Discontinuous Galerkin Methods: Theory, Computation and Applications

Similar documents
Discontinuous Galerkin Methods: Theory, Computation and Applications

Local discontinuous Galerkin methods for elliptic problems

Discontinuous Galerkin Methods: An Overview and Some Applications. Daya Reddy UNIVERSITY OF CAPE TOWN

A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations

Fourier Type Error Analysis of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations

IMA Preprint Series # 2146

Hybridized Discontinuous Galerkin Methods

Hybridized DG methods

A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. Marco Verani

Divergence-conforming multigrid methods for incompressible flow problems

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC AND ELLIPTIC PROBLEMS

THE COMPACT DISCONTINUOUS GALERKIN (CDG) METHOD FOR ELLIPTIC PROBLEMS

A DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH APPLICATION TO ELECTROPORATION

A Two-grid Method for Coupled Free Flow with Porous Media Flow

Mixed Discontinuous Galerkin Methods for Darcy Flow

AN EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD

Discontinuous Galerkin Methods

On Dual-Weighted Residual Error Estimates for p-dependent Discretizations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

A SIMPLE TUTORIAL ON DISCONTINUOUS GALERKIN METHODS. Jennifer Proft CERMICS, ENPC. J. Proft CERMICS, ENPC

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

A uniform additive Schwarz preconditioner for high order Discontinuous Galerkin approximations of elliptic problems

Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element Methods

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

Superconvergence and H(div) Projection for Discontinuous Galerkin Methods

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS BERNARDO COCKBURN, JAYADEEP GOPALAKRISHNAN, AND FRANCISCO-JAVIER SAYAS

ALMOST OPTIMAL INTERIOR PENALTY DISCONTINUOUS APPROXIMATIONS OF SYMMETRIC ELLIPTIC PROBLEMS ON NON-MATCHING GRIDS

Bubble stabilized discontinuous Galerkin methods on conforming and non-conforming meshes

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

The direct discontinuous Galerkin method with symmetric structure for diffusion problems

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

A Matlab Tutorial for Diffusion-Convection-Reaction Equations using DGFEM

On a Discontinuous Galerkin Method for Surface PDEs

Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons

A-posteriori error estimates for Discontinuous Galerkin approximations of second order elliptic problems

Unified Hybridization Of Discontinuous Galerkin, Mixed, And Continuous Galerkin Methods For Second Order Elliptic Problems.

arxiv: v2 [math.na] 29 Nov 2016

Superconvergence of the Direct Discontinuous Galerkin Method for Convection-Diffusion Equations

A Hybrid Discontinuous Galerkin Method 2 for Darcy-Stokes Problems 3 UNCORRECTED PROOF

1. Introduction. We consider the model problem: seeking an unknown function u satisfying

ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

A Subspace Correction Method for Discontinuous Galerkin Discretizations of Linear Elasticity Equations

Discontinuous Galerkin method for a class of elliptic multi-scale problems

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

Stochastic multiscale modeling of subsurface and surface flows. Part III: Multiscale mortar finite elements for coupled Stokes-Darcy flows

A Stabilized Finite Element Method for the Darcy Problem on Surfaces

The Discontinuous Galerkin Finite Element Method

Multigrid Methods for Maxwell s Equations

DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR THE WAVE EQUATION. SIAM J. Numer. Anal., Vol. 44, pp , 2006

Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Methods

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS

Discontinuous Galerkin and Finite Difference Methods for the Acoustic Equations with Smooth Coefficients. Mario Bencomo TRIP Review Meeting 2013

Coupling of HDG with a double-layer potential BEM

DELFT UNIVERSITY OF TECHNOLOGY

A MULTIGRID METHOD FOR THE PSEUDOSTRESS FORMULATION OF STOKES PROBLEMS

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

A CRITICAL COMPARISON OF TWO DISCONTINUOUS GALERKIN METHODS FOR THE NAVIER-STOKES EQUATIONS USING SOLENOIDAL APPROXIMATIONS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

The Virtual Element Method: an introduction with focus on fluid flows

Entropy stable high order discontinuous Galerkin methods. for hyperbolic conservation laws

