Frequency Response Analysis: A Review

Similar documents
Lead/Lag Compensator Frequency Domain Properties and Design Methods

ω r. Chapter 8 (c) K = 100 ω ζ M ω

ECE 2100 Circuit Analysis

Dead-beat controller design

Lecture 6: Phase Space and Damped Oscillations

Sinusoidal Forcing of a First-Order Process. / τ

( ) Frequency Response Analysis. Sinusoidal Forcing of a First-Order Process. Chapter 13. ( ) sin ω () (

Computational modeling techniques

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s

Systems Analysis and Control

ME 3600 Control Systems Frequency Domain Analysis

ENSC Discrete Time Systems. Project Outline. Semester

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Chapter 8. Root Locus Techniques

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Lecture 7: Damped and Driven Oscillations

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

CHAPTER 5. Solutions for Exercises

Kinematic transformation of mechanical behavior Neville Hogan

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

Calculus Placement Review. x x. =. Find each of the following. 9 = 4 ( )

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Review Problems 3. Four FIR Filter Types

Systems Analysis and Control

Chapter 3 Kinematics in Two Dimensions; Vectors

Lecture 5: Equilibrium and Oscillations

Systems Analysis and Control

EEO 401 Digital Signal Processing Prof. Mark Fowler

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

A Correlation of. to the. South Carolina Academic Standards for Mathematics Precalculus

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support.

Pattern Recognition 2014 Support Vector Machines

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

NUMBERS, MATHEMATICS AND EQUATIONS

ELG3150 DGD 6 P9.5; P9.7; P9.13; P9.18; AP9.5; DP9.2

This is the most commonly used defuzzification technique. In this method, the overlapping area is counted twice.

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

Computational modeling techniques

ECE 2100 Circuit Analysis

Section I5: Feedback in Operational Amplifiers

ChE 471: LECTURE 4 Fall 2003

2.161 Signal Processing: Continuous and Discrete Fall 2008

Lyapunov Stability Stability of Equilibrium Points

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Relationship Between Amplifier Settling Time and Pole-Zero Placements for Second-Order Systems *

Determining the Accuracy of Modal Parameter Estimation Methods

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

205MPa and a modulus of elasticity E 207 GPa. The critical load 75kN. Gravity is vertically downward and the weight of link 3 is W3

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

Cambridge Assessment International Education Cambridge Ordinary Level. Published

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

7 TH GRADE MATH STANDARDS

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

제어이론복습 강의보조자료. 박상혁

T(s) 1+ T(s) 2. Phase Margin Test for T(s) a. Unconditionally Stable φ m = 90 o for 1 pole T(s) b. Conditionally Stable Case 1.

A Matrix Representation of Panel Data

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

, which yields. where z1. and z2

Thermodynamics Partial Outline of Topics

Pre-Calculus Individual Test 2017 February Regional

ECEN 4872/5827 Lecture Notes

Figure 1a. A planar mechanism.

Step Response Analysis. Frequency Response, Relation Between Model Descriptions

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure.

Transduction Based on Changes in the Energy Stored in an Electrical Field

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

EEO 401 Digital Signal Processing Prof. Mark Fowler

Math Final Exam Instructor: Ken Schultz April 28, 2006

Functions. EXPLORE \g the Inverse of ao Exponential Function

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

Synchronous Motor V-Curves

NOTE ON APPELL POLYNOMIALS

3. Classify the following Numbers (Counting (natural), Whole, Integers, Rational, Irrational)

Series and Parallel Resonances

Level Control in Horizontal Tank by Fuzzy-PID Cascade Controller

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

Preparation work for A2 Mathematics [2017]

Thermodynamics and Equilibrium

Homology groups of disks with holes

CHARACTERIZATION OF A PERIODIC SURFACE PROFILE BY POLE-ZERO PARAMETERIZATION OF ELASTODYNAMIC PULSE REFLECTIONS * R.A. Roberts and J.D.

Kinetics of Particles. Chapter 3

ELT COMMUNICATION THEORY

On Boussinesq's problem

Pages with the symbol indicate that a student should be prepared to complete items like these with or without a calculator. tan 2.

