The Journal of Nonlinear Science and Applications

Similar documents
Quotient Structure of Interior-closure Texture Spaces

Q-Convergence in graded ditopological texture spaces

Metric spaces and textures

INTUITIONISTIC TEXTURES REVISITED

A DECOMPOSITION OF CONTINUITY IN IDEAL BY USING SEMI-LOCAL FUNCTIONS

ON A FINER TOPOLOGICAL SPACE THAN τ θ AND SOME MAPS. E. Ekici. S. Jafari. R.M. Latif

An international journal

On β-i-open Sets and a Decomposition of Almost-I-continuity

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

ISSN: Page 202

AND RELATION BETWEEN SOME WEAK AND STRONG FORMS OF Τ*-OPEN SETS IN TOPOLOGICAL SPACES

ON GENERALIZED CLOSED SETS

Upper and Lower Rarely α-continuous Multifunctions

On Almost Continuity and Expansion of Open Sets

On bτ-closed sets. Maximilian Ganster and Markus Steiner

Intuitionistic fuzzy gα**-closed sets

Decomposition of continuity via b-open set. Contents. 1 introduction Decompositions of continuity 60

ON UPPER AND LOWER WEAKLY I-CONTINUOUS MULTIFUNCTIONS

M. Caldas and S. Jafari. ON SEMI δs-irresolute FUNCTIONS. 1. Introduction and preliminaries

N αc Open Sets and Their Basic Properties in Topological Spaces

On z-θ-open Sets and Strongly θ-z-continuous Functions

On supra b open sets and supra b-continuity on topological spaces

-HYPERCONNECTED IDEAL TOPOLOGICAL SPACES

LOCAL CLOSURE FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 2, No. 1, March Tamil Nadu, India. Tamil Nadu, India.

PREOPEN SETS AND RESOLVABLE SPACES

M. Suraiya Begum, M. Sheik John IJSRE Volume 4 Issue 6 June 2016 Page 5466

ON PRE-I-OPEN SETS, SEMI-I-OPEN SETS AND b-i-open SETS IN IDEAL TOPOLOGICAL SPACES 1. Erdal Ekici

Takashi Noiri, Ahmad Al-Omari, Mohd. Salmi Md. Noorani WEAK FORMS OF OPEN AND CLOSED FUNCTIONS

Somewhere Dense Sets and ST 1 -Spaces

Contra-Pre-Semi-Continuous Functions

On Pre-γ-I-Open Sets In Ideal Topological Spaces

P p -Open Sets and P p -Continuous Functions

On A Weaker Form Of Complete Irresoluteness. Key Words: irresolute function, δ-semiopen set, regular open set. Contents.

PAijpam.eu REGULAR WEAKLY CLOSED SETS IN IDEAL TOPOLOGICAL SPACES

Totally supra b continuous and slightly supra b continuous functions

ON UPPER AND LOWER ALMOST CONTRA-ω-CONTINUOUS MULTIFUNCTIONS

1. Introduction. Novi Sad J. Math. Vol. 38, No. 2, 2008, E. Ekici 1, S. Jafari 2, M. Caldas 3 and T. Noiri 4

rgα-interior and rgα-closure in Topological Spaces

Maximilian GANSTER. appeared in: Soochow J. Math. 15 (1) (1989),

On Preclosed Sets and Their Generalizations

Logics of n-ary Contact

in Topological Spaces

A textural view of the distinction between uniformities and quasi-uniformities

1. Introduction. Murad Özkoç and Gülhan Aslım. Hacettepe Journal of Mathematics and Statistics Volume 40(6) (2011),

Fuzzy Soft Topology. G. Kalpana and C. Kalaivani Department of Mathematics, SSN College of Engineering, Kalavakkam , Chennai, India.

