYSIS UNKNOWN Local Data = Timeseries Law of Internal Dynamics dx = FX ( ( t), u ( t), λ, wt ( )) dt Reconstructed Phase Space SVD analysis Dynamic Degrees of Freedom Dynamic Instability Strange Dynamics Fractal Topology - Percolation Chaos SOC - Turbulence Phenomenological Characteristics Time Frequency Domain Non-extensive Statistics (q-triplet Tsallis) Linearity Non-Linearity - Noise Non-Linear Prediction Models Spatiotemporal Modeling

CHAOTIC ALGORITHM Takens Theorem (1981) State Space Reconstruction ORIGINAL STATE SPACE EMBEDDING RECONSTRUCTED STATE SPACE The Chaotic Algorithm is based in proficient mathematical concepts: Embedding theory, metrics, fractals, multiple manifolds, probability information theory, dynamical systems and maps Notes: D. Kugiumtzis, AUTH TIME SERIES m small, self-cutting m big, noise Autocorrelatrion Mutual Information

I. Analysis in the time-frequency domain COMPLEXITY AND TIME SERIES ANALYSIS Autocorrelation and Power Spectrum (noise-chaoticity) Mutual Information (Nonlinear Correlations) Flatness Coefficient (F) (Gaussian non-gaussian proccess) Hurst Exponent (temporal fractality singularities, persistence anti persistence, normal anomalous diffusion structure function (normal intermittent turbulence, singularity spectrum (h, D(h)) q-entropy production (S q ) II. Fractal geometry and fractional dynamics Singularity spectrum (a, f(a)) Generalized Spectrum ( qdq, ( )) P model (multiplicative process) Probability distribution function (Tsallis distributions) q-extension of CLT and Tsallis q-triplet parameters (q sen, q rel, q stat ) Tsallis modeling of non-equilibrium stationary states (NESS) III. Low dimensionality and Nonlinearity Correlation Dimension of reconstructed phase space and existence of strange attractor. Strange Dynamics and sensitivity of initial conditions (Lyapunov exponents spectrum) Discrimination of stochasticity and nonlinear randomnicity - chaoticity Discrimination of dynamical components

Synopsis Chaotic Analysis Dimensional Analysis Statistical Analysis Turbulence Analysis

Sunspot

Sunspot Index (Original SVD Component)

Sunspot Index (Correlation Dimension & Lyapunov Exponent) Correlation Dimension Lyapunov Spectrum Exponents

Sunspot Index (Tsallis Statistics) Sunspot TMS - qstat=1.53 ±0.04 V1 SVD Component - qstat=1.40 ±0.08 V2-10 SVD Component - qstat=2.12 ±0.20 Sunspot TMS TMS - qsen=0.368 V1 SVD Component - qsen=-0.055 V2-10 SVD Component qsen=0.407 Δα= 1.752 Δα= 1.133 Δα= 1.940

Sunspot Index (Turbulence Analysis)

Sunspot Index (Parameters, Generalized Hurst Exponent & Entropy Production) Sunspot TMS V1 Comp. V2-10 Comp. Sunspot TMS V1 Comp. V2-10 Comp. Sunspot TMS V1 Comp. V2-10 Comp. Sunspot TMS V1 Comp. V2-10 Comp. Sunspot TMS V1 Comp. V2-10 Comp. Sunspot TMS V1 Comp. V2-10 Comp.

Solar Flares

Solar Flares Index (Original SVD Components)

Solar Flares Index (Correlation Dimension & Lyapunov Exponent) Correlation Dimension Lyapunov Spectrum Exponents

Solar Flares Index (Tsallis Statistics) Solar Flare TMS - qstat=1.87 ±0.05 V1 SVD Component - qstat=1.28 ±0.04 V2-15 SVD Component - qstat=2.02 ±0.15 Solar Flare TMS - qsen=0.308 V1 SVD Component - qsen=-0.540 V2-15 SVD Component qsen=0.192 Δα= 2.15 q relaxation 9.333±0.395 Δα= 9.849±0.410 0.77 3.207±0.086 Δα= 1.37

Solar Flares Index (Turbulence Analysis)

Solar Flares Index (Parameters, Generalized Hurst Exponent & Entropy Production) Flares V1 Comp. V2-15 Comp. Flares V1 Comp. V2-15 Comp. Flares V1 Comp. V2-15 Comp. Flares V1 Comp. V2-15 Comp. V1 V2 V3 V4 V5 Flares V1 Comp. V2-15 Comp.

Solar Flares Event 1 X-rays intensity Power Spectrum

Solar Flares Event 1 (Chaotic Analysis) Correlation Dimension Lyapunov Spectrum Exponents CALM (m=10) SHOCK (m=7) DECAY(m=10) L1 maximum -0.3 0.02 > 0-0.01 L2-0.32-0.04-1.19 L3-0.34-0.04-2.42 L4-0.37-0.05-2.48 L5-0.4-0.35-2.57 Voltera Weiner Model

Solar Flares Event 2 (Statistical Analysis) X-rays intensity

Solar Flares Event 2 (Tsallis Statistics) Calm- qstat=1.04±0.02 Shock- qstat=1.43±0.05 Decay- qstat=1.08±0.02 Calm - qsen=-1.547 Shock - qsen=0.376 Decay - qsen=-1.089 Δ(α)= 0.421 Δ(α)= 1.045 Δ(α)= 0.441 Calm Δ(Dq)=0.141 Shock Δ(Dq) =0.738 Decay Δ(Dq) =0.148

