Heat Transfer. Solutions for Vol I _ Classroom Practice Questions. Chapter 1 Conduction

Similar documents
If there is convective heat transfer from outer surface to fluid maintained at T W.

1 Conduction Heat Transfer

Chapter 10: Steady Heat Conduction

Heat processes. Heat exchange

Principles of Food and Bioprocess Engineering (FS 231) Exam 2 Part A -- Closed Book (50 points)

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005

Heat and Mass Transfer Unit-1 Conduction

1 Conduction Heat Transfer

Study of Temperature Distribution Along the Fin Length

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

ME 331 Homework Assignment #6

Thermal Unit Operation (ChEg3113)

Chapter 2: Steady Heat Conduction

Convection Heat Transfer. Introduction

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

University of Rome Tor Vergata

TOPIC 2 [A] STEADY STATE HEAT CONDUCTION

Examination Heat Transfer

Examination Heat Transfer

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

DEPARTMENT OF MECHANICAL ENGINEERING. ME 6502 Heat and Mass Transfer III YEAR-V SEMESTER

Review: Conduction. Breaking News

External Forced Convection :

Chapter 3: Steady Heat Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECHANISM BEHIND FREE /NATURAL CONVECTION

Introduction to Heat and Mass Transfer. Week 5

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Problem 3.73 Known: Composite wall with outer surfaces exposed to convection process while the inner wall experiences uniform heat generation

PROBLEM 3.8 ( ) 20 C 10 C m m m W m K W m K 1.4 W m K. 10 W m K 80 W m K

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx.

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K

Thermal and Fluids in Architectural Engineering

Numerical Heat and Mass Transfer

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

INSTRUCTOR: PM DR. MAZLAN ABDUL WAHID TEXT: Heat Transfer A Practical Approach by Yunus A. Cengel Mc Graw Hill

PHYSICAL MECHANISM OF CONVECTION

Transport processes. 7. Semester Chemical Engineering Civil Engineering

PROBLEM 7.2 1/3. (b) The local convection coefficient, Eq. 7.23, and heat flux at x = L are 1/2 1/3

Pin Fin Lab Report Example. Names. ME331 Lab

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is

Heat Transfer Convection

Conduction: Theory of Extended Surfaces

enters at 30c C with a mass flow rate of 2.09 kg/ s. If the effectiveness of the heat exchanger is 0.8, the LMTD ( in c C)

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: )

ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ENSC 388. Assignment #8

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University

Chapter 4: Transient Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM

PROBLEM Node 5: ( ) ( ) ( ) ( )

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 3 August 2004

OUTCOME 2 - TUTORIAL 1

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C)

1 R-value = 1 h ft2 F. = m2 K btu. W 1 kw = tons of refrigeration. solar = 1370 W/m2 solar temperature

Introduction to Heat Transfer

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

Introduction to Heat and Mass Transfer. Week 14

4. Analysis of heat conduction

PHYSICAL MECHANISM OF NATURAL CONVECTION


Time-Dependent Conduction :

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

LAMINAR FORCED CONVECTION HEAT TRANSFER IN HELICAL COILED TUBE HEAT EXCHANGERS

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010.

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6 Fundamental Concepts of Convection

Convection. U y. U u(y) T s. T y

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Introduction to Heat and Mass Transfer. Week 7

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan

STEADY HEAT CONDUCTION IN PLANE WALLS

Enhancement of heat transfer on Engine Cylinder Block

QUESTION ANSWER. . e. Fourier number:

Introduction to Heat and Mass Transfer. Week 9

Chapter 2: Heat Conduction Equation

Transient Heat Transfer Experiment. ME 331 Introduction to Heat Transfer. June 1 st, 2017

External Flow: Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets

Liquid or gas flow through pipes or ducts is commonly used in heating and

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

DESIGN OF A SHELL AND TUBE HEAT EXCHANGER

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

ASSUMPTIONS: (1) One-dimensional, radial conduction, (2) Constant properties.