N. Karthikeyan 1, N. Rajesh 2. Jeppiaar Engineering College Chennai, , Tamilnadu, INDIA 2 Department of Mathematics

On Generalized Topology and Minimal Structure Spaces

ON Fuzzy Infra-Semiopen Sets

Applications of -Closed Sets in Intuitionistic Fuzzy Topological Space

A TYCHONOFF THEOREM IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

ON PRE GENERALIZED B-CLOSED SET IN TOPOLOGICAL SPACES. S. Sekar 1, R. Brindha 2

Introduction to generalized topological spaces

Strongly g -Closed Sets in Topological Spaces

CHARACTERIZATIONS OF HARDLY e-open FUNCTIONS

Note di Matematica ISSN , e-issn Note Mat. 30 (2010) n. 1,

Some results on g-regular and g-normal spaces

Semi-Star-Alpha-Open Sets and Associated Functions

Slightly γ-continuous Functions. Key words: clopen, γ-open, γ-continuity, slightly continuity, slightly γ-continuity. Contents

On Decompositions of Continuity and α-continuity

Contra Pre Generalized b - Continuous Functions in Topological Spaces

Supra β-connectedness on Topological Spaces

On Maximal Soft -open (Minimal soft -closed) Sets in Soft Topological Spaces

-θ-semiopen Sets and

A Note on Modifications of rg-closed Sets in Topological Spaces

Recent Progress in the Theory of Generalized Closed Sets

On new structure of N-topology

Soft semi-open sets and related properties in soft topological spaces

α (β,β) -Topological Abelian Groups

Generalized Alpha Closed Sets in Intuitionistic. Fuzzy Topological Spaces

@FMI c Kyung Moon Sa Co.

Nano P S -Open Sets and Nano P S -Continuity

Properties of [γ, γ ]-Preopen Sets

CHAPTER I INTRODUCTION & PRELIMINARIES

ON PC-COMPACT SPACES

ON ALMOST (ω)regular SPACES

Available at: pocetna.html ON A GENERALIZATION OF NORMAL, ALMOST NORMAL AND MILDLY NORMAL SPACES II

CHARACTERIZATIONS OF L-CONVEX SPACES

INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

g ωα-separation Axioms in Topological Spaces

On Fuzzy Semi-Pre-Generalized Closed Sets

sb* - Separation axioms

ON UPPER AND LOWER CONTRA-CONTINUOUS MULTIFUNCTIONS

More on sg-compact spaces

Topology, Math 581, Fall 2017 last updated: November 24, Topology 1, Math 581, Fall 2017: Notes and homework Krzysztof Chris Ciesielski

International Journal of Management And Applied Science, ISSN: ON SOFT SEMI-OPEN SETS.

On Soft Regular Generalized Closed Sets with Respect to a Soft Ideal in Soft Topological Spaces

COUNTABLY S-CLOSED SPACES

On Neutrosophic Semi-Supra Open Set and Neutrosophic Semi-Supra Continuous Functions

Contra Pre-I-Continuous Functions

SOME NEW SEPARATION AXIOMS. R. Balaji 1, N. Rajesh 2. Agni College of Technology Kancheepuram, , TamilNadu, INDIA 2 Department of Mathematics

On Intuitionistic Fuzzy Semi-Generalized Closed. Sets and its Applications

p -Closure Operator and p -Regularity in Fuzzy Setting

OF TOPOLOGICAL SPACES. Zbigniew Duszyński. 1. Preliminaries

g -Pre Regular and g -Pre Normal Spaces

Decomposition of Locally Closed Sets in Topological Spaces

Contra θ-c-continuous Functions

REGULAR GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES

On Irresolute Intuitionistic Fuzzy Multifunctions

S p -Separation Axioms

Transcription:

