Citation 数理解析研究所講究録 (2015), 1963:

Similar documents
Jae Hyoung Lee. Gue Myung Lee

Research Article Optimality Conditions and Duality in Nonsmooth Multiobjective Programs

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

CONVEX OPTIMIZATION VIA LINEARIZATION. Miguel A. Goberna. Universidad de Alicante. Iberian Conference on Optimization Coimbra, November, 2006

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

NONDIFFERENTIABLE MULTIOBJECTIVE SECOND ORDER SYMMETRIC DUALITY WITH CONE CONSTRAINTS. Do Sang Kim, Yu Jung Lee and Hyo Jung Lee 1.

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

Citation 数理解析研究所講究録 (2013), 1841:

On Weak Pareto Optimality for Pseudoconvex Nonsmooth Multiobjective Optimization Problems

Optimality and Duality Theorems in Nonsmooth Multiobjective Optimization

Characterizations of the solution set for non-essentially quasiconvex programming

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

Author(s) YAMADA, Syuuji; TANAKA, Tamaki; TAN. Citation 数理解析研究所講究録 (2008), 1611:

Stationarity and Regularity of Infinite Collections of Sets. Applications to

Robust Farkas Lemma for Uncertain Linear Systems with Applications

DUALITY AND FARKAS-TYPE RESULTS FOR DC INFINITE PROGRAMMING WITH INEQUALITY CONSTRAINTS. Xiang-Kai Sun*, Sheng-Jie Li and Dan Zhao 1.

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

SECOND ORDER DUALITY IN MULTIOBJECTIVE PROGRAMMING

OPTIMALITY CONDITIONS AND DUALITY FOR SEMI-INFINITE PROGRAMMING INVOLVING SEMILOCALLY TYPE I-PREINVEX AND RELATED FUNCTIONS

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE. Sangho Kum and Gue Myung Lee. 1. Introduction

HIGHER ORDER OPTIMALITY AND DUALITY IN FRACTIONAL VECTOR OPTIMIZATION OVER CONES

Stability of efficient solutions for semi-infinite vector optimization problems

A SURVEY ON FIXED POINT THEOREMS IN. Citation 数理解析研究所講究録 (2006), 1484:

arxiv: v1 [math.oc] 30 Aug 2018

Sequential Pareto Subdifferential Sum Rule And Sequential Effi ciency

CHARACTERIZATION OF (QUASI)CONVEX SET-VALUED MAPS

Centre d Economie de la Sorbonne UMR 8174

Necessary and Sufficient Conditions for the Existence of a Global Maximum for Convex Functions in Reflexive Banach Spaces

On constraint qualifications with generalized convexity and optimality conditions

Citation 数理解析研究所講究録 (1994), 886:

Robust Duality in Parametric Convex Optimization

Global Maximum of a Convex Function: Necessary and Sufficient Conditions

Citation 数理解析研究所講究録 (2008), 1605:

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

Some Contributions to Convex Infinite-Dimensional Optimization Duality

A convergence result for an Outer Approximation Scheme

Characterizations of Solution Sets of Fréchet Differentiable Problems with Quasiconvex Objective Function

A Dual Condition for the Convex Subdifferential Sum Formula with Applications

Research Article A Note on Optimality Conditions for DC Programs Involving Composite Functions

SECOND-ORDER CHARACTERIZATIONS OF CONVEX AND PSEUDOCONVEX FUNCTIONS

Relationships between upper exhausters and the basic subdifferential in variational analysis

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

Constraint qualifications for convex inequality systems with applications in constrained optimization

Citation 数理解析研究所講究録 (2002), 1254:

CONSTRAINT QUALIFICATIONS, LAGRANGIAN DUALITY & SADDLE POINT OPTIMALITY CONDITIONS

ON GENERALIZED-CONVEX CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION

A CHARACTERIZATION OF STRICT LOCAL MINIMIZERS OF ORDER ONE FOR STATIC MINMAX PROBLEMS IN THE PARAMETRIC CONSTRAINT CASE

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

Subdifferential representation of convex functions: refinements and applications

Citation 数理解析研究所講究録 (2016), 1995:

FIRST- AND SECOND-ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL PROGRAMS WITH VANISHING CONSTRAINTS 1. Tim Hoheisel and Christian Kanzow

Citation 数理解析研究所講究録 (1996), 966:

A New Fenchel Dual Problem in Vector Optimization

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems

Constrained Optimization Theory

Perturbation Analysis of Optimization Problems

FIRST ORDER CHARACTERIZATIONS OF PSEUDOCONVEX FUNCTIONS. Vsevolod Ivanov Ivanov

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

Application of Harmonic Convexity to Multiobjective Non-linear Programming Problems

EFFICIENCY AND GENERALISED CONVEXITY IN VECTOR OPTIMISATION PROBLEMS

GENERALIZED CONVEXITY AND OPTIMALITY CONDITIONS IN SCALAR AND VECTOR OPTIMIZATION

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim

THE UNIQUE MINIMAL DUAL REPRESENTATION OF A CONVEX FUNCTION

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

A Note on Nonconvex Minimax Theorem with Separable Homogeneous Polynomials

On Optimality Conditions for Pseudoconvex Programming in Terms of Dini Subdifferentials

Citation 数理解析研究所講究録 (1996), 941:

On duality theory of conic linear problems

Viscosity Approximative Methods for Nonexpansive Nonself-Mappings without Boundary Conditions in Banach Spaces

Citation 数理解析研究所講究録 (2012), 1805:

Introduction. Christophe Prange. February 9, This set of lectures is motivated by the following kind of phenomena:

A study on the linear complementarity representation of piecewise linear functions

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

OPTIMALITY CONDITIONS FOR D.C. VECTOR OPTIMIZATION PROBLEMS UNDER D.C. CONSTRAINTS. N. Gadhi, A. Metrane

Citation 数理解析研究所講究録 (2014), 1898:

Citation 数理解析研究所講究録 (2004), 1396:

Symmetric and Asymmetric Duality

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Convergence rate estimates for the gradient differential inclusion

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES

SOLVING A MINIMIZATION PROBLEM FOR A CLASS OF CONSTRAINED MAXIMUM EIGENVALUE FUNCTION

Enhanced Fritz John Optimality Conditions and Sensitivity Analysis

The local equicontinuity of a maximal monotone operator

Citation 数理解析研究所講究録 (2000), 1123:

Upper sign-continuity for equilibrium problems

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY

Abstract. The connectivity of the efficient point set and of some proper efficient point sets in locally convex spaces is investigated.

OPTIMALITY CONDITIONS FOR GLOBAL MINIMA OF NONCONVEX FUNCTIONS ON RIEMANNIAN MANIFOLDS

Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization

Transcription:

Title Some New Properties of Lagrange Fun Analysis Convex Analysis) Author(s) Kim, Do Sang; Jiao, Liguo Citation 数理解析研究所講究録 (2015), 1963: 24-31 Issue Date 2015-10 URL http://hdl.hle.net/2433/224190 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