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

Copyright Paul Tobin 63

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 1 /Solution. Solution

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

Transcription:

Prcess Dynamics and Cntrl Subject: Frequency Respnse Analysis Prfessr Cstas Kiparissides Department f Chemical Engineering Aristtle University f Thessalniki December 6, 204 Frequency Respnse Analysis: A Review

Respnse f First-Order Systems Let us assume a sine wave input functin, U(t) = α sin(ωt), is intrduced int a first rder dynamic system. Its Laplace transfrm will be given by U(s) s αω 2 2 ω () Thus, fr a first-rder dynamic system, the Y(s) utput deviatin variable will be: Y(s) Κ αω p 2 2 (τs ) (s ω ) (2) K α τω ω τωs τ ω s / τ s ω s ω p 2 2 2 2 2 2 Respnse t Sine Wave Functin The time respnse f the first-rder dynamic system will be given by the inverse Laplace transfrm f Y(s), Eq. (2). Y(t) K p α 2 2 τ ω t τ (τω e sin ω t τω csω t) At steady-state K p α Y s (t) 2 2 τ ω (sin ω t τω csω t) (3) (4) Using the fllwing trignmetric prperties: p csω + q sinω = r sin(ω+φ) ; r = (p 2 +q 2 ) /2 and φ = tan - (p/q) (5) Equatin (4) is written: K p α Y s (t) sin(ω t φ ) ; φ tan ( ωτ) 2 2 τ ω (6) 2

αα'δος6-2-204 Respnse t Sine Wave Functin U(t) U (t)μt φ Y s (t) εταβατικήπερίοtransient Stage Y s (t) t Time respnse f a first-rder dynamic system t a sinusidal input Respnse t Sine Wave Functin % Frequency respnse f a first-rder system % t a sinusidal input Kp = 7; T = 2; sys = tf([kp],[t ]); a = ; w = 2; t = [0 : 0.0 : 2*pi/w]'; u = a*sin(t*w); [y,t] = lsim(sys,u,t); figure() plt(t,y,'k-',t,u,'k:') grid n xlabel( Time, sec') ylabel('y(t)') title(['time respnse f a first-rder system '... 't a sinusidal input']) ps = 0; legend('y(t)','u(t)',ps) 3

Frequency Respnse Analysis Κp Κp G(iω ) G(s) siω τs τiω siω (7) G(iω) K p ( τiω) K τiω p ( τiω)( τiω) τω 2 2 (8) Magnitude 2 2 2 2 τω G(iω) ReG(iω) ImG(iω) K p 2 2 τω /2 K p 2 2 2 τω (9) Argument Im G(iω ) φ tan tan ( ωτ) ReG(iω ) (0) Frequency Respnse Analysis Amplitude Rati, (AR) 2 2 Kpα τω Kp α (AR) α α 2 2 τω G(iω) Phase Shift, φ φ φ 2π(t T) tan (ωτ) tan ( ωτ) 4

Frequency Respnse Analysis Asympttic analysis f (AR) and φ with respect t ωτ. AR K p 2 * 2 2 lg lg( τ ω ) () AR AR lim lg 0 ; lim lg lg(τω ) K K ωτ0 ωτ p p (2) ωτ0 lim φ 0 ; lim φ 90 (3) ωτ and φ = tan - (-) = -45 if ω = ω c (4) Bde Plt AR Λ.Ε K p slpe κλίση = - 0. 0.0 0.0 0. = ω c τ 0 ωτ 00 Amplitude Rati w.r.t. t ωτ 5

Bde Plt 0 φ -45-90 0.0 0. 0 ωτ 00 Phase Shift w.r.t. t ωτ Bde Plts fr a First-rder System Kp = 7 ; T = 2 ; sys = tf([kp],[t ]) ; w = lgspace(lg0(0^(-2)/t),lg0(0^2/t)) ; [mag,phase] = bde(sys,w) ; AR = zers(,length(mag)) ; fr j = ::length(mag) AR(,j) = mag(:,:,j) ; end figure() lglg(w*t,ar/kp,'k-') ylim([0.0 0]) grid n xlabel('\mega\tau') ylabel( AR / K_p') title(['pltting Frequency Respnse']) phi = zers(,length(phase)) ; fr i = ::length(phase) phi(,i) = phase(:,:,i) ; end figure(2) semilgx(w*t,phi,'k-') grid n xlabel('\mega\tau') ylabel('\phi (^)') title(['pltting Frequency Respnse']) 6