J. Nonlinear Sci. Appl. 3 (2010), no. 1, 12 20 The Journal of Nonlinear Science and Applications http://www.tjnsa.com α-open SETS AND α-bicontinuity IN DITOPOLOGICAL TEXTURE SPACES ŞENOL DOST Communicated by S. Jafari This paper is dedicated to my wife Meliha s 35th birthday Abstract. In this paper we generalize the notion of α-open and α-closed sets to ditopological texture spaces. We also introduce the concepts of α- bicontinuous difunctions and discuss their properties in detail. 1. Introduction Textures were introduced by L. M. Brown as a point-set for the study of fuzzy sets, but they have since proved useful as a framework in which to discuss complement free mathematical concepts. In this section we recall some basic notions regarding textures and ditopologies, and an adequate introduction to the theory and the motivation for its study may be obtained from [1, 2, 3, 4, 5, 6, 7]. If S is a set, a texturing S of S is a point-separating, complete, completely distributive lattice containing S and, and for which arbitrary meets coincide with intersections, and finite joins with unions. The pair (S, S) is then called a texture space or shortly, texture. For a texture (S, S), most properties are conveniently defined in terms of the p- sets P s = {A S s A} and, as a dually, the q-sets, Q s = {A S s / A}. For A S the core A of A is defined by A = {s S A Q s }. The following are some basic examples of textures we will need later on. Examples 1.1. (1) If X is a set and P(X) the powerset of X, then (X, P(X)) is the discrete texture on X. For x X, P x = {x} and Q x = X \ {x}. Date: Revised: 09 July 2009. 2000 Mathematics Subject Classification. 54A05, 54C10. Key words and phrases. Texture, Ditopology, α-open, α-closed, α-bicontinuity. 12

α-open SETS AND α-bicontinuity IN DITOPOLOGICAL TEXTURE SPACES 13 (2) Setting I = [0, 1], I = {[0, r), [0, r] r I} gives the unit interval texture (I, I). For r I, P r = [0, r] and Q r = [0, r). A ditopology on a texture (S, S) is a pair (τ, κ) of subsets of S, where the set of open sets τ satisfies (1) S, τ, (2) G 1, G 2 τ = G 1 G 2 τ and (3) G i τ, i I = i G i τ, and the set of closed sets κ satisfies (1) S, κ, (2) K 1, K 2 κ = K 1 K 2 κ and (3) K i κ, i I = K i κ. Hence a ditopology is essentially a topology for which there is no a priori relation between the open and closed sets. For A S we define the closure and the interior of A under (τ, κ) by the equalities cla = {K κ A K} and inta = {G τ G A}. A texturing S need not be closed under the operation of taking the set complement. Now, suppose that (S, S) has a complementation σ, that is an involution σ : S S satisfying A, B S, A B = σ(b) σ(a). Then if τ and κ are related by κ = σ[τ] we say that (τ, κ) is a complemented ditopology on (S, S, σ). In this case we have σ(cla) = int(σ(a)) and σ(inta) = cl(σ(a)). We denote by O(S, S, τ, κ), or when there can be no confusion by O(S), the set of open sets in S. Likewise, C(S, S, τ, κ), C(S) will denote the set of closed sets. One of the most useful notions of (ditopological) texture spaces is that of difunction. A difunction is a special type of direlation [4]. For a difunction (f, F ) : (S, S) (T, T) we will have cause to use the inverse image f B and inverse co-image F B, B T, which are equal; and the image f A and co-image F A, A S, which are usually not. Now we consider complemented textures (S j, S j, σ j ), j = 1, 2 and the difunction (f, F ) : (S 1, S 1 ) (S 2, S 2 ). The complement of the difunction (f, F ) is denoted by (f, F ) [4]. If (f, F ) = (f, F ) then the difunction (f, F ) is called complemented. The difunction (f, F ) : (S, S, τ S, κ S ) (T, T, τ T, κ T ) is called continuous if B τ T = F B τ S, cocontinuous if B κ T = f B κ S and bicontinuous if it is both. For complemented difunctions these two properties are equivalent. Finally, we also recall from [8, 9, 11] the classes of ditopological texture spaces and difunctions. Definition 1.2. For a ditopological texture space (S, S, τ, κ): (1) A S is called pre-open (resp. semi-open, β-open) if A intcla (resp. A clinta, A clintcla). B S is called pre-closed (resp. semi-closed, β-closed) if clintb B (resp. intclb B, intclintb B)