New class of finite element methods: weak Galerkin methods

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

An A Posteriori Error Estimate for Discontinuous Galerkin Methods

arxiv: v2 [math.na] 1 Aug 2018

MULTIGRID METHODS FOR MAXWELL S EQUATIONS

A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model

Energy Norm A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem

ICES REPORT A Generalized Mimetic Finite Difference Method and Two-Point Flux Schemes over Voronoi Diagrams

Interior penalty tensor-product preconditioners for high-order discontinuous Galerkin discretizations

arxiv: v1 [math.na] 14 Apr 2011

STABILIZED DISCONTINUOUS FINITE ELEMENT APPROXIMATIONS FOR STOKES EQUATIONS

An Introduction to the Discontinuous Galerkin Method

An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl) elliptic partial differential equations

A FAMILY OF MULTISCALE HYBRID-MIXED FINITE ELEMENT METHODS FOR THE DARCY EQUATION WITH ROUGH COEFFICIENTS. 1. Introduction

arxiv: v2 [math.na] 23 Apr 2016

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying

DELFT UNIVERSITY OF TECHNOLOGY

Introduction to Aspects of Multiscale Modeling as Applied to Porous Media

Numerical performance of discontinuous and stabilized continuous Galerkin methods for convection diffusion problems

The CG1-DG2 method for conservation laws

arxiv: v1 [math.na] 5 Jun 2018

GALERKIN DISCRETIZATIONS OF ELLIPTIC PROBLEMS

A posteriori error estimates for non conforming approximation of eigenvalue problems

Discontinuous Galerkin method for hyperbolic equations with singularities

arxiv: v1 [math.na] 29 Feb 2016

Weak Galerkin Finite Element Scheme and Its Applications

Compatible algorithms for coupled flow and transport q

INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT TIME-INTEGRATION TECHNIQUES FOR NONLINEAR PARABOLIC EQUATIONS

Conservation Laws & Applications

Paola F. Antonietti 1, Luca Formaggia 2, Anna Scotti 3, Marco Verani 4 and Nicola Verzotti 5. Introduction

Theory of PDE Homework 2

Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data

Discontinuous Galerkin FEMs for CFD: A Posteriori Error Estimation and Adaptivity p.1/82

Chapter 1. Introduction and Background. 1.1 Introduction

STABILIZED HP-DGFEM FOR INCOMPRESSIBLE FLOW. Math. Models Methods Appl. Sci., Vol. 13, pp , 2003

Transcription:

Discontinuous Galerkin Methods: Theory, Computation and Applications Paola. Antonietti MOX, Dipartimento di Matematica Politecnico di Milano.MO. X MODELLISTICA E CALCOLO SCIENTIICO. MODELING AND SCIENTIIC COMPUTING International Doctoral School Gran Sasso Science Institute (GSSI), L Aquila 2-5 May 2017 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 1 / 1

Lecture 3 The flux formulation of DG methods for elliptic problems Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 2 / 1

Model Problem R d (d = 2, 3) bounded convex (polygonal) domain { u = f in u = 0 on σ = u σ = u div(σ) = f u = 0 in in on [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 3 / 1

Model Problem R d (d = 2, 3) bounded convex (polygonal) domain { u = f in u = 0 on σ = u σ = u div(σ) = f u = 0 in in on [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 3 / 1

Model Problem R d (d = 2, 3) bounded convex (polygonal) domain { u = f in u = 0 on σ = u σ = u div(σ) = f u = 0 in in on [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 3 / 1

Starting point Starting Point: σ = u in, div(σ) = f σ τ = u div(τ ) + u τ n σ v = f v + σ n v in, u = 0 on τ smooth enough v smooth enough Define: V p h = { v h L 2 () : v h T P p (T ) T T h }, Σ p h = [V p h ]d Discretize: σ σ h Σ p h u u h V p h Sum over all the elements of T h Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 4 / 1

Starting point Starting Point: σ = u in, div(σ) = f σ τ = u div(τ ) + u τ n σ v = f v + σ n v in, u = 0 on τ smooth enough v smooth enough Define: V p h = { v h L 2 () : v h T P p (T ) T T h }, Σ p h = [V p h ]d Discretize: σ σ h Σ p h u u h V p h Sum over all the elements of T h Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 4 / 1

