Acoustic Characterisation of Perforates using Non-linear System Identification Techniques

Similar documents
NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE

On the variations of acoustic absorption peak with flow velocity in Micro Perforated Panels at high level of excitation

Experimental investigation of perforations interactions effects under high sound pressure levels

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES

Helmholtz resonator with multi-perforated plate

Proceedings of Meetings on Acoustics

A broadband method for liner impedance eduction in the presence of a mean flow

Acoustic performance of industrial mufflers with CAE modeling and simulation

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

EFFECT OF ORIFICE GEOMETRY ON THE NON-LINEAR ACOUSTIC RESISTANCE OF PERFORATED PLATES IN THE TRANSITION REGIME

Advance in sound absorption and propagation properties of porous metals under harsh environment conditions

Effect of Length and Porosity on the Acoustic Performance of Concentric Tube Resonators

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

Numerical Simulation of a Slit Resonator in a Grazing Flow

Acoustic Transmission Loss of Perforated Plates

Design of Mufflers and Silencers. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science. CASA-Report May 2013

DESIGN OF MICRO-PERFORATED ABSORBERS (MPA)

Wojciech ŁAPKA, Czesław CEMPEL

Proceedings of Meetings on Acoustics

arxiv: v1 [physics.class-ph] 22 Sep 2008

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Sound attenuation analysis of waterfilled perforated pipe silencers using three-dimensional time-domain computational fluid dynamics approach

Sound Absorption Measurements for Micro-Perforated Plates: The Effect of Edge Profile

NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE

American International Journal of Research in Science, Technology, Engineering & Mathematics

Chapter 10 Sound in Ducts

Reactive Silencer Modeling by Transfer Matrix Method and Experimental Study

ADVANCED STUDIES ON SERIES IMPEDANCE IN WAVEGUIDES WITH AN EMPHASIS ON SOURCE AND TRANSFER IMPEDANCE

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Improvements of a parametric model for fan broadband and tonal noise

Statistical errors in the estimation of time-averaged acoustic energy density using the two-microphone method

Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow

Acoustics of parallel baffles muffler with Micro-perforated panels. Xiaowan Su

Sound Transmission in an Extended Tube Resonator

Transmission loss of rectangular silencers using meso-porous and micro-perforated linings

Holistic Acoustic Absorber Design: from modelling and simulation to laboratory testing and practical realization. Toulson, R. and Cirstea, S.

Micro-perforates in vibro-acoustic systems Li CHENG

Acoustical behavior of purely reacting liners

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER The study on sound-absorbing properties of oblique micro-perforated panel

Effect of effective length of the tube on transmission loss of reactive muffler

Experimental feasibility of in-duct sound source reconstruction

Proceedings of Meetings on Acoustics

ACOUSTIC ABSORBENT PANELS WITH LOW PERFORATION COEFFICIENT.

FORMULAS OF ACOUSTICS

Transmission Loss Assessment for a Muffler by Boundary Element Method Approach

ACOUSTIC CONTROL USING IMPEDANCE CHARACTERISTICS

NON-LINEAR PARAMETER ESTIMATION USING VOLTERRA AND WIENER THEORIES

HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS

Introduction to Acoustics. Phil Joseph

THE ACOUSTIC AND INSTABILITY WAVES OF JETS CONFINED INSIDE AN ACOUSTICALLY LINED RECTANGULAR DUCT FANG Q. HU. Department of Mathematics and Statistics

Introduction to Acoustics Exercises

Side branch resonators modelling with Green s function methods

On the aeroacoustic tonal noise generation mechanism of a sharp-edged. plate

Sound radiation and sound insulation

THE DEPENDENCE OF SOUND ABSORPTION BY AN ISOLATED ACOUSTIC RESONATOR ON THE RESONATOR S VOLUME

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Influence of background noise on non-contact vibration measurements using particle velocity sensors

Preprint. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls.