14 ŞENOL DOST (2) A difunction (f, F ) : (S, S, τ S, κ S ) (T, T, τ T, κ T ) is called pre-continuous (resp. semi-continuous, β-continuous) if F (G) P O(S) (resp. F (G) SO(S), F (G) βo(s)) for every G O(T ). It is called pre-cocontinuous (resp. semi-cocontinuous, β-cocontinuous) if F (K) P C(S) (resp. F (K) SC(S), F (K) βc(s)) for every K C(T ) We denote by P O(S, S, τ, κ) (βo(s, S, τ, κ)), more simply by P O(S) (βo(s)), the set of pre-open sets (β-open sets) in S. Likewise, P C(S, S, τ, κ) (βc(s, S, τ, κ)), P C(S) (βc(s)) will denote the set of pre-closed (β-closed sets) sets. 2. α-open and α-closed sets We begin by recalling [13] that a subset A of a topological space X is called α-open if A intclinta. Dually, A is α-closed if X \ A is α-open, equivalently if it satisfies clintcla A. This leads to the following analogous concepts in a ditopological texture space. Definition 2.1. Let (S, S, τ, κ) be ditopological texture space and A S. (1) If A intclinta then A is α-open. (2) If clintcla A then A is α-closed. We denote by O α (S, S, τ, κ), or when there can be no confusion by O α (S), the set of α-open sets in S. Likewise, C α (S, S, τ, κ), or C α (S) will denote the set of α-closed sets. Proposition 2.2. For a given ditopological texture space (S, S, τ, κ): (1) O(S) O α (S) and C(S) C α (S) (2) Arbitrary join of α-open sets is α-open. (3) Arbitrary intersection of α-closed sets is α-closed. Proof. (1) Let G O(S). Since intg = G we have G intclintg. Thus G O α (S). Secondly, let K C(S). Since clk = K we have clintclk K and so K C α (S). (2) Let {A j } j J be a family of α-open sets. Then for each j J, A j intclinta j. Now, A j intclinta j int clinta j = intcl inta j = intclint A j. Hence A j is a α-open set. The result (3) is dual of (2). Remark 2.3. (1) It is obvious that every α-open (α-closed) set is semi-open (semi-closed) and pre-open (pre-closed) set. Thus we have the following diagram:

α-open SETS AND α-bicontinuity IN DITOPOLOGICAL TEXTURE SPACES 15 open (closed) α open (closed) semi-open (semi-closed) pre-open (pre-closed) β open (closed) (2) It is well known that from every fuzzy topological space can be obtained a complemented ditopological texture space [2, 5]. Hence, we see from [10] that every fuzzy C-set [12] is a C-set in the sense of ditopological texture space. Generally there is no relation between the α-open and α-closed sets, but for a complemented ditopological space we have the following result. Proposition 2.4. For a complemented ditopological space (S, S, σ, τ, κ): A S is α open if and only if σ(a) is α closed. Proof. For A S, since σ(inta) = cl(σ(a)) and σ(cla) = int(σ(a)) the proof is trivial. Examples 2.5. (1) If (X, T) is a topological space then (X, P(X), π X, T, T c ) is a complemented ditopological texture space. Here π X (Y ) = X \ Y for Y X is the usual complementation on (X, P(X)) and T c = {π X (G) G T}. Clearly the α-open, α-closed sets in (X, T) correspond precisely to the α-open, α-closed respectively, in (X, P(X), π X, T, T c ). (2) For the unit interval texture (I, I) of Examples 1.1.(2), let ι be the complementation ι([0, r)) = [0, 1 r], ι([0, r]) = [0, 1 r), and (τ I, κ I ) the standard complemented ditopology given by τ I = {[0, r) r I} {I}, For this space we obtain O α (S) = C α (S) = I. κ I = {[0, r] r I} { }. Definition 2.6. Let (S, S, τ, κ) be a ditopological texture space. For A S, we define: (1) The α-closure cl α A of A under (τ, κ) by the equality cl α (A) = {B B C α (S) and A B}. (2) The α-interior int α A of A under (τ, κ) by the equality int α (A) = {B B O α (S) and B A}. From the Proposition 2.2, it is obtained, int α (A) O α (S), cl α (A) C α (S), while A O α (S) A = int α (A) and A C α (S) A = cl α (A). Clearly, int α (A) is the greatest α-open set which is contained in A and cl α (A) is α- closed set which contains A and we have, A cl α (A) cla and inta int α (A) A.