Solar Flares Event 2 (Parameters) Calm Shock Decay Calm Shock Decay Calm Shock Decay Calm Shock Decay Calm Shock Decay Calm Shock Decay

Solar Flares Event 2 (Turbulence Analysis)

Solar Energetic Particle Interplanetary Space

Interplanetary Observations (CME 7 March 2012) (Re -2,5) (Re -59,5)

Solar Energetic Particles

Solar Energetic Particle (Generalized Hurst Exponent & Entropy Production)

Solar Energetic Particle (Tsallis Statistics) Period 1 - qstat=1.08 ±0.03 Period 2- qstat=1.18 ±0.03 Period 3 - qstat=1.57 ±0.08 Period 4 - qstat=1.11 ±0.05

Solar Energetic Particle (Multifractal Spectrum) Period 1 - qsen=-3.049 Period 2 - qsen=-0.521 Period 3 - qsen=0.427 Period 4 - qsen=-1.563 Δα=0.251 Δα=0.653 Δα=1.483 Δα=0.388 Period 1 - ΔDq=0.155 Period 2 - ΔDq =0.556 Period 3 - ΔDq =1.371 Period 4 - ΔDq =0.287 p-model=0.546 p-model=0.612 p-model=0.753 p-model=0.566

Solar Energetic Particle (Parameters) Phase Transition through Tsallis q-triplet Phase Transition through Multifractal Structure and p-model values

ACE/MAG Project - Solar Wind (Magnetic Field)

Solar Wind Magnetic Field (q-stationary & q-relaxation) Calm - qstat= 1.38 ±0.04 Shock - qstat=1.74 ±0.05 ICME - qstat = 1.17 ±0.02 Calm - qrel = 15.804 Shock - qrel=5.74 ICME - qrel = 11.12

Solar Wind Magnetic Field (Multifractal Spectrum) Calm - qsen=-0.198 Shock - qsen=0.117 ICME - qsen=-3.456 Δα=0.679 Δα=1.057 Δα=0.227 f(α) f(α) f(α) α α α Calm - ΔDq=0.579 Shock - ΔDq =0.967 ICME - ΔDq =0.131 p-model=0.616 p-model=0.677 p-model=0.539

Sola Wind Magnetic Field (Parameters) Phase Transition through Tsallis q-triplet Phase Transition through Multifractal Structure and p-model values

Interplanetary Solar Magnetic Field (Re -2,5) (Re -59,5) ACE CLUSTER THEMIS-E THEMIS-C (B total ) (B total ) (B total ) (B total ) q stationary (CALM) 1.37 ± 0.01 1.26 ± 0.05 1.26 ± 0.05 1.27 ± 0.06 q stationary (SHOCK) 1.74 ± 0.03 1.53 ± 0.07 1.53 ± 0.07 1.73 ± 0.06

Solar Wind (High Time Resolution Ion Fluxes) Photo of BMSW instrument (Fast Monitor of the Solar Wind) and Typical SPECTR-R orbits evolution relative the Earth s magnetosphere in October 2011.

Solar Wind Ion Fluxes

Solar Wind Ion Fluxes (Chaotic Analysis) Time Series Power Spectrum Correlation Dimension Lyapunov Spectrum Exponents

Solar Wind Ion Fluxes (Tsallis Statistics) Calm - qstat= 1.37 ±0.05 Shock - qstat = 1.61±0.03 Calm - qsen=-0.161 Δα=0.753 Shock - qsen=0.268 Δα=1.205 Calm - ΔDq=0.431 Shock - ΔDq =0.871

Solar Wind Ion Fluxes (Turbulence Analysis)

Magnetosphere 26-30 July 2004 GEOTAIL Orbit

Magnetosphere 26-30 July 2004 Bz Component Ex Component

Summarize parameter values of non-extensive statistics in Solar Plasmas The q-triplet (q_sen, q_stat, q_rel) of Tsallis. System q_sen q_stat q_rel (C(τ)) Solar Wind (Bz cloud) 0.484±0.009 2.02±0.04 32.25±2.31 Solar (Sunspot Index) 0.368±0.005 1.53 ± 0.04 5.67±0.13 Solar (Flares Index) 0.308±0.005 1.870±0.005 5.33±0.22 Solar (Protons) 0.817 ± 0.024 2.31±0.13 2.48±0.23 Solar (Electrons) 0.860±0.009 2.13±0.06 2.58±0.22 Cosmic Stars (Brigthness) -0.568±0.042 1.64±0.03 7.71±0.58 Cosmic Ray (C) -0.441±0.013 1.44±0.05 193.30±18.43

Conclusions Everywhere in Solar plasma we have confirmed the following: Tsallis Sq entropy and non extensivity Nonequillibrium stationary states (NESS) Nonequillibrium topological phase transition processes Multifractal intermittent turbulence Anomalous diffusion Multiplicative processes Low Dimensional Chaos and/or SOC. These experimental results are concluded theoretically by: Strange Dynamics Fractal extension of MHD theory Fractional extension of magnetized plasmas Langevin and Fokker Planck equations Nonequillibrium Percolation Theory

THANK YOU for your attention