Starting point Starting Point: σ = u in, div(σ) = f σ τ = u div(τ ) + u τ n σ v = f v + σ n v in, u = 0 on τ smooth enough v smooth enough Define: V p h = { v h L 2 () : v h T P p (T ) T T h }, Σ p h = [V p h ]d Discretize: σ σ h Σ p h u u h V p h Sum over all the elements of T h Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 4 / 1

Starting point Starting Point: σ = u in, div(σ) = f σ τ = u div(τ ) + u τ n σ v = f v + σ n v in, u = 0 on τ smooth enough v smooth enough Define: V p h = { v h L 2 () : v h T P p (T ) T T h }, Σ p h = [V p h ]d Discretize: σ σ h Σ p h u u h V p h Sum over all the elements of T h Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 4 / 1

Starting point Starting Point: σ = u in, div(σ) = f σ τ = u div(τ ) + u τ n σ v = f v + σ n v in, u = 0 on τ smooth enough v smooth enough Define: V p h = { v h L 2 () : v h T P p (T ) T T h }, Σ p h = [V p h ]d Discretize: σ σ h Σ p h u u h V p h Sum over all the elements of T h Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 4 / 1

Unified DG Approximation [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] ind (σ h, u h ) Σ p h V p h s.t. σ h τ = u h div(τ ) + û τ n τ Σ p h, σ h v = f v + σ n v, v V p h, Numerical luxes û u σ σ = u Consistent : û(v) = v and σ(v, v) = v Conservative: if fluxes are single-valued on each e v smooth Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 5 / 1

Unified DG Approximation [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] ind (σ h, u h ) Σ p h V p h s.t. σ h τ = u h div(τ ) + û τ n τ Σ p h, σ h v = f v + σ n v, v V p h, Numerical luxes û u σ σ = u Consistent : û(v) = v and σ(v, v) = v Conservative: if fluxes are single-valued on each e v smooth Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 5 / 1

Unified DG Approximation [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] ind (σ h, u h ) Σ p h V p h s.t. σ h τ = u h div(τ ) + û τ n τ Σ p h, σ h v = f v + σ n v, v V p h, Numerical luxes û u σ σ = u Consistent : û(v) = v and σ(v, v) = v Conservative: if fluxes are single-valued on each e v smooth Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 5 / 1

Unified DG Approximation [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] Magic ormula [[v]] {τ } + T h vτ n = I {v } [[τ ]] ind (σ h, u h ) Σ p h V p h : σ h τ = u h h τ + [[û]] {τ } + {û } [[τ ]] I σ h h v { σ } [[v]] [[ σ]] {v } = fv I τ Σ p h v V p h Integration by parts and the identity σ h τ = h u h τ + [[û u h ]] {τ } + {û u h } [[τ ]] I Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 6 / 1

Unified DG Approximation [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] Magic ormula [[v]] {τ } + T h vτ n = I {v } [[τ ]] ind (σ h, u h ) Σ p h V p h : σ h τ = u h h τ + [[û]] {τ } + {û } [[τ ]] I σ h h v { σ } [[v]] [[ σ]] {v } = fv I τ Σ p h v V p h Integration by parts and the identity σ h τ = h u h τ + [[û u h ]] {τ } + {û u h } [[τ ]] I Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 6 / 1

Unified DG Approximation [Arnold, Brezzi, Cockburn & Marini, SINUM, 2001/2002] Magic ormula [[v]] {τ } + T h vτ n = I {v } [[τ ]] ind (σ h, u h ) Σ p h V p h : σ h τ = u h h τ + [[û]] {τ } + {û } [[τ ]] I σ h h v { σ } [[v]] [[ σ]] {v } = fv I τ Σ p h v V p h Integration by parts and the identity σ h τ = h u h τ + [[û u h ]] {τ } + {û u h } [[τ ]] I Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 6 / 1

Eliminate σ h Lifting operators: τ Σ p h R([[v h ]]) τ = [[v h ]] {τ } L( {v h }) τ = I {v h } [[τ ]] The first equation can be rewritten as [σ h h u h + R([[û u h ]]) + L( {û u h })] τ = 0 τ Σ p h û = û(u h ) = eliminate σ h element-by-element σ h = h u h R([[û u h ]]) L( {û u h }) Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 7 / 1