16 ŞENOL DOST The following statements are obtained easily from the definitions: Proposition 2.7. The following are satisfied. (1) cl α ( ) = (2) cl α (A) is α closed, for all A S. (3) If A B then cl α (A) cl α (B), for every A, B S. (4) cl α (cl α (A)) = cl α (A) We now wish to generalize the notions of neighborhood and coneighborhood [6, Definition 2.1]. The following definiton would be seem to be appropriate. Definition 2.8. Let (τ, κ) be a ditopology on (S, S). (1) If s S, a α-neighbourhood of s is a set N S for which there exists G O α (S) satisfying P s G N Q s. (2) If s S, a α-coneighbourhood of s is a set M S for which there exists K C α (S) satisfying P s M K Q s. We denote the set of α-nhds (α-conhds) of s by η Oα (s) (µ Cα (s)), respectively. These concepts are useful tool for semi bicontinuity. 3. α-bicontinuity We recall that a function between fuzzy topological spaces is called fuzzy α- continuous [14] if the inverse image of each fuzzy open set is fuzzy α-open. This leads to the following concepts for a difunction between ditopological texture spaces. Definition 3.1. Let (S j, S j, τ j, κ j ), j = 1, 2, be ditopological texture spaces and (f, F ) : (S 1, S 1 ) (S 2, S 2 ) a difunction. (1) It is called α-continuous, if F (G) O α (S 1 ), for every G O(S 2 ). (2) It is called α-cocontinuous, if f (K) C α (S 1 ), for every K C(S 2 ). (3) It is called α-bicontinuous, if it is α-continuous and α-cocontinuous. Now we give characterization of the α-bicontinuity by the concept α-interior and α-closure. Proposition 3.2. Let (f, F ) : (S 1, S 1, τ 1, κ 1 ) (S 2, S 2, τ 2, κ 2 ) be a difunction. (1) The following are equivalent: (a) (f, F ) is α-continuous. (b) int(f A) F (int α A), A S 1. (c) f (intb) int α (f B), B S 2. (2) The following are equivalent: (a) (f, F ) is α-cocontinuous. (b) f (cl α A) cl(f A), A S 1. (c) cl α (F B) F (clb), B S 1.

