Magnetic flux tubes observed with THEMIS/MSDP

Similar documents
Spectro polarimetry with liquid crystals

Magnetic strength analysis in the quiet Sun regions using the Mn I line at 553 nm

THEMIS : Status and perspectives

Two-dimensional imaging of the He D 3 /Hβ emission ratio in quiescent solar prominences

Photospheric flows around a quiescent filament and CALAS first results

Solar Surface Anisotropy effect on the Magnetic Field

Near-IR internetwork spectro-polarimetry at different heliocentric angles ABSTRACT

THE MYSTERIOUS SOLAR CHROMOSPHERE

Observational characteristics and association of umbral oscillations and running penumbral waves ABSTRACT. 2. Observations

On the 3D structure of the magnetic eld in regions of emerging ux

UV spectro-polarimetry with CLASP & CLASP2 sounding rocket experiments

arxiv: v1 [astro-ph.sr] 13 Jan 2010

OBSERVATIONS OF SUNSPOT UMBRAL OSCILLATIONS. 1. Introduction

arxiv: v1 [astro-ph.sr] 2 Aug 2011

Supporting Calculations for NASA s IRIS Mission. I. Overview

The art of Stokes inversions. Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC), Spain National Astronomical Observatory, Japan

M. J. Martínez González, M. Collados, and B. Ruiz Cobo ABSTRACT

The Solar Temperature Minimum and Chromosphere

Measuring the Magnetic Vector with the Hei Å Line: A Rich New World

ON THE STOKES V AMPLITUDE RATIO AS AN INDICATOR OF THE FIELD STRENGTH IN THE SOLAR INTERNETWORK

Granulation in DA white dwarfs from CO5BOLD 3D model atmospheres

B.V. Gudiksen. 1. Introduction. Mem. S.A.It. Vol. 75, 282 c SAIt 2007 Memorie della

Dual-line analysis of sunspot oscillations

arxiv:astro-ph/ v1 26 Sep 2003

Line profiles in moustaches produced by an impacting energetic particle beam

Reproduction of the Wilson-Bappu Effect Using PHOENIX

The Height Dependence of the Magnetic Field in a Sunspot

Molecular hydrogen in the chromosphere IRIS observations and a simple model

NLTE solar flare models with stationary velocity fields

Chromospheric heating and structure as determined from high resolution 3D simulations

INFERENCE OF CHROMOSPHERIC MAGNETIC FIELDS IN A SUNSPOT DERIVED FROM SPECTROPOLARIMETRY OF Ca II 8542 A

Thermal-magnetic relation in a sunspot and a map of its Wilson depression

O 5+ at a heliocentric distance of about 2.5 R.

Faurobert decay of the atom then leads to linear polarization of the re-emitted radiation eld. This so-called scattering polarization is analoguous to

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges

Multi-wavelength observations to understand the solar magnetic activity and its feedback on the interplanetary medium

DETERMINATION OF THE FORMATION TEMPERATURE OF Si IV IN THE SOLAR TRANSITION REGION

Multi-line Spectropolarimetry at THÉMIS

Vector Magnetic Field Diagnostics using Hanle Effect

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch

SLOW SAUSAGE WAVES IN MAGNETIC PORES AND SUNSPOTS

The Solar Chromosphere

Magnetic structuring at spatially unresolved scales. Jan Stenflo ETH Zurich and IRSOL, Locarno

Magnetohydrodynamic Simulations at IRSOL

New insights from. observation. Hinode-VTT He Andreas Lagg (MPS) Saku Tsuneta (NAOJ) Ryohko Ishikawa (NAOJ/Univ. Tokyo)

Association of chromospheric sunspot umbral oscillations and running penumbral waves

