tunneling theory of few interacting atoms in a trap

Similar documents
MASSIMO RONTANI PUBLICATIONS

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Apparent reversal of molecular orbitals reveals entanglement

Spectroscopies for Unoccupied States = Electrons

Many-body correlations in STM single molecule junctions

Coulomb blockade in metallic islands and quantum dots

Polariton Condensation

Many-body transitions in a single molecule visualized by scanning tunnelling microscopy

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lecture 8, April 12, 2017

Lecture 3: Electron statistics in a solid

Light Emission from Ultranarrow Graphene Nanoribbons Edge and Termini Effects. Deborah Prezzi CNR Nanoscience Institute, Modena, Italy

Physics of Semiconductors

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Quantum wells and Dots on surfaces

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Static and Dynamic Properties of One-Dimensional Few-Atom Systems

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Cooperative Phenomena

Beyond the Quantum Hall Effect

Spectroscopy at nanometer scale

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Teaching Nanomagnets New Tricks

Single Electron Tunneling Examples

Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube

Quantum Confinement in Graphene

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

DEFECTS IN 2D MATERIALS: HOW WE TAUGHT ELECTRONIC SCREENING TO MACHINES

Quantum Information Processing with Semiconductor Quantum Dots

STM spectroscopy (STS)

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Scanning Tunneling Microscopy: theory and examples

Correlated 2D Electron Aspects of the Quantum Hall Effect

Pseudopotential Theory of Semiconductor Quantum Dots

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Magneto-Optical Properties of Quantum Nanostructures

Journal of Theoretical Physics

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Hensgens et al.: Quantum simulation of a Fermi - Hubbard model using a semiconductor quantum dot array. QIP II: Implementations,

Electron spins in nonmagnetic semiconductors

Electronic structure of correlated electron systems. Lecture 2

From manipulation of the charge state to imaging of individual molecular orbitals and bond formation

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Imaging electrostatically confined Dirac fermions in graphene

No reason one cannot have double-well structures: With MBE growth, can control well thicknesses and spacings at atomic scale.

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

SUPPLEMENTARY INFORMATION

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Walking hand in hand Two-body quantum dynamics in excitronics

Shell-Tunneling Spectroscopy of the Single-Particle Energy Levels of Insulating Quantum Dots

Solid State Device Fundamentals

Coulomb Drag in Graphene

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Classification of Solids

Three-terminal quantum-dot thermoelectrics

Spectroscopy at nanometer scale

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

Quantitative Determination of Nanoscale Electronic Properties of Semiconductor Surfaces by Scanning Tunnelling Spectroscopy

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Topological Insulators

Dmitry Ryndyk. December 20, 2007, Dresden. In collaboration with Pino D Amico, Klaus Richter, and Gianaurelio Cuniberti

Spin Dynamics in Single GaAs Nanowires

Dimensional BCS-BEC crossover

Theoretical Modelling and the Scanning Tunnelling Microscope

Quantum Dots: Artificial Atoms & Molecules in the Solid-State

Quantum Condensed Matter Physics Lecture 12

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Correlated 2D Electron Aspects of the Quantum Hall Effect

Manipulation of Majorana fermions via single charge control

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

what happens if we make materials smaller?

Coulomb blockade and single electron tunnelling

Physics and Material Science of Semiconductor Nanostructures

Observing Wigner Crystals in Double Sheet Graphene Systems in Quantum Hall Regime

Chapter 3 Properties of Nanostructures

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Solid State Device Fundamentals

Loop current order in optical lattices

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

Coherence and Correlations in Transport through Quantum Dots

Fabrication / Synthesis Techniques

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

THEORETICAL DESCRIPTION OF SHELL FILLING IN CYLINDRICAL QUANTUM DOTS

Lecture 13: Barrier Penetration and Tunneling

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Lecture 2: Double quantum dots