Eliminate σ h Lifting operators: τ Σ p h R([[v h ]]) τ = [[v h ]] {τ } L( {v h }) τ = I {v h } [[τ ]] The first equation can be rewritten as [σ h h u h + R([[û u h ]]) + L( {û u h })] τ = 0 τ Σ p h û = û(u h ) = eliminate σ h element-by-element σ h = h u h R([[û u h ]]) L( {û u h }) Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 7 / 1

Eliminate σ h Lifting operators: τ Σ p h R([[v h ]]) τ = [[v h ]] {τ } L( {v h }) τ = I {v h } [[τ ]] The first equation can be rewritten as [σ h h u h + R([[û u h ]]) + L( {û u h })] τ = 0 τ Σ p h û = û(u h ) = eliminate σ h element-by-element σ h = h u h R([[û u h ]]) L( {û u h }) Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 7 / 1

Primal ormulation σ h = h u h R([[û u h ]]) L( {û u h }) Primal ormulation ind u h V p h s.t. A h (u h, v) = fv v V p h A h (u h, v) = h u h h v + [[û u h ]] { h v } + {û u h } [[ h v]] { σ } [[v]] [[ σ]] {v } I I Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 8 / 1

Primal ormulation σ h = h u h R([[û u h ]]) L( {û u h }) Substitute into 2 nd equation: σ h h v Apply the definition of lifting operators { σ } [[v]] [[ σ]] {v } = fv I Primal ormulation ind u h V p h s.t. A h (u h, v) = fv v V p h A h (u h, v) = h u h h v + [[û u h ]] { h v } + {û u h } [[ h v]] { σ } [[v]] [[ σ]] {v } I I Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 8 / 1

Primal ormulation Primal ormulation ind u h V p h s.t. A h (u h, v) = fv v V p h A h (u h, v) = h u h h v + [[û u h ]] { h v } + {û u h } [[ h v]] { σ } [[v]] [[ σ]] {v } I I Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 8 / 1

Primal ormulation Primal ormulation ind u h V p h s.t. A h (u h, v) = fv v V p h A h (u h, v) = h u h h v + [[û u h ]] { h v } + {û u h } [[ h v]] { σ } [[v]] [[ σ]] {v } I I Remark Different choices of û and σ determine different DG methods. Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 8 / 1

Example: Interior Penalty Methods {u h } + 1 θ [[u h ]] n I û = 2 σ = { h u h } γ [[u h ]] 0 B Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 9 / 1

Example: Interior Penalty Methods {u h } + 1 θ [[u h ]] n I û = 2 σ = { h u h } γ [[u h ]] 0 B {û u h } = 0 { σ } = { h u h } γ [[u h ]] [[û u h ]] = θ [[u h ]], [[ σ]] = 0, Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 9 / 1

Example: Interior Penalty Methods {u h } + 1 θ [[u h ]] n I û = 2 σ = { h u h } γ [[u h ]] 0 B A h (u h, v h ) = h u h h v h { h u h } [[v h ]] θ [[u h ]] { h v h } γ [[u h ]] [[v h ]] Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 9 / 1

Example: Interior Penalty Methods {u h } + 1 θ [[u h ]] n I û = 2 σ = { h u h } γ [[u h ]] 0 B A h (u h, v h ) = h u h h v h { h u h } [[v h ]] θ [[u h ]] { h v h } γ [[u h ]] [[v h ]] θ = 1 SIP [Arnold, SINUM, 1982] θ = 1 NIP [Rivière, Wheeler & Girault, Comp. Geosc.,1999] θ = 0 IIP [Wheeler, Dawson & Sun, CMAME, 2004] Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 9 / 1

Different Ways to Enforce Stability α j (w, v) = α r (w, v) = γ j [[w]] [[v]] γ r r ([[w]]) r ([[v]]) γ j αp 2 h 1 γ r α r : [L 1 ( )] d Σ p h r ([[u h ]]) τ = [[u h ]] {τ } τ Σ p h Global and Local Lifting Operators R(ϕ) = r (ϕ) ϕ [L 1 ()] d Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 10 / 1