1963 2015 24-31 24 Some New Properties of Lagrange Function Do Sang Kim Liguo Jiao Department of Applied Mathematics Pukyong National University, Republic of Korea $E$-mail: dskim@pknu.ac.kr 1 Introduction Preliminaries Let us consider the following problem (MP) Minimize $f(x):=(f_{1}(x), \cdots, f_{m}(x))$ subject to $g_{t}(x)\leqq 0,$ $t\in T,$ $x\in C,$ where the functions $f_{i}$ : $Xarrow \mathbb{r},$ $i\in M$ $:=\{1, \cdots, m\}$ $g_{t}:xarrow \mathbb{r},$ $t\in T$ are locally Lipschitz on a Banach space $X,$ is an arbitrary (possibly infinite) $T$ index set, is a closed convex subset of $C$ $X$. We denote the feasible set by $F=:\{x\in C g_{t}(x)\leqq 0, t\in T\}.$ In this paper, due to Chankong-Haimes method, for $j\in M$ $z\in C,$ we associate to (MP) the following scalar problem, $(P_{j}(z))$ Minimize $f_{j}(x)$ subject to $f_{k}(x)\leqq f_{k}(z)$, $k\in M^{j}$ $:=M\backslash \{j\},$ $g_{t}(x)\leqq 0, t\in T,$ $x\in C.$ Relationships between (MP) $(P_{j}(z))$ are established optimality conditions of the problems are given. Let us denote by $\mathbb{r}^{(t)}$ a following linear space, $\mathbb{r}^{(t)}$ $:=$ { $\lambda=(\lambda_{t})_{t\in T} \lambda_{t}=0$ for all $t\in T$ but only finitely many $\lambda_{t}\neq 0$ }.

is 25 For each \mathbb{r}^{(t)}$ $\lambda$, the supporting set corresponding to $T(\lambda)$ $:=\{t\in$ $T \lambda_{t}\neq 0\}$. It is a finite subset of $T$. We denote $ $:=\{\lambda=(\lambda_{t})_{t\in T}\in$ $\mathbb{r}^{(t)} \lambda_{t}\geq 0,$ $t\in T\}$. It is a nonnegative cone of $\mathbb{r}^{(t)}$. For \mathbb{r}^{(t)}$ $\{z_{t}\}_{t\in T}\subset Z,$ $Z$ being a real linear space, we underst that $\sum_{t\in T}\lambda_{t}z_{t}=\{\begin{array}{ll}\sum_{t\in T(\lambda)}\lambda_{t}z_{t} if \tau_{(\lambda)\neq\emptyset},0 if T(\lambda)=\emptyset.\end{array}$ Throughout this paper $X$ is a Banach space, $C$ is a nonempty closed convex subset of $X,$ $T$ is a compact topological space, $f$ : $Xarrow \mathbb{r}$ is a locally Lipschitz function, $g_{t}:xarrow \mathbb{r},$ $t\in T$, to $x$ uniformly in $t$, i.e., are locally Lipschitz with respect $\forall x\in X,$ $\exists U(x)$, $\exists K>0,$ $ g_{t}(u)-g_{t}(v) \leq K\Vert u-v\vert,$ $\forall u,$ $v\in U(x)$, $\forall t\in T.$ The following concepts can be found in the Clarke s books [1, 2]. Let $D$ be a nonempty closed convex subset of $X$. The normal cone to $D$ at a point $z\in D$ coincides with the normal cone in the sense of convex analysis given by (, z) $N_{D}$ $:=\{v\in X^{*} v(x-z)\leq 0, \forall x\in D\}.$ $Xarrow \mathbb{r}$ Let $g$ : be a locally Lipschitz function. The directional derivative of $g$ at $z\in X$ in direction $d\in X$, is $g ( z;d)=\lim_{tarrow 0+}\frac{g(z+td)-g(z)}{t}$ if the limit exists. The Clarke generalized directional derivative of $g$ at $z\in$ $X$ in direction $d\in X$ is $g^{c}(z;d)$ $:= \lim s_{\backslash }un\frac{g(y+td)-g(y)}{t}tarrow 0^{+}yarrow z$. The Clarke subdifferential of 9 at $z\in X$, denoted by $\partial^{c}g(z)$, is defined by $\partial^{c}g(z):=$ $\{v\in X^{*} v(d)\leq g^{c}(z;d), \forall d\in X\}.$ A locally Lipschitz function $g$ is said to be regular (in the sense of Clarke) at $z\in X$ if $g (z;d)$ exists $g^{c}(z;d)=g (z;d), \forall d\in X.$