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #1. February 20, 2014

CENG 5210 Advanced Separation Processes. Reverse osmosis

EXTENDED SURFACES / FINS

Empirical Co - Relations approach for solving problems of convection 10:06:43

q x = k T 1 T 2 Q = k T 1 T / 12

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss.

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A

FORMULA SHEET. General formulas:

Transcription:

Heat ransfer Solutions for Vol I _ lassroom Practice Questions hapter onduction r r r K K. ns: () ase (): Higher thermal conductive material is inside and lo thermal conductive material is outside K K r r r Q L ln ln K K Q.6(KL()) () From () and () L Q r r ln ln r r K K Let, r mm, r mm, r mm L Q ln ln K K Q.(KL).. () No, ase (): Higher thermal conductivity material outside, loer thermal conductivity material is inside. Q > Q Means that, loer thermal conductivity material should e used for inner layer and higher thermal conductivity material should e used for outer layer so that heat transfer ill e loer insulation is effective.. ns: (a) r 5mm r 5+5 mm r +5 65 mm Q r r ln ln r r KL KL K 65 ln ln 5 5.66 K 5K r r r K

: : ME GE _ Vol I _ Solutions Q K 65 ln ln 5 5.97. K % decrease in heat transfer.66.97 6%.66. ns: (c) H m, L m,.5 m i,, K.5 W/mK h i.5w/m K, Q 6 h h. ns: (d) i 6 8 J.5.5.5 K r,. 8 K r K r r 5K r r r r r Due to steady state H.. h W/m K r r r K r Kr.7 o.8.5 5. ns: () o avoid condensation in the uilding, the inside all temp should e greater than or equal to DP o h i 8 h o W/m K i K. H. from inside air to inside all H. from inside all surface to outside air.7.7 δ 8. δ.7. 86.6.7 86.6 δ.7 m δ. ommon Data for Q. 6 and Q. 7 6. max 6 Q Q Kr r r r K rr r r x L.m

: : Heat ransfer Q G 8 MW/m 8 6 W/m 6, W/m K For -D steady state ith heat generation equation is d Q dx G d QG d QG x dx dx Q G x x ------ (i) Where, & are constants that can e evaluated y oundary conditions. t, x, 6 6 t x L. m,, 6 8 Q G x x 6 ------ (ii) o get maximum temperature d dx Q G.. 6 x x 6 8 Q G 7. By putting the value of x 5 m in eq.(ii) 6 8 65 8. ns (c) Q 9. ns: (a) 5 5 6 all all Resistance. 5W 5 W, K W/mK, R.6 K/W Q R d cm cm R R..6. 9.W 5 m 5 mm

: : ME GE _ Vol I _ Solutions. ns: () Q i r r Kr r r ri i at radius.5 cm Q Kr r i.5.5 + 7.5.5 5.7 + 85.7. ns: (d) K. 5 ritical radius of cylinder, r c h.5 m 5 mm ritical thicness 5 5 mm. ns: (a). ritical radius, r c h mm cm For cale as r (.5 cm) > r ( cm), the heat transfer decreases y adding insulation.. ns: (c) Q Q Q R eq R + R L L L + L L + L Q + Q L L 5. ns: () r 5 mm, h W/m K, i. W/mK Max. heat flo occurs at critical radius or diameter i d c r c h h. i.6 6 mm. ns: (c) r mm, K.75 r c ( r ). m h 5 r c. mm, s r ( mm) < r c (. mm) he heat transfer increases y adding insulation till r r c and then it decreases.