α-open SETS AND α-bicontinuity IN DITOPOLOGICAL TEXTURE SPACES 17 Proof. We prove (1), leaving the dual proof of (2) to the interested reader. (a)= (b) Take A S 1. From [4, Theorem 2.24 (2 a)] and the definition of interior, f int(f A) f (F A) A. Since inverse image and coimage under a difunction is equal, f int(f A) = F int(f A). Thus, f int(f A) O α (S 1 ), by α-continuity. Hence f int(f A) int α (A) and applying [4, Theorem 2.4 (2 b)] gives which is the required inclusion. int(f A) F ( f int(f A) ) F (int α A), (b)= (c). Let B S 2. Applying inclusion (b) to A = f B and using [4, Theorem 2.4 (2 b)] gives int(b) int(f (f B)) F (int α (f B)). int α (f B) by [4, Theo- Hence, we have f (intb) f ( F int α (f B) ) rem 2.24 (2 a)]. (c)= (a). Applying (c) for B O(S 2 ) gives f B = f (int(b)) int α (f B), so F B = f B = int α (f B) SO(S 1 ). Hence, (f, F ) is continuous. The semi bicontinuity can be characterized by the concept α-neighborhood and α-coneighborhood. Theorem 3.3. Let (S j, S j, τ j, κ j ), j = 1, 2, ditopology and (f, F ) : (S 1, S 1 ) (S 2, S 2 ) be a difunction. (1) The following are equivalent: (i) (f, F ) is α-continuous. (ii) Given s S1, N η(f (P s )) = N η αo (s) so that f (N ) N. (iii) Given s S1, N η(f (P s )) τ 2 = N η αo (s) so that f (N ) N. (2) The following are equivalent: (i) (f, F ) is α-cocontinuous. (ii) Given s S1, M µ(f (Q s )) = M µ αc (s) so that M F (M ). (iii) Given s S1, M µ(f (Q s )) κ 2 = M µ αc (s) so that M F (M ). Proof. It can be easily proved as in [6, Theorem 2.6]. In addition to the above theorem; Theorem 3.4. Let (S j, S j, σ j, τ j, κ j ), j = 1, 2, complemented ditopology and (f, F ) : (S 1, S 1 ) (S 2, S 2 ) be complemented difunction.

18 ŞENOL DOST (1) The following are equivalent: (i) (f, F ) is α-continuous. (iv) (f, F ) is α-cocontinuous. (v) f (clintcla) cl(f (A)) for each A S 1. (vi) clintcl(f (B)) f (clb) for each B S 2. (2) The following are equivalent: (i) (f, F ) is α-cocontinuous. (iv) (f, F ) is α-continuous. (v) int(f (A)) F (intclinta) for each A S 1. (vi) F (intb) intclint(f (B)) for each B S 2. Proof. We prove (1), leaving the essentially dual proof of (2) to the interested reader. (i) = (iv) Since (f, F ) is complemented, (F, f ) = (f, F ). From [4, Lemma 2.20], σ 1 ((f ) (B)) = f (σ 2 (B)) and σ 1 ((F ) (B)) = F (σ 2 (B)) for all B S 2. Hence the proof is clear from these equalities. (iv) = (v) Let A S 1. Then clf (A) is closed set in (S 2, S 2 ). From (iv) f (clf (A)) is α-closed in (S 1, S 1 ). Hence we have clintcla clintclf (clf A) f cl(f A). So then f (clintcla) cl(f A). (v) = (vi) Let B S 2. Then f (B) S 1 and by hypothesis we have f (clintcl(f (B)) cl(f (f (B))). Thus, f (clintcl(f (B))) clb and clintcl(f (B)) f (f (clintcl(f (B)))) f (clb). (vi) = (i) Let G O(S 2 ) and K = σ 2 (G). By (vi) f (clintcl(f (K))) clk = K, since K C(S 2 ). That is clintcl(f (σ 2 (G))) f (σ 2 (G)) or by [4, Lemma 2.20], clintcl(σ 1 ((f ) G)) σ 1 ((f ) G). Thus (f ) (G) intclint(f ) (G) and we have F (G) intclintf (G) since (f, F ) is complemented. Hence F (G) is α-open set. Corollary 3.5. Let (f, F ) : (S 1, S 1, τ 1, κ 1 ) (S 2, S 2, τ 2, κ 2 ) be a difunction. (1) If (f, F ) is α-continuous then: (a) f (cla) cl(f (A)), for every A P O(S 1 ). (b) cl(f (B)) f (clb), for every B O(S 2 ). (2) If (f, F ) is α-cocontinuous then: (a) int(f (A)) F (inta) for every A P C(S 1 ). (b) F (intb) int(f B), for every B C(S 2 ). Proof. We prove (1), leaving the essentially dual proof of (2) to the interested reader. (a) Let A P O(S 1 ). Then cla clintcla and so f (cla) f (clintcla). From Theorem 3.4(1)-(iv), we have, f (cla) cl(f (A)). (b)let B O(S 2 ). From the assumption, f (B) is α-open and by Remark 2.3, f (B) P O(S 1 ). Hence, f (B) intcl(f (B)) and so cl(f (B)) clintcl(f (B)). From Theorem 3.4(1)-(v), we have cl(f (B)) f (clb).