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch ABSTRACT

Non-spot magnetic fields

Some properties of an isolated sunspot

A study of accretion disk wind emission

Observations of Umbral Flashes

arxiv: v1 [astro-ph.sr] 20 Dec 2016

Coronal Magnetometry Jean Arnaud, Marianne Faurobert, Gérad Grec et Jean-Claude Vial. Jean Arnaud Marianne Faurobert Gérard Grec et Jean-Claude Vial

First observations of the second solar spectrum with spatial resolution at the Lunette Jean Rösch

Solar photosphere. Michal Sobotka Astronomical Institute AS CR, Ondřejov, CZ. ISWI Summer School, August 2011, Tatranská Lomnica

Konvektion und solares Magnetfeld

THE NON-MAGNETIC SOLAR CHROMOSPHERE MATS CARLSSON. Institute of Theoretical Astrophysics, P.O.Box 1029 Blindern, N{0315 Oslo, Norway.

arxiv: v1 [astro-ph] 6 Mar 2008

The Evershed flow and the brightness of the penumbra. Luis R. Bellot Rubio Instituto de Astrofísica de Andalucía (CSIC) Granada, Spain

Line-of-sight observables algorithms for HMI tested with Interferometric BI-dimensional Spectrometer (IBIS) spectro-polarimetric observations

Chromospheric magnetic fields of an active region filament measured using the He I triplet

UMR8109, Université Pierre et Marie Curie, Université Denis Diderot, Obs. de Paris, Meudon Cedex, France.

The magnetic properties of Am stars

The Uncombed Penumbra

SISD Training Lectures in Spectroscopy

Oxygen in the Early Galaxy: OH Lines as Tracers of Oxygen Abundance in Extremely Metal-Poor Giant Stars

The optical Fe II emission lines in Active Galactic Nuclei

arxiv: v1 [astro-ph.sr] 10 Jan 2019

Brightness of the Sun s small scale magnetic field: proximity effects. I. Thaler and H. C. Spruit

3D non-lte corrections for the 6 Li/ 7 Li isotopic ratio in solar-type stars

2. Stellar atmospheres: Structure

The impact of solar surface dynamo magnetic fields on the chemical abundance determination

Observable consequences

Hale Collage. Spectropolarimetric Diagnostic Techniques!!!!!!!! Rebecca Centeno

Atmosphere above a large solar pore

Chapter 1. Introduction. 1.1 Why study the sun?

Damping of MHD waves in the solar partially ionized plasmas

Can observed waves tell us anything at all about spicules?

NON-LTE CALCULATIONS OF THE FE I 6173 Å LINE IN A FLARING ATMOSPHERE

P. Démoulin and E. Pariat

The Sun s Dynamic Atmosphere

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region

A library of stellar light variations due to extra-solar comets

Model Atmospheres. Model Atmosphere Assumptions

Introduction to Daytime Astronomical Polarimetry

Scattering polarization in strong chromospheric lines ABSTRACT

ARENA Telescope and Instrument Robotization at Dome C Tenerife, Spain, 27/03/2007

What do we see on the face of the Sun? Lecture 3: The solar atmosphere

The influence of an inclined rotation axis on solar irradiance variations

Spectral Irradiance reconstructions

First results from THEMIS spectropolarimetric mode

Solar Astrophysics with ALMA. Sujin Kim KASI/EA-ARC

Evidence for a siphon flow ending near the edge of a pore

Variation of coronal line widths on and off the disk

Astronomy Astrophysics Amplitude and orientation of prominence magnetic fields from constant- magnetohydrostatic models Abstract. Key words.