SOUND ABSORPTION OF MICRO-PERFORATED PANEL PRODUCED BY ADDITIVE MANUFACTURING

Liner impedance determination from PIV acoustic measurements

Empirical study of the tonal noise radiated by a sharpedged flat plate at low-to-moderate Reynolds number

Sound diffraction by the splitter in a turbofan rotor-stator gap swirling flow

C F A / V I S H N O

OPAC102. The Acoustic Wave Equation

Design of ParaMPA: a micro-perforated absorber

The Effect of Flexibility on the Acoustical Performance of Microperforated Materials

Two-Port Indirect Acoustic Impedance eduction in presence of grazing flows

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

The acoustic impedance characteristics of porous foams and fibrous materials

Proceedings of Meetings on Acoustics

CROSS-VALIDATION OF A NEW GRAZING FLOW LINER TEST RIG USING MULTIPLE IMPEDANCE EDUCTION TECHNIQUES

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients

Calculation of Duct Flow Noise Using CE/SE Method

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES

Microperforated Insertion Units in free field: A case study

MEASUREMENT OF INSERTION LOSS OF AN ACOUSTIC TREATMENT IN THE PRESENCE OF ADDITIONAL UNCORRELATED SOUND SOURCES

Excess sound absorption at normal incidence by two microperforated panel absorbers with different impedance

Dispersion-Relation-Preserving Interpolation Stencils. for Computational Aeroacoustics

Absorption boundary conditions for geometrical acoustics

CONSOLIDATED GRANULAR MEDIA FOR SOUND INSULATION: PERFORMANCE EVALUATION THROUGH DIFFERENT METHODS

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Modeling of Membrane Sound Absorbers

Ray Kirby* School of Engineering and Design, Mechanical Engineering, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK.

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients

Mobility and Impedance Methods. Professor Mike Brennan

IDENTIFICATION OF MULTI-DEGREE-OF-FREEDOM NON-LINEAR SYSTEMS UNDER RANDOM EXCITATIONS BY THE REVERSE PATH SPECTRAL METHOD

A practical device to determine the reflection coefficient of acoustic materials in-situ based on a Microflown and microphone sensor

Perforated Panel Absorbers with Viscous Energy Dissipation Enhanced by Orifice Design

IDENTIFICATION OF VIBRATION PATH IN A GASOLINE DIRECT- INJECTION ENGINE USING TWO INPUT-ONE OUTPUT MODEL

METHODS OF THEORETICAL PHYSICS

Application of a Helmholtz resonator excited by grazing flow for manipulation of a turbulent boundary layer

D. BARD DIVISION OF ENGINEERING ACOUSTICS, LUND UNIVERSITY

Oblique incidence sound absorption of parallel arrangement. of multiple micro-perforated panel absorbers in a periodic. pattern

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Frequency Resolution Effects on FRF Estimation: Cyclic Averaging vs. Large Block Size

THE ACOUSTIC POWER RADIATED BY A CIRCULAR MEMBRANE EXCITED FOR VIBRATION BOTH BY MEANS OF THE EDGE AND BY EXTERNAL SURFACE LOAD

Low Noise Intake System Development for Turbocharged I.C. Engines Using Compact High Frequency Side Branch Resonators

Transcription:

3th AIAA/CEAS Aeroacoustics Conference (8th AIAA Aeroacoustics Conference) AIAA 7-353 Acoustic Characterisation of Perforates using Non-linear System Identification Techniques Hans Bodén MWL, Aeronautical and Vehicle Engineering, KTH, S- 44 Stockholm, Sweden This paper discusses the use of nonlinear system identification techniques for determination of linear acoustic impedance and non-linear acoustic properties of perforates and other facing sheets used in aircraft engine liners. I. Introduction N Ref. experimental techniques for determining acoustic impedance and flow resistance for perforates under I non-linear conditions were discussed. Experiments were made using both pure tone and random excitation and the relevant parameters controlling the non-linearity were discussed. In Ref. a study of harmonic interaction effects using two-tone excitations was made and in Ref. 3 the study was extended to multi-tone excitation for different types of perforates. In the linear case the impedance is independent of the sound field but when the sound pressure level is high the perforate impedance will be dependent on the acoustic particle velocity in the holes. For pure tone excitation it is obvious that the impedance will be controlled by the acoustic particle velocity at that frequency. If the acoustic excitation is random or periodic with multiple harmonics the impedance at a certain frequency may depend on the particle velocity at other frequencies. The results of Ref. -3 show that the total rms-value of the particle velocity in the holes seems the relevant parameter controlling the non-linearity. In this paper the experimental techniques discussed in Ref. to 3 are further developed for studying this problem. A study is made of using nonlinear system identification techniques for this purpose. Many investigations of nonlinear effects occurring when high amplitude sound waves are incident on perforated plates or orifice plates have been published, see e.g., Ref. 4-9. In many of the early works a standing wave tube with single frequency excitation was used. Ingård and Ising 6 in their classical study on nonlinearity of orifices used a differential pressure measurements and a hotwire probe in the hole, still with pure tone excitation. Maa -, has studied linear and nonlinear behaviour of so-called micro-perforates. It is generally agreed that the non-linear losses are associated with vortex shedding at the outlet side of the orifice or perforate openings 3-6. Tam et al 4-6, have studied slit resonators using direct numerical simulation in 4-5. Non-linear system identification techniques have not previously been applied to the perforate impedance problem. The idea of treating, a squared, nonlinear path as a separate non-linear input after which system identification is performed as for a linear two input one output system was first introduced by and Bendat and Piersol 7-8. The general methodology, for arbitrary nonlinear systems, as used in this paper was first published by Rice and Fitzpatrick 9. The techniques have later been summarized by Bendat. An example of a more recent work applying a modified version of the technique to mechanical system is Ref.. Associate Professor, MWL, KTH Aeronautical and Vehicle Engineering, SE 44 Stockholm, Sweden. Copyright 7 by the, Inc. All rights reserved.

II. Models for Perforate Impedance In Ref. 7-8 a semi-empirical model for perforate resistance and reactance was presented. It summarises the previously published models and adds a few improvements to the resistance and reactance end corrections and the resistive and reactive terms associated with nonlinearities and grazing flow. Removing the terms associated with grazing and through flow which are not relevant for the present study gives θ = jk t J ( kd ) σ re Re f C + int + D F( ) F( ) + kd σ μ μ σ σ CD δ v c n, () jk t.5d σ Χ = Im f C + σ D F D v int ( μ ) F( μ) σ C c 3 n, () where θ is the normalized resistance and Χ is the normalized reactance, k is the wave number, σ is the porosity (percentage open area), C D is the discharge coefficient, t is the plate thickness, μ is the adiabatic dynamic viscosity, μ =, 79μ is the dynamic viscosity close to a conducting wall, ν = μ/ρ is the kinematic viscosity, J is the Bessel function, d is the hole diameter, c is the speed of sound, v n is the peak value of the acoustic particle velocity incident on the sample. The rest of the parameters are defined as jω K =, (3) ν ( Kd ) ( Kd ) 4J F( μ ) =, (4) Kd J 3 δ re =.d + d + 6d, (5) 3 f int =.47 σ +. 47 σ. (6) The third term in () and the second term in () represent the nonlinear contributions proportional to the acoustic particle velocity. The second term in () is usually small compared to the first linear term and can be neglected. These equations will be used for comparison with the experimental results. Comparison will also be made with the model suggested by Maa 9- for micro-perforates 3ν t k d v p n θ = + k p / 3 + +, (7) σ c d 4t σ c ωt k p Χ = + 9 + σ c d vn +.85 +, t σ c (8) dk where k p =. j (9) It can be seen from () and (7) that the perforate resistance is proportional to the peak particle velocity in the holes v. This is because it can be expected that the main non-linearity will be caused by the flow constriction caused by n