: 5 : Heat ransfer hapter onvection. ns: (). ns: (a). ns: (a) f.,.88.86-5, V 5 m/sec p J/gK Sat. Stream p Pr f St Pr h f V P Sat. ater P h f V P r P..88 5 5.86.5 7 W/m K. ns: () L cm, p 5,, Q 8 W Q h. gl Grashoff numer (Gr) Gr L (eeping others constant) Nusselt numer (Nu) (Gr. Pr) / for laminar flo Nu (Gr) / Nu (L ) / hl / L h L / Q h Q h Q h dl Q h L Q L / L Q L / / Q L Q L 8 L / / 8 6 L cm L 5. ns: (c) 6. ns: () thicness of hydrodynamic oundary layer.5 Pr p t.5mm 7. ns: (a) 8. ns: (d) Q t Q top + Q ottom + Q side 6 h h + h + h 6h h + h + h h h h h 6

: 6 : ME GE _ Vol I _ Solutions 9. ns: (). e 5y t No slip region, d dy Q Q cond h d dy y e 5y (e 5y )( ) 5 e Su () in () 5y convection (). () 5e 5y ( ) h s ( ) 5 h y. 5 e h 5 W/m K Vd Vd 5. R e 6 6.66 875.6 < Hence flo is laminar constant Nu.66 hd.66.66 h d. (i) ns: (c), (ii) ns: (d).6 W/m K g. W/m K, 8.66.5 9. W/m K. K/m y s Q Q g d dy d.6 dx g. But, Q Q conv. ns: () d dy y.6 h 8 d g dx g.5 h(8 ) 75 W / m. ns: (). W/mK R e 5 means that the flo is laminar D cm.m For a fully developed laminar flo hrough pipe (i) With constant heat flux Nu.6 constant hd.6. h.6. (ii) With constant all temp hd Nu.66.66. h. K 6.6 W / m W / mk K

: 7 : Heat ransfer hapter Extended Surfaces FINS 6 osh(.6) 6 5 5 55 o. ns: (c) o,, 6. ns: (d). ns: () cm 55 5 In case of rod of length L ith insulated tip, the temp at the end of tip 55 5 6 osh m L x osh (ml) osh ml osh osh ml 6 5 ml ml osh - ().6.6 m L In case of rod of length L ith oth ends maintained at same temp of, at the center the temp gradient is zero, means that from one side upto the center of long rod, it can e treated as short fin of length L L, for hich temp distriution is osh(m(l x)) 6 osh() osh(ml) osh(ml) 6.6 osh L L L L + D m +.5 cm.5 m h d 5 9.67 65. cosh m L x cosh ml cosh 9.67.5. cosh 9.67.5.89 8 9 cosh m L x cosh ml cosh 9.67.5. cosh 9.67.5 9.9 5 cm cm cm

: 8 : ME GE _ Vol I _ Solutions. ns: (d) cm () 5 long fin 5 t x 5 mm x cm () 6at x L Given, W/mK,? x cm, x cm e e mx mx m x mx e e m x m x x m h x m m d x x x x 6 5 5 5 cosh(ml) osh(ml).57 ml.99 L L.99 h d 6. ns: (c).99 m.99 5.7.89 m 5.5 8.9 cm 9 cm K W/mK 5W / mk mm 5. ns: () If, x L cosh m L x cosh ml cosh ml (cosh ) h 8.5 W/m K Q loss hpk P d..68 m d... 8

: 9 : Heat ransfer Q loss 8.5.68. 8.76 W h W/m K Q sin glefin hp s tanh ml 7. ns: (c) e mx m ln x 5 8 ln 9 8 87.7 W/m.K h d 7.5.. 7.7.7 L m m 6 P. m.9 6 m Q sin gle.58 W 5.8 otal heat generated n 8 5.8 n.8 W Q dissipatedinsin glefin.6 8. ns: () 5 Effective length, L c.5mm L c.5 m Q hp tanh ml c. ns: (c) h m 8.9 d 5 Q Q 5W 5 5 tanh8.9.5 9. ns: Q gen 8 W 7, l 7 W/mK,