Example: Parameter Estimatin Estimate the parameters (K p and τ) f a first-rder prcess, frm the fllwing frequency respnse data. Angular Frequency ω (rad/sec) Slutin p 2 2 2 Amplitude Rati AR= G(iω) Phase Shift φ 5.00 0..30 4.80 0.2 2.80 3.80 0.4 38.65 2.60 0.8 57.99 2.30.0 63.43.25 2.0 75.96 0.63 4.0 82.87 0.40 6.0 85.23 Κ (AR)( ω τ ) ; τ tan(φ) ( ω) Example: Parameter Estimatin (Λ (AR).Ε ) (a) (α ) At ωτ A.R = K p = 5 Amplitude Rati w.r.t. t ωτ 0. 0 φ 0. 0.5 0 ωτ (b) (β ) T = /ω c =/0.5 = 2 min -45-90 Phase Shift w.r.t. t ωτ ω 0. 0 7

αα'δος6-2-204 Respnse t Sine Wave Functin Let us assume a sine wave input functin, U(t) = α sin(ωt), is intrduced int a secnd rder dynamic system. The Y(s) respnse f the system will be given by Kp A Ys () 2 s 2 2ss 2 2 U(t) U(t)Μt φ Y s (t) εταβατικήπερίοtransient Stage Y s (t) t Respnse f a secnd rder system t a sinusidal input Respnse t Sine Wave Functin 8

Frequency Respnse Analysis Magnitude (Amplitude Rati) 2 2 2 2 τω G(iω) ReG(iω) ImG(iω) K p 2 2 τω Argument (Phase Shift) Im G(iω ) φ tan tan ( ωτ) ReG(iω ) /2 K p 2 2 2 τω Where G(iω) = G(s) s=iω is a cmplex transfer functin Steady-state Respnse t a Sine Wave This part describes the steady-state respnse f a secnd rder system t a sinusidal input functin. It is btained frm the system s transfer functin by substituting the Laplace variable s in the TF with iω. Kp Kp G(iω) G(s) (5) siω 2 2 2 2 τ s 2ζτs τω 2ζτiω siω r 2 2 (τω) i(2ζτω) G(iω) K (6) p ( τω) 2 2 2 (2ζτω) 2 G(iω) is a cmplex functin. Its magnitude will be equal t the rati f the utput respnse amplitude ver the respective value f the input signal while its argument is equal t the phase shift. K p G(iω ) (7) 2 2 2 2 ( τ ω ) (2ζτω) 2τζω φ tan 2 2 τ ω (8) 9

S.S Respnse t a Sine Wave Thus, fr a sine wave input, the steady state respnse f the system is described by the fllwing equatin: K pα Υ s(t) G(iω) α sin(ωt φ) sin(ωt φ) 2 2 2 2 ( τ ω ) (2τζω) (9) Remarks: It is clear frm Eq. (9) that a sinusidal input (U(t)=αsinωτ) prduces a sinusidal utput f the same frequency as the input. Amplitude Rati (AR): α' Kp (AR) α G(iω) ( τω) (2ζτω) 2 2 2 2 The phase shift f the utput lags behind that f the input by φ (Eq. 8). (20) Frequency Respnse Analysis Asympttic analysis f (AR) and φ with respect t ωτ. AR 2 2 2 2 lg lg (ω τ ) (2ζτω) K p 2 (2) AR AR lim lg 0 ; lim lg 2lg(ωτ) K Κ ωτ0 ωτ p p (22) If τω 0 then tanφ 2ζωτ ; φ 0 If τω then tanφ ; φ 90 2ζ If <τω then tanφ ; φ 80 ωτ 0