α-open SETS AND α-bicontinuity IN DITOPOLOGICAL TEXTURE SPACES 19 Remark 3.6. Since every open set is α-open, every bicontinuous difunction is α-bicontinuous. On the other hand, it is clear that every α-continuous (αcocontinuous) difunction is semi-continuous (semi-cocontinuous) and pre-continuous (pre-cocontinuous). Thus we have the following diagram: continuity (cocontinuity) semi-continuity (semi-cocontinuity) α continuity β continuity (cocontinuity) (cocontinuity) pre-continuity (pre-cocontinuity) Proposition 3.7. (f, F ) : (S 1, S 1, τ 1, κ 1 ) (S 2, S 2, τ 2, κ 2 ) be a difunction. (1) If (f, F ) is pre-continuous and semi-continuous then (f, F ) is α-continuous. (2) If (f, F ) is pre-cocontinuous and semi-cocontinuous then (f, F ) is α-cocontinuous. Proof. We prove (1), leaving the essentially dual proof of (2) to the interested reader. Let B O(S 2 ). Then f (B) is pre-open and semi-open. Hence we have f (B) intcl(f (B)) and f (B) clint(f (B)) and f (B) intcl(clint(f (B))) = intclint(f (B)). So (f, F ) is α-continuous difunction. References [1] L. M. Brown, M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy sets and systems 98, (1998), 217 224. [2] L. M. Brown, R. Ertürk, Fuzzy Sets as Texture Spaces, I. Representation Theorems, Fuzzy Sets and Systems 110 (2) (2000), 227 236. [3] L. M. Brown, R. Ertürk, Fuzzy sets as texture spaces, II. Subtextures and quotient textures, Fuzzy Sets and Systems 110 (2) (2000), 237 245. [4] L. M. Brown, R. Ertürk, and Ş. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems 147 (2) (2004), 171 199. 3 [5] L. M. Brown, R. Ertürk, and Ş. Dost, Ditopological texture spaces and fuzzy topology, II. Topological Considerations, Fuzzy Sets and Systems 147 (2) (2004), 201 231. [6] L. M. Brown, R. Ertürk, and Ş. Dost, Ditopological texture spaces and fuzzy topology, III. Separation Axioms, Fuzzy Sets and Systems 157 (14) (2006), 1886 1912. [7] M. Demirci, Textures and C-spaces, Fuzzy Sets and Systems 158 (11) (2007), 1237 1245. [8] Ş. Dost, L. M. Brown, and R. Ertürk, β-open and β-closed sets in ditopological setting, submitted. [9] Ş. Dost, Semi-open and semi-closed sets in ditopological texture space, submitted. [10] Ş. Dost, C-sets and C-bicontinuity in ditopological texture space, preprint.

20 ŞENOL DOST [11] M. M. Gohar, Compactness in ditopological texture spaces,(phd Thesis, Hacettepe University, 2002). [12] S. Jafari, Viswanathan K., Rajamani, M., Krishnaprakash, S. On decomposition of fuzzy A-continuity, The J. Nonlinear Sci. Appl. (4) 2008 236-240. [13] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15, (1965), 961-970 [14] M. K. Singal, N. Rajvanshi, Fuzzy alpha-sets and alpha-continuous maps, Fuzzy Sets and Systems 48 (1992), 383 390. Hacettepe University, Department of Secondary Science and Mathematics Education, 06800 Beytepe, Ankara, Turkey. E-mail address: dost@hacettepe.edu.tr