the facing sheet. For a single constriction under stationary flow conditions the pressure difference over the constriction is ( ρ ) v( v( ) Δ p( = t. () It is shown in Ref. that, under the assumption that v( follows a zero mean Gaussian distribution, the third- ρ v( v( is order polynomial least-squares approximation to ( ) ) t 3 [( σ π ) v( + ( π 3σ ) v ( )] ρ Δ p( = t v v, () where σ v is the standard deviation of v(. Taking the Fourier transform of Eq. () gives [( σ π ) V + ( π 3σ ) V ] ρ Δ P = v v 3, () where ΔP(f), V(f) and V 3 (f) are the Fourier transforms of Δp(, v( and v 3 (. The original square-law system with sign ( ρ ) v( v( could therefore to the third order be replaced by a linear system in parallel with a cubic system. III. Non-linear system identification The main idea behind the non-linear system identification techniques described in References 7- is that the nonlinear path can be treated as a separate input followed by a linear system. This requires that we know the type of non-linearity. Another possibility, as described in Ref. 9, is that we test different powers of the input x i ( and check which gives the best fit to our experimental data. In the present case we will assume that the type of nonlinearity is known from the models described in the previous section. If the particle velocity (v() is considered as the input and the acoustic pressure (p() as the output from the system, the non-linear model can be described by Figure. The frequency response function Z(f) is the linear impedance while A(f) corresponds to the non-linear terms in (), (), (7) and (8) if x ( v() t ) = v( v( and n( is uncorrelated noise at the output. n( v( x(v() Z(f) A(f) Σ + p( Figure : Non-linear model. 3

The model in Fig. is now replaced by the model shown in Figure. N(f) V(f) X(V(f)) Z (f) A(f) Σ + P(f) Figure : Revised non-linear model. The non-linear input is described by X(V(f)) which denotes the Fourier transform of x(. It should be noted that when calculating the nonlinear function x( an anti-aliasing filter should be applied before performing the Fourier transform and calculation of auto-spectra and cross-spectra. The linear systems Z (f) and A(f) are now determined using V(f) and X(f) as inputs to two separate linear systems. It is possible to make the inputs of Fig. independent of each other by removing all parts of X(f) which are correlated with V(f) giving the system shown in Fig. 3. N(f) V(f) Z (f) Y(f) A(f) + P(f) Figure 3: Revised non-linear model with uncorrelated inputs. From measurement of v( and p( followed by the calculation of non-linear input data x( the following auto and cross spectra can be calculated: G vv (f), G pp (f), G xx (f), G vp (f), G pv (f), G xp (f). G px (f), G xu (f) and G ux (f). The coherence function between v( and x( is Gvx Gxv γ vx =, (3) G G xx vv and the uncorrelated input Y(f) is calculated from The cross spectrum between Y(f) and P(f) is calculated from G yy ( γ ) = G. (4) xx vx G yp Gxv Gvp = Gxp. (5) G vv 4

The system data is now estimated from Gvp Z o =, (6) G vv Gyp A( f ) =. (7) G yy The original model linear impedance is then obtained from Z G = o. (8) G ux Z A The coherence functions between V(f) and P(f) and Y(f) and P(f) can be calculated from uu G ( ) ( ) vp f G pv f γ vp =, (9) G G pp vv G ( ) ( ) yp f G py f γ yp =. () G G They will tell us how much inputs V(f) and Y(f) contribute to the output signal. If the sum of these two coherence functions is close to unity the chosen model gives a good fit to the experimental data. In Ref. it is suggested that it is not necessary to do the signal conditioning described in (3) (5) in order to perform the non-linear system identification. Instead an input cross-spectral matrix is formed which in our two input one output model is G pp yy Gxv ( ) ( ) f Gxx f Gvv ( f =, () Gvx II ) and an input output cross-spectral matrix is also formed The system data is then calculated from Ip [ G ] vp Gxp G =. () [ Z A] = G G H =. (3) This amounts to performing the same calculations leading to (7) and (8). It is however claimed in Ref. that this formalism is better if we want to extend the analysis to problems with multiple non-linear inputs and multiple outputs. A multiple coherence function is also defined as Ip II 5