Polar Magnetic Field Topology

arxiv: v1 [astro-ph.sr] 7 Sep 2009

arxiv:astro-ph/ v3 27 May 2005

VII. Hydrodynamic theory of stellar winds

Observations of the solar chromosphere at millimeter wavelengths

Transcription:

Mem. S.A.It. Vol. 78, 92 c SAIt 2007 Memorie della Magnetic flux tubes observed with THEMIS/MSDP P. Mein 1, N. Mein 1, M. Faurobert 2, G Aulanier 1, and J.-M. Malherbe 1 1 Observatoire de Paris-Section de Meudon, LESIA, F-92195 Meudon Cedex 2 Université de Nice, UMR 6525, Parc Valrose, F-06108 Nice Cedex Abstract. We use 2D spectro-polarimetric data of the NaD1 line to investigate magnetic flux tubes at several levels of the solar photosphere: - magnetic and non-magnetic bright features can be discriminated by simple criteria of intensities and dopplershifts. - 2D magnetic models and NLTE line profiles are compared to observations : combination of seeing effects and departures between slopes of line profiles in flux tubes and neighbouring photosphere account for vertical gradients of line-of-sight (LOS) magnetic field measurements. - Best qualitative agreements are obtained with clusters of magnetic flux tubes. Key words. Sun: atmosphere - Sun: magnetic fields 1. Observations 2D imaging spectro-polarimetry with THEMIS/MSDP (Mein, 2002) provided profiles of the NaD1 line across the active region NOAA 8989 on May 9, 2002. Line profile analysis was performed by the bisector method. Intensities, dopplershifts and line-ofsight (LOS) magnetic fields were determined in 4 locations defined by the distances from the bisector +/-0.008, +/-0.016, +/-0.024 and +/-0.032 nm. Subsequently, the measurements at +/-0.008 and +/-0.032 nm are called core and wings measurements respectively. Figure 1 shows cuts (1) and (2) used in this analysis. Figures 2 and 3 show the LOS magnetic field deduced from the bisector method along both cuts (Berlicki at al., 2006). Send offprint requests to: P.Mein, e-mail: Pierre.Mein@obspm.fr Magnetic features A,B,C,D,E,F can be identified. In Figs. 4 and 5 showing brightness fluctuations, additional bright but nonmagnetic featuress a,b,c,d,e,f are also present. 2. Discrimination by thermodynamical criteria Magnetic and non-magnetic features can be discriminated by intensity and velocities measurements only. In Fig. 6, both kinds of features are displayed. Velocities measured in line wings at centres of features (peak values) are plotted versus differences between wing- and core-intensity fluctuations. We can see that magnetic features are displayed in the upper left part of the plot, and non-magnetic ones in the lower right part. Such discrimination might be used to analyse temperatures and velocities of magnetic structures by means of high reso-

Mein: Magnetic flux tubes 93 Fig. 3. Magnetic structures along cut (2). Fig. 1. LOS magnetic field at λ = 0.024 nm and cuts (1) and (2) used in this paper. The field of view is 138 121. North magnetic fields are white. Fig. 4. Bright structures along cut (1). Fig. 2. Magnetic features along cut (1). Full lines refer to line-core measurements and dotted lines to line-wings. lution data obtained without polarization analysis. 3. Mean spatial structure of magnetic features By averaging LOS magnetic fields (Figs. 2 and 3) around symmetry axis of the six magnetic features A,B,C,D,E,F, we can derive a mean spatial structure. Figure 7 presents the LOS magnetic field versus the distance x to the axis. Fig. 5. Bright structures along cut (2). Crosses specify the half widths at half maximum (noted W). We can notice that W(wings) < W(core). This is expected because of the expansion of