26 Definition 1.1 Let be a subset $C$ $of\mathbb{r}^{n}$ $f$ : $\mathbb{r}^{n}arrow \mathbb{r}$ be function. (i) The function $f$ is said to be pseudoconvex at $x\in C$ $u(y-x)<0,$ $u\in\partial^{c}f(x)$, $y\in C$, a locally Lipschitz if $f(y)<f(x)\rightarrow$ equivalently, $u(y-x)\geqq 0\Rightarrow f(y)\geqq$ $f(x)$, $u\in\partial^{c}f(x)$, $y\in C$. The function $f$ is said to be pseudoconvex on $C$ if it is pseudoconvex at every $x\in C.$ (ii) The function $f$ is said to be quasiconvex at $x\in C$ $u(y-x)\leqq 0,$ $u\in\partial^{c}f(x)$, $y\in C$, if $f(y)\leqq f(x)\rightarrow$ equivalently, $u(y-x)>0\rightarrow f(y)>$ $f(x)$, $u\in\partial^{c}f(x)$, $y\in C.$ The function $f$ is said to be quasiconvex on $C$ if it is quasiconvex at every $x\in C.$ We need the following lemmas. Lemma 1.1 Let $f:xarrow \mathbb{r}$ be a locally Lipschitz pseudoconvex function. If there exits $u\in\partial^{c}f(x)$ that $u(y-x)\geq 0,$ $y,$ $x\in X$, then $f(y)\geq f(x)$. Lemma 1.2 Let $f:xarrow \mathbb{r}$ be a locally Lipschitz function. If $f$ is pseudoconvex then $f$ is quasiconvex. Now we give the definition of efficient solution of (MP). Definition 1.2 A point $z\in F$ there exists no other $x\in F_{M}$ is said to be an efficient solution of (MP) if that $f_{i}(x)\leqq f_{i}(z)$, for all $i\in M$ $f_{i_{0}}(x)<f_{i_{0}}(z)$, for some $i_{0}\in M.$ The criteria of Chankong-Haimes method applied for (MP) is as follows. Lemma 1.3 A feasible point if it is a solution of $(P_{j}(z))$ of (MP) is an efficient solution if only for each $j\in M.$

27 2 Optimality Conditions First of all, let us consider the following scalar optimization problem in order to recall some concepts of solution for a single objective optimization problem. (P) Minimize $f(x)$ subject to $g_{t}(x)\leqq 0,$ $t\in T,$ $x\in C$ where $f$ : $\mathbb{r}^{n}arrow \mathbb{r}$ is locally Lipschitz function functions $g_{t},$ $t\in T$ $C$ are as above. Also, the feasible set of (P) is denoted by $F_{P}$ $:=\{x\in C g_{t}(x)\leqq$ $0,$ $t\in T\}.$ Let. $x\in \mathbb{r}^{n}$ We need the following condition, $(\mathcal{a}$ $)$ : $\exists d\in T_{C}(x)$ : $9_{\mathring{t}}(x;d)<0$, for all $t\in I(x)$ $:=\{t\in T g_{t}(x)=0\}.$ According to Theorems 4.1 4.2 presented in [10] (where the problem (P) is defined on a Banach space), we derive the following theorems for $\mathbb{r}^{n}$ the case of the involved functions are defined on the index set $T$ is compact. The proofs can be omitted. Theorem 2.1 Let be an optimal solution for (P). Assume that the condi- tion $(\mathcal{a}$ $)$ holds for. Then there exists that $0 \in\partial f(z)+\sum_{t\in T}\lambda_{t}\partial g_{t}(z)+n_{c}(z)$, $g_{t}(z)=0$ for all $t\in T(\lambda)$. (2.1) We now establish optimality conditions for $(P_{j}(z))$ (MP). The following condition is associated to the problem $(P_{j}(z))$, $(P_{j}(z))$ is denoted by $F_{j}(z)$. the feasible set of Let $x\in \mathbb{r}^{n},$ $I(x)=\{t\in T g_{t}(x)=0\},$ $H_{j}(x)=\{k\in M^{j} f_{k}(x)=$ $f_{k}(z)\}$, $\overline{t}(x)=i(x)\cup H_{j}(x)$.