H G ( ) ( ) Ip f GII f GIp γ m =, (4) G pp where superscript H stands for a transposed and complex conjugated matrix. The multiple coherence according to (4) turns out to be the same as the sum of the component coherence functions given in (9) and (). IV Experimental technique An impedance tube as shown in Fig. 4 was used for the experimental tests. The sample was placed in a holder at the end of the duct and measurements were made with and without the sample. The measurements performed are very similar to those made in Refs. -3 but in this case time domain data was collected using random excitation. The measured pressures were Fourier transformed and the pressure and particle velocity was calculated at the sample cross section assuming linear plane wave propagation in the duct. The particle velocity and pressure as a function of time was then calculated using an inverse Fourier transform. This data could then be used as input to the non-linear system identification. Mic b s l Mic a Pos. Pos. x Figure 4. Sketch and photo of impedance tube. Another possibility tested was using a Microflown p-u probe to simultaneously measure pressure and particle velocity at the same cross section instead of calculating the from the two pressure measurements. Tests were made for a perforate sample with 3. % porosity, hole diameter mm and hole thickness.5 mm. 6

V. Experimental results and discussion Figure 5 shows the real part of normalised impedance (Z (f)) estimated from (6) and the linear part estimated from (8), for different levels of excitation described by the sound pressure level and r.m.s.-value for the particle velocity at the sample. It can be clearly seen that we are able to remove the non-linear part of the impedance and to get a reasonably got agreement between the linear impedance estimates obtained from (8) for different levels of excitation..4.4.3.3 Real(Z). Real(Z)... -. 5 5 5 3 35 4 45 a) Linear part -. 5 5 5 3 35 4 45 b) Including both linear and non-linear parts Figure 5: Real part of normalized impedance: black 3 db,.9 m/s; blue 3 db,.3 m/s; red 4 db,. m/s, green 93. db.43 m/s. In the results presented in Fig. 5 it was assumed that the non-linear model was ( v( ) v( v( ( v t ) v( 3 x =. If we instead assume that x () = we get the result shown in Fig. 6. We can see that we are not getting as good an estimate of the linear part of the impedance in this case..4.3 Real(Z).. -. 5 5 5 3 35 4 45 Figure 6: Real part of normalized impedance for 3 db sound pressure level and.9 m/s particle x v t = v t v t, red linear estimate using velocity at the sample: black linear estimate using ( ( )) ( ) ( ) x ( v( ) = v( 3, black dashed linear and non-linear parts. 7

Figure 7 shows the coherence function estimates obtained using (9), () and (4). It can be seen that the linear path gives the largest contribution to the output in this case indicating that non-linearity is quite weak. It can also be seen the total coherence according to (4) is close to unity showing that the model fits the experimental data well..8 Coherence.6.4. 5 5 5 3 35 4 45 Figure 7: Coherence function estimates for 3 db sound pressure level and.9 m/s particle velocity at the sample: black linear path (9), blue dashed non-linear path (), red dashed total (4). It is also of interest to compare the experimental results with theory according to (), () and (7), (8). Figure 8 shows real part of the measured linear normalized impedance compared to the linear part from () and (7). It can be seen that the agreement is reasonably good...9.8.7.6.5 Real(Z).4.3.. -. 5 5 5 3 35 4 45 Figure 8: Real part of measured normalized impedance: black 3 db,.9 m/s; blue 3 db,.3 m/s; red 4 db,. m/s, green 93. db.43 m/s; black dashed theory according to (); black dashed-dotted theory according to (7). 8