Bde Plts 0 Λ.Ε. AR ζ = 0, Κ K p 0,3 0,5 0,8 2,0 0. (α) (a) 0.0 0. 0 ωτ 0 φ -45 0,8 0,5 0,3 ζ = 0, Figure: Frequency respnse plts fr a secnd-rder system. a) (AR/K p ) w.r.t. ωτ and b) φ w.r.t. ωτ 2,0-90 -35 (b) (β) -80 0. ωτ 0 Frequency Respnse Analysis The amplitude rati plt exhibits a maximum fr certain values f ζ. We can calculate this value by differentiating Eq. (20) with respect t ωτ and setting the result t zer: d d(ωτ) (ω τ ) 2ω τ 4ζ ω τ 2 2 2 2 2 2 2 2 0 (23) max 2 (ωτ) 2ζ ; ζ 0.707 (24) AR K 2 p max 2ζ ζ (25) Nte: As ζ0, the AR K p

Frequency Respnse Analysis Chapter 4 MATLAB: Respnse t Sine Wave % Frequency Respnse f a Secnd-Order System t a Sinusidal Input Kp = ; T = ; z = 0.2; sys = tf([kp],[t^2 2*z*T ]); a = ; w = 2; t = [0 : 0.0 : 24*pi/w]; u = a*sin(t*w); [y,t] = lsim(sys,u,t); figure() plt(t,y,'k-',t,u,'k:') grid n xlabel(['t/\tau']) ylabel('y(t)') title(['time respnse f a secnd-rder system t a sinusidal input']) ps = 0; legend('y(t)','u(t)',ps) 2

MATLAB: Respnse t Sine Wave % BODE Plts: Secnd-Order System Kp = 7 ; T = ; z = 0.2 ; sys = tf([kp],[t^2 2*z*T ]) ; w = lgspace(lg0(0^(-)/t),lg0(0^/t),200) ; [mag,phase] = bde(sys,w) ; AR = zers(,length(mag)) ; fr j = ::length(mag) AR(,j) = mag(:,:,j) ; end figure() lglg(w*t,ar/kp,'k-') ylim([0.0 0]) grid n xlabel('\mega\tau') ylabel('ar / K_p') title(['amplitude rati AR / K_p w.r.t. \mega\tau']) phi = zers(,length(phase)) ; fr i = ::length(phase) phi(,i) = phase(:,:,i) ; end figure(2) semilgx(w*t,phi,'k-') grid n xlabel('\mega\tau') ylabel('\phi (^)') '\upsiln \mega\tau']) title(['phase Shift \phi w.r.t. \mega\tau']) Respnse f n First-Order Systems % Sinusidal Respnse f n First-Order Systems in Series Kd = ; n = 5 ; % number f dynamic systems in series T = /n ; v = [T ] ; v2 = [T ] ; fr i = :(n-) v2 = cnv(v,v2) ; end sys = tf([kd^n],v2) ; w = lgspace(lg0(0^(-)/t),lg0(0^2/t),200) ; [mag,phase] = bde(sys,w) ; AR = zers(,length(mag)); fr j = ::length(mag) AR(,j) = mag(:,:,j) ; end figure() lglg(w*t,ar/(kd^n),'k-') xlim([0. 00]) ylim([0.0 ]) grid n xlabel('\mega\tau') ylabel('ar / K_p') title(['amplitude rati, AR/K_p w.r.t. \mega\tau']) phi = zers(,length(phase)); fr i = ::length(phase) phi(,i) = phase(:,:,i); end figure(2) semilgx(w*t,phi,'k-') grid n xlabel('\mega\tau') ylabel('\phi (^)') title(['phase Shift, \phi w.r.t. \mega\tau']) 3

Bde Diagram G AR d (iω) n Κ d n = n = 2 n = 5 0. 0.0 0. 0 ωτ 00 0 φ -00 Figure : Frequency Respnse Plts fr n Nn- Interacting First- Order Systems in Series. a) (AR/K p ) w.r.t. ωτ and b) φ w.r.t. ωτ -200-300 -400 n = n = 2 n = 5 0. 0 ωτ 00 Frequency Respnse Analysis and Cntrl System Design 4