Quantum Electrodynamics with Ultracold Atoms

Transcription:

tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer, T. Matsui, C. Heyn, W. Hansen, A. Schramm, R. Wiesendanger University of Hamburg

cold atoms in the few-body limit 87 Rb, Bloch group bosons S Will et al. Nature 465, 197 (2010) 6 Li, Jochim group fermions (yesterday talk) F. Serwane et al. Science 332, 336 (2011)

motivation control key parameters of clean correlated system particle number interaction strength confinement potential ideal lab for few-fermion physics comparison with exact theoretical models building block of many-body systems

few-fermion vs bulk physics bulk: kinetic energy + interaction homogeous (cf. many fermions at trap center) few particles in a trap: quantum confinement inhomogeous analogies with atoms, nuclei, quantum dots tunneling spectroscopy, shell structure, Hund s rule, pairing for few fermions

outline tunneling spectroscopy in interacting cold atoms & condensed-matter nano-objects: quasiparticle theory repulsive interactions between 6 Li atoms wave function imaging in interacting quantum dots pairing for a few 6 Li atoms & pair tunneling

tunneling spectroscopy à la Heidelberg talk by G. Zuern yesterday prepare a 6 Li atom in the trap ground state

tunneling spectroscopy à la Heidelberg switch off the potential barrier

tunneling spectroscopy à la Heidelberg 1 the atom escapes

tunneling spectroscopy à la Heidelberg 1 after hold time t, switch on the barrier

tunneling spectroscopy à la Heidelberg 2 second possibility

tunneling spectroscopy à la Heidelberg 2 after hold time t

tunneling spectroscopy à la Heidelberg 2 the atom remains in the trap

tunneling spectroscopy à la Heidelberg 1 P(1) + P(2) = 1 at any t (a) check if atom in the trap (b) repeat many times (c) vary hold time t (d) iterate 2

measure decay time t [Zuern et al. PRL 2013] noninteracting M. Rontani, PRA 88, 043633 (2013) N WKB t = N 0 e t/τ

many fermions: energy spectroscopy e 2 e 1 e 0 t(e 0 ) two-species fermions no interaction

many fermions: energy spectroscopy e 2 e 1 e 0 t(e 1 ) decay as resonance

many fermions: energy spectroscopy e 2 e 1 e 0 t(e 2 ) dominant decay channel at Fermi energy

what if atoms interact? e 2 e 1 e 0 t =?

what if atoms interact? g = 0 Heidelberg setup e 1 V int = g d(x 1 x 2 )

what if atoms interact? M. Rontani, PRL 108, 115302 (2012) g 0 e e 1 e = chemical potential

interaction blockade measure chemical potential e ( N) E0( N) E0( N 1) equivalent to addition energy in quantum dots and ionization potential in atoms and molecule prediction: Kapelle, Reimann & coworkers [PRL 99, 010402 (2007)] exp confirmation (bosons): Bloch group [PRL 101, 090404 (2008)] compute t using e in WKB formula (mean-field theory)?

chemical potential e two interacting atoms (Zuern et al., PRL 2012) after T. Busch et al. (1998) V int = g d(x 1 x 2 )

chemical potential e two interacting atoms (Zuern et al., PRL 2012) after T. Busch et al. (1998) exp B V int = g d(x 1 x 2 )

chemical potential e two interacting atoms (Zuern et al., PRL 2012) after T. Busch et al. (1998) B V int = g d(x 1 x 2 )

mean-field theory fails M. Rontani, PRL 108, 115302 (2012)

Scanning Tunneling Spectroscopy single molecule Repp et al., PRL 94, 026803 (2005) well-isolated nano-objects quantized energy levels Coulomb blockade short nanotube Venema et al., Science 283, 52 (1999) Maltezopoulos et al., PRL 91, 196804 (2003) quantum dot wave function imaging

STS in electrically insulated molecules Repp et al., PRL 94, 026803 (2005) NaCl NaCl layer layer metallic metallic substrate substrate tip 0 pentacene z J. Repp et al., Phys. Rev. Lett. 94, 026803 (2005). P. Liljeroth et al., Nano Lett. 10, 2475 (2010). C. J. Villagomez et al., Surf. Sci. 603, 1526 (2009). A. Bellec et al., Nano Lett. 9, 144 (2009).