Figure 9 shows a comparison between the measured non-linear system frequency response function A(f) and the corresponding non-linear terms from (), () and (7). It can be seen that the agreement is fairly good. 4 3.5.5 3.5 Real(A) Imag(A) -.5.5 -.5 -.5 5 5 5 3 35 4 45 a) Real part. - 5 5 5 3 35 4 45 b) Imaginary part Figure 9: A(f) for 3 db sound pressure level and.9 m/s particle velocity; full line - measurement, dashed line - theory according to (), (); dashed-dotted line - theory according to (7). VI. Conclusions Non-linear system identification techniques have been tested for obtaining linear impedance and non-linear acoustic properties for perforates. It has been shown that the technique works and gives results in reasonable agreement with theory. The technique described here provides an easy and quick technique or simultaneous measurement of linear and non-linear acoustic properties using random excitation. 9

References Bodén, H., Determination of Flow Resistance from Acoustic In-Duct Measurements, AIAA Paper 4-84. Bodén, H., Experimental investigation of harmonic interaction effects for perforates, AIAA Paper 5-896. 3 Bodén, H., Ying, G. and Tözün, H.B., Experimental investigation of nonlinear acoustic properties for perforates, AIAA Paper 5-896. 4 Sivian, I.J., "Acoustic impedance of small orifices", Journal of the Acoustical Society of America, Vol. 7, 935, pp. 94-. 5 Ingård, U. and Labate, S., "Acoustic circulation effects and the nonlinear impedance of orifices", Journal of the Acoustical Society of America, Vol., 95, pp. -9. 6 Ingård, U. and Ising, H., "Acoustic nonlinearity of an orifice", Journal of the Acoustical Society of America, Vol. 4, 967, pp. 6-7. 7 Melling, T.H., The acoustic impedance of perforates at medium and high sound pressure levels, Journal of Sound and Vibration, Vol. 9, No., 973, pp. -65. 8 Elnady, T. and Bodén, H., On semi-empirical liner impedance modeling with grazing flow, AIAA Paper, AIAA 3-334, May 3. 9 Elnady, T., Modelling and characterization of perforates in lined ducts and mufflers (Paper III), PhD Thesis, Department of Aeronautical and Vehicle Engineering, KTH, Stockholm, Sweden, 4. Maa, D.-Y. Potential of microperforated panel absorber, Journal of the Acoustical Society of America, Vol. 4, N. 5, 935, pp. 86-866. Maa, D.-Y., Microperforated panel at high sound intensity Proc.internoise 94 (Yokohama,994). Maa, D.-Y., Theory and design of microperforated-panel sound-absorbing construction Sci. Sin. XVIII, 55-7 975. 3 Ingård, U., "Nonlinear distortion of sound transmitted through an orifice", Journal of the Acoustical Society of America, Vol. 48, 97, pp. 3-33. 4 Tam, C.K.W. and Kurbatski, K.A., Micro-fluid dynamics and acoustics of resonant liners, AIAA Paper, AIAA 99-85, 999. 5 Tam, C.K.W., Kurbatski, K.A., Ahuja K.K.and Gaeta Jr., R.J. A Numerical and Experimental Investigation of the Dissipation Mechanisms of Resonant Acoustic Liners, Journal of Sound and Vibration, Vol. 45, No. 3,, pp. 545-557. 6 Tam, C.K.W., Ju, H., Jones, M.G, Watson, W.R. and Parrott, T.L. A Computational and Experimental Study of Slit Resonators, Journal of Sound and Vibration, Vol. 84, No. 3-5, 5, pp. 947-984. 7 Bendat, J.S. and Piersol, A.G. Spectral analysis of non-linear systems involving square-law operations, Journal of Sound and Vibration, Vol. 8, pp. 99-3. 8 Bendat, J.S. and Piersol, A.G. Decomposition of wave forces into linear and non-linear components, Journal of Sound and Vibration, Vol. 6, pp. 39-48. 9 Rice, H.J. and Fitzpatrick, J.A. A generalized technique for spectral analysis of non-linear systems, Mechanical Systems and Signal Processing, Vol., No., pp. 95-7. Magnevall, M. and Ahlin, K.A. On nonlinear parameter estimation, Proceedings of ISMA, 6, Paper 55. Bendat, J.S., Nonlinear System Analysis & Identification, John Wiley & Sons Inc., 99.