Frequency Respnse Analysis Chapter 3 Advantages:. Applicable t dynamic mdels f any rder (including nn-plynmials). 2. Designer can specify desired clsed-lp respnse characteristics. 3. Infrmatin n stability and sensitivity/rbustness is prvided. Disadvantage: The apprach tends t be iterative and time-cnsuming (interactive cmputer graphics desirable, MATLAB) Frequency Respnse Analysis Sme facts fr cmplex number thery: Fr a cmplex number: b w a bj Im a Re( w), b Im( w) w a Re It fllws that a wcs( ), b wsin( ) where w Re( w) 2 Im( w) 2 Im( w) arg( w) tan Re( w) such that w we j 5

Frequency Respnse Analysis Fr a general transfer functin s rs () e ( sz ) ( s z Gs m) () qs () ( s p) ( s pn ) Frequency Respnse summarized by G( j) G( j) e j where G( j ) is the mdulus f G(jω) and j is the argument f G(jω) Nte: Substitute fr s=jω in the transfer functin. Frequency Respnse Analysis The respnse f any linear prcess G(s) t a sinusidal input is a sinusidal. The Amplitude Rati f the resulting signal is given by the mdulus f the transfer functin mdel expressed in the frequency dmain, G(jω). The Phase Shift is given by the argument f the transfer functin mdel in the frequency dmain. i.e. 2 2 AR G( j) Re( G( j)) Im( G( j)) Im( G( j)) Phase Angle tan Re( G( j)) 6

Frequency Respnse Analysis n T study frequency respnse, we use tw types f graphical representatins.. The Bde Plt: Plt f AR vs. ω n lg-lg scale Plt f φ vs. ω n semi-lg scale 2. The Nyquist Plt: Plt f the trace f G(jω) in the cmplex plane n Plts lead t effective stability criteria and frequencybased design methds Frequency Respnse: Examples. Pure Capacitive Prcess G(s)=/s G ( j ) K j K j j j AR K K /, tan 0 2 2. Dead Time G(s) = e -ϴs G( j ) e j AR, 7

0 2 Bde Plts Pure Capacitive Prcess AR K 2 AR 0 0 0 0-2 0-0 0-89 Phase Angle -89.5-90 -90.5-9 0-2 0-0 0 Frequency (rad/sec) Bde Plts fr First-Order System Chapter 3 8

Bde Plts fr Time-Delay System Chapter 3 Frequency Respnse f Cmplex Systems 3. n prcess in series Gs () G () sg () s Frequency respnse f G(s) G( j) G( j) Gn ( j) j j G ( j) e Gn ( j) e n Therefre, n AR G( j) Gi ( j) i n n arg( G( j)) arg( Gi ( j)) i i i n 9

Frequency Respnse f Cmplex Systems 4. n first rder prcesses in series K K Gs () n s ns K K AR n 2 2 n 2 2 tan tan n 5. First rder plus delay AR K p () 2 2 s Kpe Gs () s, tan ( ) Bde Plts fr Cmplex T. Functins Use a Bde plt t illustrate frequency respnse. Plt f lg G vs. lg and vs. lg Chapter 3 G G G G 2 3 G G G G 2 2 3 l g G l g G l g G l g G G G G G G G G 2 3 2 3 l g G l g G l g G G G G 2 2 20

Bde Plts Gs () G () sg 2 () sg 3 () s G() s, G2() s, G3() s 0s 5s s AR 0 0 0-2 G 3 G 2 G 0-4 0-4 0-3 0-2 0-0 0 0 0-00 -200-300 0-4 0-3 0-2 0-0 0 0 G( j) 2 2 2 2 2 2 ( 0 )( 5 )( ) tan ( 0) tan ( 5) tan ( ) 0 0 Bde Plts Gs ()e s G( j ), G () s e G () s G () s G () s d s 2 2 3 AR 0-2 G=G d 0-4 0-4 0-3 0-2 0-0 0 0 0-00 -200-300 G d G 0-4 0-3 0-2 0-0 0 0 2

Bde Plts Example Chapter 3 0.5s 5(0.5s) e Gs () (20s)(4s) Frequency Respnse f P Cntrller Recall that the frequency respnse is characterized by. Amplitude Rati (AR) 2. Phase Angle () Chapter 3 Fr any transfer functin, G(s) A R G ( j ) G ( j ) Prprtinal Cntrller G () s K AR K, 0 C C C 22