94 Mein: Magnetic flux tubes Fig. 6. Magnetic features A,B,C,D,E,F and non-magnetic features a,b,c,d,e,f in the diagram of wing-velocities versus differences between wing- and core-intensity. Fig. 7. Average observed magnetic features. Full line = line core; dotted line = line wing.. magnetic lines from the lower levels to the upper levels of the photosphere. But we must note also that the magnetic fields at x = 0 satisfy B 0 (wings) < B 0 (core). That is not expected because the magnetic flux must be constant throughout the atmosphere. More detailed comparisons with fluxtube models and line transfer calculations will account for this point. 4. 2D model flux tube (I) In the plane x, z we define the vertical component of the magnetic field along the symmetry axis by B z (0, z) = B z (0, 0) exp( z/h) (1) The horizontal variation of B z inside the tube is defined by B z (x, z) = B z (0, z) cos 2 (πx/(4d(z)) (2) 1 < x/2d(z) < 1 (3) To keep a constant flux versus z, we assume d(z) = d(0) B z (0, 0)/B z (0, z) (4) where d(0) is the half width at half maximum of the tube, at the level τ 5000 = 1. The horizontal magnetic field component is defined by the zero-divergence B x (x, z) x with = B z(x, z) z (5) B x (, z) = 0 (6) Figure 8 shows the model magnetic field (I) with B z (0, 0) = 1100 G h = 240 km d(0) = 40 km We use the quiet solar VAL3C model (Vernazza et al., 1981) outside the flux tube. Inside the tube, we keep the same temperature at the same altitude, and modify all densities so that the total plasma pressure P(x, z) (including the turbulent pressure) compensates the horizontal component of the Lorentz force. This ensures low departures from hydrostatic equilibrium. 5. Synthetic NaD 1 spectra of model (I) The NaD 1 profiles are deduced from the 2.2 version of the NLTE radiative transfer code MULTI (Carlsson 1986). We use the assumption of weak magnetic field. At each altitude,

Mein: Magnetic flux tubes 95 Fig. 8. 2D model magnetic field (I). Solid and dotted lines show formation altitudes of line core and line wings of the NaD 1 line. Fig. 10. Synthetic magnetic fields of model (I) with seeing effects. Fig. 9. Synthetic magnetic fields of model (I). the absorption coefficient in the line is translated by the corresponding Zeeman shift, for both Stokes profiles (I+V) and (I-V). Synthetic LOS magnetic fields deduced from model (I) are plotted in Fig. 9. As in the case of observations, we see that W(wings) < W(core), as expected from the expansion of flux tubes with height. But the magnetic field values at x = 0 satisfy the reverse inequality B 0 (wings) > B 0 (core). 6. Model (I) with seeing effects Seeing effects must be taken into account to mimic realistic observations. Along the x-axis, Fig. 11. Full line: NaD 1 profile on the axis of flux tube model (I); dashed line: quiet profile outside the tube. we convolve the synthetic Stokes (I-V) intensities with the kernel S (x) = cos 2 (πx/4s) 1 < x/2s < 1 (7) for all wavelengths. The synthetic magnetic fields corresponding to s = 400 km are plotted in Fig. 10. Both observational relationships W(wings) < W(core) and B 0 (wings) < B 0 (core) are now satisfied. We can explain this behaviour in a simple way. Let us consider the line profile observed

96 Mein: Magnetic flux tubes Fig. 12. slopes di/dλ of the line profile; f ull line: axis of flux tube; dashed line: quiet profile. Fig. 13. Magnetic field of model (II). at tube axis I obs (λ). If the width of the tube is small compared to the width of the seeing function S (x), it can be roughly derived from the profile of the flux tube without seeing effects I f t (λ) (full line of Fig. 11) and from the quietsun profile I qs (λ) (dashed line of Fig. 11) by the equation I obs (λ) = f I f t (λ) + (1 f ) I qs (λ) (8) where f is similar to a filling factor. Since intensity fluctuations equal the Zeeman shift times the slope of the line profile di/dλ, we can write the following relationship between the observed magnetic fields B obs (λ) and the magnetic fields which should be observed without seeing effects B f t (λ) B obs (λ) = B f t (λ)/[1 + (1/ f 1)R] (9) with R = (di/dλ) qs /(di/dλ) f t. (10) where (di/dλ) qs and (di/dλ) f t are the slopes of quiet-sun and flux-tube profiles respectively. Figure 12 shows (di/dλ) f t (full line) and (di/dλ) qs (dashed line). We can see that R decreases from the wings to the core of the line, which accounts for B obs (wings) < B obs (core). 7. Cluster of inclined flux tubes (II) The model (I) satisfies both observed qualitative relationships W(wings) < W(core) and Fig. 14. Synthetic magnetic fields of model (II) with seeing effects. B 0 (wings) < B 0 (core) (Figs. 7 and 10). But quantitative agreements should imply larger synthetic values of W 0 and B 0. Model (I) is not able to accept any increase of magnetic field, because the pressure reduction at high levels cannot exceed the pressure itself. A simple way to increase the amplitude of observed fields is to use clusters of flux tubes instead of single flux tubes. But a new difficulty arises. At high levels, where tubes are merging, the total field intensity exceeds the limit implied from gas pressure. It is possible to get round this difficulty by inclining flux tubes. Figure 13 shows the magnetic model (II). Tube axes are straight lines.the central tube is vertical. At altitude zero, the widths of flux tubes are defined by d(0), and the horizon-