Numerical luxes: Summary Method û σ SIP {u h } { h u h } γ j [[u h ]] BRMPS {u h } { h u h } + γ r {r ([[u h ]]) } SIP(δ) {u h } (1 δ) { h u h } δ γ j [[u h ]] [[u h ]] BO {u h } + [[u h ]] n { h u h } NIP {u h } + [[u h ]] n { h u h } γ j [[u h ]] IIP {u h } + 1/2 [[u h ]] n { h u h } γ j [[u h ]] BR {u h } {σ h } BMMPR {u h } {σ h } + γ r {r ([[u h ]]) } LDG {u h } β [[u h ]] {σ h } + β [[σ h ]] γ j [[u h ]] BZ (u h ) αh (2p+1) [[u h ]] BMMPR 2 (u h ) αh 2p {r ([[u h ]]) } Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 11 / 1

Abstract error estimate u u h DG u Π p h u DG + Π p h u u h DG triangle inequality Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 12 / 1

Abstract error estimate u u h DG u Π p h u DG + Π p h u u h DG Π p h u u h 2 DG A(Πp h u u h, Π p h u u h) A(Π p h u u, Πp h u u h) Π p h u u DG Π p h u u h DG Π p h u u DG Π p h u u h DG triangle inequality Coercivity on V p h Galerkin orthogonality Continuity on Ṽ p h Norms equivalence on V p h Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 12 / 1

Abstract error estimate u u h DG u Π p h u DG + Π p h u u h DG Π p h u u h 2 DG A(Πp h u u h, Π p h u u h) A(Π p h u u, Πp h u u h) Π p h u u DG Π p h u u h DG Π p h u u DG Π p h u u h DG triangle inequality Coercivity on V p h Galerkin orthogonality Continuity on Ṽ p h Norms equivalence on V p h Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 12 / 1

Abstract error estimate u u h DG u Π p h u DG + Π p h u u h DG Π p h u u h 2 DG A(Πp h u u h, Π p h u u h) A(Π p h u u, Πp h u u h) Π p h u u DG Π p h u u h DG Π p h u u DG Π p h u u h DG triangle inequality Coercivity on V p h Galerkin orthogonality Continuity on Ṽ p h Norms equivalence on V p h u u h DG u Π p h u DG Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 12 / 1

Summary Method G.O. A.C. Stab. Type Cond. DG L2 () SIP α j α > α h p h p+1 BRMPS α r α > α h p h p+1 SIP(δ) α j α > α h p h p+1 BO(p 2) X X - - h p h p NIP X α j α > 0 h p h p IIP X α j α > α h p h p BR X - - [h p ] [h p ] BMMPR 1 α r α > 0 h p h p+1 LDG α j α > 0 h p h p+1 BZ X X α j α h 2p h p h p+1 BMMPR2 X X α r α h 2p h p h p+1 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 13 / 1

Numerical Results = (0, π) (0, π), u(x, y) = sin(x) sin(y) Triangulations Cartesian Grids made of 4 N elements (N = 2, 3, 4, 5, 6) Unstructured triangular grids made of 2 4 N elements (N = 2, 3, 4, 5) DG finite elements Q p - P p (p = 1, 2, 3) O(h p ) in the energy norm O(h p+1 ) in the L 2 -norm Matlab code Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 14 / 1

Methods in Primal orm: Cartesian Grids, p = 1, α = 10 10 1 1.00 Log(error) 10 2 10 3 SIPG L2 BRMPS L2 SIPG(δ=1) L2 NIPG L2 IIPG L2 SIPG H1 BRMPS H1 SIPG(δ=1) H1 NIPG H1 IIPG H1 10 0 10 1 Log(1/h) 2.00 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 15 / 1

Methods in Mixed orm: Cartesian Grids, p = 1, α = 1, β = [1, 1] 10 1 1.00 Log(error) 10 2 10 3 2.00 LDG L2 BMMPR1 L2 LDG H1 BMMPR1 H1 10 0 10 1 Log(1/h) ne u u h L2 () u u h H1 () LDG BMMPR LDG BMMPR 16 64 2.5150 1.8895 1.0797 1.0114 64 256 2.1405 1.9885 1.0110 1.0000 256 1204 2.0235 2.0000 1.0066 1.0000 1024 4096 2.0089 2.0000 1.0000 1.0000 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 16 / 1