Frequency Respnse f PI PI Cntrller Chapter 3 GC() s KC ARKC 2 2 Is I tan I The Bde plt fr a PI cntrller is shwn in next slide. Nte b = / I. Asympttic slpe ( 0) is - n lg-lg plt. Frequency Respnse f PI AR K c 2 2 I tan ( / I ) 0 3 AR 0 2 0 0 0 0-3 0-2 0-0 0 0 0-20 -40-60 -80-00 0-3 0-2 0-0 0 0 23

Chapter 3 Frequency Respnse f PID Ideal PID Cntrller. Gc() s Kc( Ds) (448) s I Series PID Cntrller. The simplest versin f the series PID cntrller is τi s Gcs Kc τds (4-50) τi s Series PID Cntrller with a Derivative Filter. τis τds Gcs Kc τis ατds (4-5) Frequency Respnse f PID 0 3 2 AR K c D I tan D I AR 0 2 0 0 0 0-3 0-2 0-0 0 0 00 50 0-50 -00 0-3 0-2 0-0 0 0 24

Bde Plts f PID Chapter 3 Bde plts f ideal parallel PID cntrller and series PID cntrller with derivative filter (α = ). Ideal parallel: Gc s2 4s 0s Series with Derivative Filter: 0s 4s Gc s 2 0s 0.4s Nyquist Plts Plt f G(jω) in the cmplex plane as ω is varied Relatin t Bde plt AR is distance f G(jω) fr the rigin Phase angle, φ, is the angle frm the real psitive axis Example: First rder prcess (K=, τ=) G( j) 25

Nyquist Plts Dead-time Secnd Order Third Order Nyquist Plts Gs () 3 2 s 3s 3s Effect f dead-time (secnd rder prcess) Gs (), G d () s e 2s s 2 3 s 26

Cntrller Design in Frequency Dmain Analyze G OL (s) = G C G V G P G M (pen lp gain) Three methds in use: Chapter 3 () Bde plt G, vs. (pen lp F.R.) - Chapter 3 (2)Nyquist plt - plar plt f G(j) (3)Nichls chart G, vs. G/(+G) (clsed lp F.R.) Advantages: D nt need t cmpute rts f characteristic equatin Can be applied t time delay systems Can identify stability margin, i.e., hw clse yu are t instability. Sustained Oscillatins in FB Cntrl Chapter 3 27

Frequency Stability Criteria. Bde Stability Criterin 2. Nyquist Stability Criterin Bde Stability Criterin: Chapter 3 A clsed-lp system is unstable if the FR f the pen-lp T.F G OL =G C G P G V G M, has an amplitude rati greater than ne at the critical frequency, C. Otherwise, the clsed-lp system is stable. Nte: value f where the pen-lp phase angle is 80 0. C The Bde Stability Criterin prvides inf n clsed-lp stability frm pen-lp FR inf. Bde Stability Criterin A clsed-lp system is unstable if the frequency f the respnse f the pen-lp G OL has an amplitude rati greater than ne at the critical frequency. Otherwise it is stable. Strategy:. Slve fr ω in 2. Calculate AR arg( GOL( j)) AR G ( j ) OL 28

Check fr stability: Bde Stability Criterin. Cmpute pen-lp transfer functin 2. Slve fr ω in φ=- π 3. Evaluate AR at ω 4. If AR> then prcess is unstable Find ultimate gain:. Cmpute pen-lp transfer functin withut cntrller gain 2. Slve fr ω in φ=- π 3. Evaluate AR at ω 4. Let K cu AR Frequency Stability Analysis Chapter 3 Fr prprtinal-nly cntrl, the ultimate gain K cu is defined t be the largest value f K c that results in a stable clsed-lp system. Fr prprtinal-nly cntrl, G OL = K c G and G = G v G p G m. AR OL (ω)=k c AR G (ω) (4-58) where AR G dentes the amplitude rati f G. At the stability limit, ω = ω c, AR OL (ω c ) = and K c = K cu. K cu AR (ω ) G c (4-59) 29