Mein: Magnetic flux tubes 97 tal distance between successive axes is 150 km. From one tube to the next, the inclination γ = x/ z increases by 0.6, so that the angles with the vertical direction are roughly 31 and 50 degrees. For each tube, we again keep Eqs. (2),(3),(4),(5), and (6), but we replace Eq. (1) by B z (x 0, z) 2 (1 + γ 2 )/2µ 0 = R P(, z) (11) where x 0 is the abscissa of tube axis at altitude z, R a ratio that does not depend on z, and P(, z) the pressure of the quiet sun model. After adding the magnetic fields of all tubes, we define the total pressure by P(x, z) = P(, z) (B t x(x, z) 2 + B t z(x, z) 2 )/2µ 0 (12) where B t x and B t z are the components of the total field. This condition, somewhat different from the condition used in model (I), also ensures low departures from hydrostatic equilibrium. We choose the following parameters including seeing effects (Eq. 7): R = 0.5 d(0) = 20 km s = 700 km. The synthetic magnetic fields are plotted in Fig. 14. Both relationships W(wings) < W(core) and B 0 (wings) < B 0 (core) are still satisfied. In addition, the order of magnitude of widths w is close to the observed values. The only condition that is not satisfied concerns the magnitude of observed fields. A ratio around 4 still remains between B 0 values of figures 7 and 14. 8. Conclusion We analysed observations of facular features obtained with THEMIS/MSDP along the profile of NaD 1. We can deduce three main conclusions: 1) The detection of magnetic features can be performed by simple thermo-dynamical criteria using intensities and dopplershifts across the NaD 1 line. 2) The comparison with static magnetic flux tube models and NLTE synthetic profiles show that slopes of line profiles combined with seeing effects account for the apparent increase of LOS magnetic field between line wings and line core. 3) Clusters of flux tubes provide better agreement with observations than single flux tubes. More details will be given in a forthcoming paper (Mein et al., 2007). Further investigations should take into account more sophisticated models including velocities and temperature fluctuations, that could be deduced from observations taking into account point (1). 3D magnetic models of flux-tube clusters (point 3) should be also investigated for a better agreement with observations. Acknowledgements. THEMIS is a French-Italian telescope operated on the island of Tenerife by CNRS-CNR in the Spanish Observatorio del Teide of the Instituto de Astrofisica de Canarias. We thank the THEMIS team who operates the telescope at Tenerife, and also C. Coutard and R. Hellier who performed many adjustments of the MSDP. References Berlicki, A., Mein, P. & Schmieder B., 2006, A&A 445, 1127. Carlsson, M., 1986, Uppsala Astron. Obs. Report 33. Mein, P., 2002, A&A, 381,271. Mein, P., Mein, N., Faurobert, M., Aulanier, G. & Malherbe, J-M., 2007, A&A, in press. Vernazza, J.E., Avrett, E.H., and Loeser, R., 1981, ApJ Suppl., 45,635.