Super Penalty Mehotds: Cartesian Grids, p = 1, α = 1 10 0 BZ L2 BMMPR2 L2 BZ H1 BMMPR2 H1 Log(error) 10 1 1.00 10 2 2.00 10 0 10 1 Log(1/h) ne u u h L2 () u u h H1 () BZ BMMPR2 BZ BMMPR2 16 64 2.3051 2.0510 1.9901 1.2890 64 256 2.1821 2.0161 1.4504 1.0824 256 1204 2.0958 2.0043 1.1255 1.0210 1024 4096 2.0486 2.0011 1.0297 1.0053 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 17 / 1

LDG Method: Non-matching grids, p = 1, α = 1, β = [0.5, 0.5] 3 2.5 2 1.5 1 0.5 Log(error) 10 1 10 2 1.00 0 0 1 2 3 2.00 10 3 u u h L 2 u u h H 1 10 0 Log(1/h) ne u u h L2 () u u h H1 () 10 40 1.9899 0.9667 40 160 2.0448 1.0032 160 640 2.0199 1.0015 640 2560 2.0080 1.0005 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 18 / 1

A Super Convergence Result: LDG Method, p = 1, [Cockburn, anshat, Perugia & Shötzau, SINUM, 2001] u(x, y) = exp(xy) α j (u h, v) = γ j [[u h ]] [[v]] β = [0.5, 0.5] γ j = 1 u σ h 0, Log(error) 10 1 10 2 1.50 u σ h L 2 () 16 64 0.8509 64 256 1.1605 256 1204 1.2931 1024 4096 1.3841 4096 16384 1.4389 10 1 Log(1/h) Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 19 / 1

SIP and NIP Methods: Unstructured Triangular Grids, p = 1, 2, 3, α = 10 SIP Method NIP Method 0 0 1 1.14 1 1.19 2 2 2.12 2.02 Log(error) 3 4 5 P1 u u h 0, P2 u u h 0, 2.16 3.14 2.98 Log(error) 3 4 5 P1 u u h 0, P2 u u h 0, 2.14 3.02 6 P3 u u h 0, P1 u u h 1,h P2 u u h 1,h P3 u u h 1,h 7 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 Log(1/h) 4.07 6 P3 u u h 0, P1 u u h 1,h P2 u u h 1,h P3 u u h 1,h 4.07 7 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 Log(1/h) Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 20 / 1

Ö Ð Ø º º Æ ÙÑ ÒÒ º º The Darcy low with a Discontinuous κ: Cartesian Grids, p = 2, α = 10 Ö Ð Ø º º div(κ u) = f in ( 1, 1) 2 κ = 10 κ = 100 We choose f and the BC s.t u(x, y) = cos(πx) cos(πy) κ = 1000 κ = 1 Ö Ð Ø º º Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 21 / 1

Load The Darcy low with a Discontinuous κ: Cartesian Grids, p = 2, α = 10 div(κ u) = f in ( 1, 1) 2 x 10 4 18000 16000 We choose f and the BC s.t u(x, y) = cos(πx) cos(πy) 2 1.5 1 14000 12000 10000 8000 0.5 1 6000 0.5 4000 0 1 0.5 0 Y axis 0.5 1 1 0.5 0 X axis 2000 0 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 21 / 1

The Darcy low with a Discontinuous κ: Cartesian Grids, p = 2, α = 10 SIP Method NIP Method 4 4 3 3 2 2 Log(error) 1 0 1 2 3 4 5 σ σ h 0, u u h 1,h u u h 0, 1.99 2.98 6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Log(1/h) 1.99 Log(error) 1 0 1 2 3 σ σ h 0, u u h 1,h u u h 0, 2.00 4 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 Log(1/h) 1.99 2.00 Paola. Antonietti (MOX-PoliMi) Discontinuous Galerkin Methods GSSI Phd School 21 / 1