Example : Bde Stability Criterin Cnsider the transfer functin and cntrller 5e 0. s Gs () Gc () s. 04 ( s)( 05. s) 0. s - Open-lp transfer functin 5e 0. s GOL() s ( s )(. s ). 05 04 0. s - Amplitude rati and phase shift 5 AR 04. 2 2 2 025. 00. 0 05. tan ( ) tan (. ) tan 0. -At ω=.428, φ=-π, AR=6.746 Example 2: Bde Stability Analysis A prcess has a transfer functin, 2 Gp () s (0.5s ) And G V = 0., G M = 0. If prprtinal cntrl is used, determine clsed-lp stability fr 3 values f K c :, 4, and 20. Slutin: The OLTF is G OL =G C G P G V G M G OL r... 2KC () s (0.5s ) The Bde plts fr the 3 values f K c shwn in Fig. 3.9. Nte: the phase angle curves are identical. Frm the Bde diagram: K C AR OL Stable? 0.25 Yes 4.0 Cnditinally stable 20 5.0 N 3 3 30

Frequency Stability Analysis Chapter 3 Bde plts fr G OL = 2K c /(0.5s + ) 3. Example 3: Frequency Stability Analysis Chapter 3 Determine the clsed-lp stability f the system, s 4e Gp ( s) 5s Where G V = 2.0, G M = 0.25 and G C =K C. Find C frm the Bde Diagram. What is the maximum value f K c fr a stable system? Slutin: The Bde plt fr K c = is shwn in Fig. 3.. Nte that:.69 rad min C AR OL C 0.235 K C max = 4.25 AR 0.235 OL 3

Bde Plt fr Kc = Chapter 3 Nyquist Stability Criterin If N is the number f times that the Nyquist plt encircles the pint (-,0) in the cmplex plane in the clckwise directin, and P is the number f pen-lp ples f G OL that lie in the right-half plane, then Z=N+P is the number f unstable rts f the clsed-lp characteristic equatin. Strategy. Substitute s=jω in G OL (s) 2. Plt G OL (jω) in the cmplex plane 3. Cunt encirclements f (-,0) in the clckwise directin 32

Nyquist Stability Criterin Cnsider the transfer functin 0. s 5e Gs () ( s)( 05. s) and the PI cntrller Gc () s. 04 0. s Ultimate Gain and Ultimate Perid Ultimate Gain: K CU = maximum value f K C that results in a stable clsed-lp system when prprtinal-nly cntrl is used. Ultimate Perid: P U 2 C K CU can be determined frm the OLFR when prprtinal-nly cntrl is used with K C =. Thus K CU AR OL C fr K C Nte: First and secnd-rder systems (withut time delays) d nt have a K CU value if the PID cntrller actin is crrect. 33

Gain and Phase Margins The gain margin (GM) and phase margin (PM) prvide measures f hw clse a system is t a stability limit. Chapter 3 Gain Margin: Let A C = AR OL at = C. Then the gain margin is defined as: GM = /A C Accrding t the Bde Stability Criterin, GM > stability Phase Margin: Let g = frequency at which AR OL =.0 and the crrespnding phase angle is g. The phase margin is defined as: PM = 80 + g Accrding t the Bde Stability Criterin, PM >0 stability Gain and Phase Margins Chapter 3 34

Design Gain and Phase Margins Rules f Thumb: A well-designed FB cntrl system will have: Chapter 3.7 GM 2.0 30 PM 45 Clsed-Lp FR Characteristics: An analysis f CLFR prvides useful infrmatin abut cntrl system perfrmance and rbustness. Typical desired CLFR fr disturbance and setpint changes and the crrespnding step respnse are shwn in Appendix J (see Text). 0 0 Bde Plt : Amplitude Rati 0 - Amplitude rati plt.fig 0-2 0-2 0-0 0 35

Bde Plt : Phase Angle 0-50 -00-50 -200-250 -300 0-2 0-0 0 Stability Cnsideratins n n n n n Cntrl is abut stability Cnsidered expnential stability f cntrlled prcesses using: Rth criterin Direct Substitutin Rt Lcus Bde Criterin (Restrictin n phse angle) Nyquist Criterin Nyquist is mst general but smetimes difficult t interpret Rts, Bde and Nyquist all in MATLAB MAPLE is recmmended fr sme applicatins. 36