STS in electrically insulated molecules 0 tip N NaCl NaCl layer layer pentacene metallic metallic substrate substrate z molecule z

STS in electrically insulated molecules N apply tip-gate bias voltage molecule z

STS in electrically insulated molecules di / dv PRL 94, 026803 (2005) N y x molecule z peak in di / dv from N to N - 1

STS in electrically insulated molecules ev di / dv PRL 94, 026803 (2005) N y x molecule z peak in di / dv from N to N + 1

mean-field theory e 5 N e e 4 3 e 2 di / dv ( r) ( r) d ( e EF) energy-resolved local density of states (LDOS) = single-particle level 2 e 1 molecule z Tersoff & Hamann 1985

mean-field theory di / dv PRL 94, 026803 (2005) exp y x DFT molecule z di / dv r HOMO ( ) 2

mean-field theory di / dv PRL 94, 026803 (2005) ev exp y x DFT molecule z di / dv r LUMO ( ) 2

ambiguities of mean-field theory N or N + 1 to compute self-consistent orbitals? molecule

ambiguities of mean-field theory N or N + 1 to compute self-consistent orbitals? N wave function is NOT a single N electron configuration : N N N ci i i i generic question what is actually measured in tunneling experiments in the presence of manybody interactions?

answer 1/t di /dv 2 2 M n( e f ) T = 0 density of final states Bardeen s viewpoint (1961): many-body matrix element connecting states with N and N-1 fermions in the trap / molecule / Quantum Dot * k, N k, N 1

resonant many-body states of the whole system barrier continuum dot N * k, N N tot - N z bar N - 1 k, N 1 N tot N + 1

M k k k r r r c c ˆ ) ( ) ˆ ( ) ( ˆ field operator single-particle QD state single-particle continuum state, *, ˆ 1, N k N k M M t d d ˆ ˆ ˆ ˆ * 2 ˆ bar 2 z z z z m M

M k k k r r r c c ˆ ) ( ) ˆ ( ) ( ˆ field operator single-particle QD state single-particle continuum state, *, ˆ 1, N k N k M M t d d ˆ ˆ ˆ ˆ * 2 ˆ bar 2 z z z z m M 1 / t 2

key quantity QP ( r) ˆ 1 ( r) N N hole quasiparticle wave function in practice: QP i, j N 1* N ( r) ci c j ( i, j) ( r) expansion coefficients: N N c j N j single-particle orbital

outline tunneling spectroscopy in interacting cold atoms & condensed-matter nano-objects: quasiparticle theory repulsive interactions between 6 Li atoms wave function imaging in interacting quantum dots pairing for a few 6 Li atoms & pair tunneling

mean-field theory fails M. Rontani, PRL 108, 115302 (2012)

quasiparticle wave function theory M. Rontani, PRL 108, 115302 (2012)

quasiparticle wave function theory M. Rontani, PRL 108, 115302 (2012)

evidence for fermionization M. Rontani, PRL 108, 115302 (2012)

evidence for fermionization M. Rontani, PRL 108, 115302 (2012)

evidence for fermionization M. Rontani, PRL 108, 115302 (2012)

evidence for fermionization M. Rontani, PRL 108, 115302 (2012)

evidence for fermionization M. Rontani, PRL 108, 115302 (2012)

evidence for fermionization M. Rontani, PRL 108, 115302 (2012)

evidence for fermionization g = 0 + g = M. Rontani, PRL 108, 115302 (2012) g = 0 g =

change of spectral weight M. Rontani, PRL 108, 115302 (2012) t 0 = WKB mean-field A QP = norm

initial + - - final - -

so far quasiparticle theory for decay time of 6 Li atoms works 1/t = (1/t 0 ) X (many-body factor) measure chemical potential and spectral weight

outline tunneling spectroscopy in interacting cold atoms & condensed-matter nano-objects: quasiparticle theory repulsive interactions between 6 Li atoms wave function imaging in interacting quantum dots pairing for a few 6 Li atoms & pair tunneling

density of states density of states density of states density of states growth direction energy quantum confinement in nanostructures simplest case: quantum well A B A AlGaAs GaAs semiconductor A B A conduction band 2D confinement growth direction valence band 3D 2D 1D 0D energy energy energy energy bulk quantum well quantum wire quantum dot

experiment: InAs quantum dots x strong anisotropy x y y STM images Nano Lett. 7, 2071 (2007)