$(\mathcal{a}_{j})$ : 28 $\exists d\in T_{C}(x):\{$ $g_{t}^{o}(x;d)<0$, for all $t\in I(x)$, $f_{k}^{o}(x;d)<0$, for all $k\in H_{j}(x)$. Lemma 2.1 Let be an optimal solution of $P_{j}(z)$, assume that the condition $(\mathcal{a}_{j})$ holds for, then there exist $\mu_{k}\geqq 0,$ $k\in M^{j}$ that $0 \in\partial^{c}f_{j}(z)+\sum_{k\in M^{j}}\mu_{k}\partial^{c}f_{k}(z)+\sum_{t\in T}\lambda_{t}\partial^{C}g_{t}(z)+N_{C}(z)$, $g_{t}(z)=0,$ $\forall t\in T(\lambda)$. (2.2) $f_{j}$ Lemma 2.2 Let $z\in F_{j}(z)$. Assume that the junction is pseudoconvex, the functions $f_{k},$ $k\in M^{j}$ $g_{t},$ $t\in T$ are quasiconvex. If there exist $\mu_{k}\geqq$ $0,$ $k\in M^{j}$ for $(P_{j}(z))$. \mathbb{r}$ that (2.2) holds. Then is an optimal solution Theorem 2.2 (Necessary Condition) If is an efficient solution, then there exist $\tau>0$ that the following condition holds $0 \in\sum_{i\in M}\tau_{i}\partial^{c}f_{i}(z)+\sum_{t\in T}\lambda_{t}\partial^{c}g_{t}(z)+N(C, z)$, $\lambda_{t}g_{t}(z)=0,$ $\forall t\in T$. (2.3) Theorem 2.3 (Sufficient Condition) Let $z\in F$, assume that $\tau^{t}f$ is pseudoconvex at $\lambda_{t}g_{t},$ $t\in T$ are quasiconvex. If there exist $\tau>0$ that (2.3) holds, then is an eficient solution of (MP). 3 Mixed Duality The dual problem of (MP) in a mixed type of Wolfe type in Mond-Weir type is formulated by

$\in 29 (MD) Maximize $f(y)+ \sum_{t\in T}\lambda_{t}g_{t}(y)e$ subject to $0 \in\sum_{i\in M^{\mathcal{T}_{i}}}\partial^{c}f_{i}(y)+\sum_{t\in T}(\lambda_{t}+\mu_{t})\partial^{c}g_{t}(y)+N(C, y)$, $\mu_{t}g_{t}(y)\geqq 0, t\in T,$ $\tau^{t}e=1, \tau>0, \tau\in \mathbb{r}^{m}, e=(1, \cdots, 1)\in \mathbb{r}^{m},$ $(y, \tau, \lambda, \mu)\in C\cross \mathbb{r}^{m}\cross \mathbb{r}_{+}^{(t)}\cross \mathbb{r}_{+}^{(t)}.$ Let us denote by $G$ the feasible set of (MD). The optimal values of the problems (MP) (MD) are denoted by $V(MP)$ $V(MD)$, respectively. Theorem 3.1 (Weak Duality) Let be the feasible solution $x$ $(y, \tau, \lambda, \mu)$ of (MP) (MD), respectively. Assume that $( \tau^{t}f+\sum_{t\in T}(\lambda_{t}+\mu i)g_{t})$ is $f_{i},$ pseudoconvex, $i\in M$ $g_{t},$ $t\in T$ are regular on C. Then the following cannot hold: $f(x)<f(y)+ \sum_{t\in T}\lambda_{t}g_{t}(y)e.$ Theorem 3.2 (Strong Duality) Suppose that $y$ is an eficient solution for (MP) weak duality theorem (Theorem 3.1) holds, then there exist $\lambda,$ $\mu\in $\tau_{l}$ (MD). M$ that $(y, \tau, \lambda, \mu)$ is an eficient solution for 4 Properties of Lagrange Function The Lagrange function associated to (MP) is formulated by $L(\dot{x}, \lambda)=\{\begin{array}{ll}f(x)+\sum_{t\in T}\lambda_{t}g_{t}(x)e, (x, \lambda)\in C\cross \mathbb{r}_{+}^{(t)}+\infty, otherwise.\end{array}$ For every, the function ) $\lambda$ $L$ is Iocally Lipschitz on $X.$

30 From now on, we suppose that the function $L$ $\lambda$ ) is pseudoconvex on $X$ for every, $f,$ $g_{t},$ $t\in T$, are regular on $X.$ Theorem 4.1 If $(\mathcal{a}_{j})$ that the condition holds solutions of (MD). is an efficient solution of (MP) there exists $j\in M$ for, then $(z,\overline{\tau},\overline{\lambda}, 0)$ $(z,\overline{\tau}, 0,\overline{\lambda})$ are Theorem 4.2 Suppose that (MD). $(y^{*}, \tau^{*}, \lambda^{*}, \mu^{*})$ is a weakly $eff$ cient solution of i) It holds $L(y, \lambda^{*}+\mu^{*})=v$ (MD) for all $y\in G_{1}$ $:=\{y\in C (y, \tau^{*}, \lambda^{*}, \mu^{*})\in$ $G\}$ $\mu_{t}^{*}g_{t}(y^{*})=0$ for all $t\in T.$ ii) Furthermore, if $V(MD)=V(MP)$ then $L(y, \lambda^{*}+\mu^{*})=v(md)$ for all $y\in Sol(MP)$ $(\lambda_{t}^{*}+\mu_{t}^{*})g_{t}(y)=0$ for all $t\in T.$ References [1] F.H. Clarke, optimization Nonsmooth Analysis, Willey- Interscience, New York (1983). [2] F.H. Clarke, Ledyaev Yu.S., Stern J.S., Wolenski P.R., Nonsmooth Analysis Control Theory, Springer-Verlag, Berlin (1998). [3] N. Dinh, V. Jeyakumar G.M. Lee, Lagrange multiplier characterizations of solution sets of constrained pseudolinear optimization problems, Optim. 55 (2006) 241-250. [4] N. Dinh, M.A. Goberna, M.A. Lopez $T.Q$. Son, New Farkas-type constraint qualifications in convex infinite programming, ESAIM Control Optim. Calc. Var. 13 (2007) 580-597.

31 [5] N. Dinh, B.S. Mordukhovich T.T.A. Nghia, Subdifferentials of value functions optimality conditions for some classes of DC bilevel infinite semi-infinite programs, Math. Program. 123 (2009) 101-138. $[6 $ V. Jeyakumar, G.M. Lee, N. Dinh, Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs, J. Optim. Theory Appl. 123 (2004) 83-103. [7] V. Jeyakumar, G.M. Lee N. Dinh, Characterizations of solution sets of convex vector minimization problems, European J. Oper. Res. 174 (2006) 1380-1395. [8] V. Chankong, Y.Y. Haimes (1983), Multiobjective Decision Making: Theory Methodology, Amsterdam: North-Holl. [9] D.S. Kim T.Q. Son, Characterizations of Solution Sets of a class of Nonconvex Semi-Infinite Programming Problems, J. Nonlinear Convex Anal. 12 (2011) 429-440. [10] T.Q. Son, J.J. Strodiot, V.H. Nguyen, $\epsilon$-optimality $\epsilon$-lagrangian duality for a nonconvex programming problem with an infinite number of constraints, J. Optim. Theory Appl. 141 (2009) 389-409. [11] T.Q. Son, D.S. Kim N.N. Tam, Weak stability strong duality of a class of nonconvex infinite programs via augmented Lagrangian, J. Global Optim., 53 (2012) 165-184.