(di/dv)/(i/v) STS spectroscopy 5 4 3 2 Nano Lett. 7, 2071 (2007) Center side WL A B C D A: s state B: p y state C: p y state D: d state? 1 0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Voltage (V) N 0 N 1 first guess: ground- and excited-states A B C D x y

envelope function approximation, semiconductor effective parameters Hamiltonian full configuration interaction ground & excited states y x V(x,y) ) ( 2 * 2 2 2 0 2 2 0 * 2 1 2 i y i x i N i y x m m H single-particle term j i j i r r r e 1 2 2 many-body term compute the wavefunction as a superposition of Slater determinants ij i N i N i N H H c 0 ' l m N i c c Rontani et al., J. Chem. Phys. 124, 124102 (2006) compute ) ( QD r

correlation in a circular QD e d H N i1 2 2m* 2 i * 2 m 0 2 ( x 2 i y 2 i ) p s single-particle term e many-body term large e mean-field theory holds small e correlation effects

N 0 N 1 simulating the STS image di 2 2 QD ( r) 1 s( ) / dv r lengths in units of l QD

N 1 N 2 2 2 di / dv r QD ( r) 1 s( ) e no correlation lengths in units of l QD

N 1 N 2 di / dv r 100 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 50 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 10 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 5 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 1 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 0.5 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 0.1 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 0.05 e QD ( ) 2 mev lengths in units of l QD

N 1 N 2 di / dv r 0.01 e QD ( ) 2 mev lengths in units of l QD

effect of anisotropy

N 1 N 2 effect of anisotropy di / dv r QD ( ) 2 / 0x 0 y 1 lengths in units of l QD

N 1 N 2 effect of anisotropy di / dv r QD ( ) 2 / 0x 0 y 1.21 lengths in units of l QD

N 1 N 2 effect of anisotropy di / dv r QD ( ) 2 / 0x 0 y 1.69 lengths in units of l QD

N 1 N 2 effect of anisotropy di / dv r QD ( ) 2 / 0x 0 y 2.25 lengths in units of l QD

predictions STS image distortion driven by: confinement strength dot anisotropy dielectric environment

theo-exp comparison

theo-exp comparison B A = theo-exp matching

theo-exp comparison C = theo-exp matching

theo-exp comparison = theo-exp matching

theo-exp comparison Nano Lett. 7, 2071 (2007)

is the C state really due to double charging? C B low I stab in out 1 e - in the dot high I stab in out 2 e - in the dot Nano Lett. 7, 2071 (2007)

origin of the C-state image? A B C D

the origin of the C-state image 76 % 11 % 6 % s = + C state d

wires and carbon nanotubes A. Secchi, M. Rontani, PRB 85, 121410(R) (2012) N = 2 N = 3 Wigner localization observed in carbon nanotubes S. Pecker et al., Nature Phys. 2013

conclusions theo and exp of quasiparticle wave function imaging sensitivity to correlation effects

outline tunneling spectroscopy in interacting cold atoms & condensed-matter nano-objects: quasiparticle theory repulsive interactions between 6 Li atoms wave function imaging in interacting quantum dots pairing for a few 6 Li atoms & pair tunneling

evidence of pairing in 1D P. D Amico and MR, arxiv:1404.7762 exp = G. Zuern et al., PRL 2013

correlated pair tunneling MR, PRA 88, 043633 (2013) P. D Amico and MR, arxiv:1404.7762 exp = G. Zuern et al., PRL 2013

http://web.nano.cnr.it/ispie2014/

http://web.nano.cnr.it/ispie2014/ Lecturers J. Baumberg: Polaritons L. Butov: Indirect excitons M. Dyakonov: Spin physics of excitons L. Keldysh*: Fundamentals of excitons L. Levitov: Exciton physics in bilayers and graphene A. Pinczuk: Optics of two-dimensional electron gases quantum Hall bilayers D. Ritchie: Electrically formed electronhole systems 2 hours + 1 hour discussion / exercise Speakers K. Bolotin: TBA F. Dubin: Dark excitons A. Holleitner: Few-exciton physics V. Pellegrini: TBA L. Pfeiffer: Semiconductor bilayers M. Polini: TBA L. Ponomarenko: Transport in bilayer graphene M. Rontani: Anomalous magnetization of carbon nanotubes as excitonic insulators P. Savvidis: TBA C. Tejedor: TBA M. Vladimirova: Spin dynamics in coupled quantum wells