: : ME GE _ Vol I _ Solutions hapter ransient Heat onduction. ns: (c) D mm m K 5 W/mK, 8 Kg/m G J/gK, h 56 W/m K h V e t t t t Given, t t. (t t ) 566 8. e e..6 sec. ns: () d Qentering dx x 5 5x + x + 5x 5x d d d dx dx dx 96x x.5. ns: (c) 5, m 5 gm ime sec m m.5 V V 9 ccording to the Neton s la of cooling the rate of cooling is directly proportional to difference in temperature. d ( ) d d K d d K d d 5 + x + 5x 6x dx d + 9x 8x dx d 96x dx d ooling rate is d ooling rate or heating rate to e maximum d d or minimum dx d ln K e Kt e K 5 K./sec No next sec means that at t emp? e.() 5 5.9

: : Heat ransfer. ns: (a) For lumped analysis to e used Bi. hl a. (L for solid cue is ) 6 Where, a is a side of cue) ha max. 6 a max. 6 h. 6 6.9 m 5 5. ns: (d) d 5 cm.5 m i 5, 9, 5 Lumped capacity analysis can e applied e cause internal temperature gradients are neglected. i e 5 9 e 5 9 h Vp 5 8 V 5 6 9 8. 8 5 e 5 9 6.5 sec 7.7 min V d [ (for sphere) ] 6 6. ns: (a) 65 + 8 r 5 r r i.5 m L.5 m. m /hr d. dt r d dt d dt 7. ns: (d) inside outside 8. ns: (c) d dr r o. m 5.5 W/m.K d r. dr...5 r i d dr d dr r d ri dr 8 85 i r i.6 (8 7 r i ).6 [8 7 (.5)] 5.5/ hr r o r o d. dr d dr d ro. dr 8r o 85r o. 8 7.. 6/hr 9. ns:.5 (range. to.6) It is given in the question that at all times the surface is remaining at temperature of amient.

: : ME GE _ Vol I _ Solutions (F O ) (F O ) B L c B L c c B 6 c B 7 5 6 B.. B.5 hours 5 6 hapter 5 Radiation. ns: () 8 K, 5 K.8,. 6 ( ) Q. 8 5.67 (8 5 ).8.6.6 W/m.8, K, 6K s.5 Q s Q s s s s 57K q Q s s s s.7w / m s. ns: ().5.5

: : Heat ransfer.5 Q.5.5 5. ns: () F +F F F F F F DL D R.5.5.5.5 6 W / m.5. 75 F +F F.75.65 5. ns: (d) K, 5 K,.7 Irradiation of ody.7 5.67 8 5 +. 5.67 8 9.5 W/m.5 6. ns: (d) K, 5 K.7,.8 Q.7 W/m 7. ns: (c) Q Q S W.S 79 Q WS 79Q S E E Given S.5.8 N.8 79 E E N S N 79.5.8 8. ns: (c) % Reduction 75% Q S.75 Q Q Q S WS W.S n n.5

: : ME GE _ Vol I _ Solutions 9. ns: (a).9 c recorded temperature + 7 + 9 K all temperature 5 + 7 + 78 K fluid temperature? h 8. W/m K Q conv Q radation h c c 8 9 78.95.67 c.59 K 8.59. ns: () F + F + F + F F (. +. +.5).75.5 F F 8. F.5.5 F d pipe cm, pipe.8, L p m Q pipe pipe P p all all s room area is very large compared to pipe, hence Q d p plp p all pipe d p p pipe p Q L. 5.67 8 (67 ).8 5.6 W. ns: (d). ns: (c). ns: () () () p + 7 67K

: 5 : Heat ransfer. ns: (). ns: (a) hapter 6 Heat Exchangers oil ater 7 c 8 max h 5.5 min.5m, U W/m NU U min.5. 5.5. ns: (c) NU.5, h c For counter flo NU.5 NU.5. ns: (d) Given,, NU c NU NU.667.5.5. m 7 m No Parallel flo Heat exchanger m m W W m m 8 5. ns: (c) 5 8 6 5 Parallel flo Heat exchanger P c p e e NU ().667.6.9.9 55 5 86 () max 58 7 () min 6 5 5

: 6 : ME GE _ Vol I _ Solutions 5 LMD 5 n n NU 57.9 max 5 8. LMD 57.9 6. ns: () NU NU NU.8 NU NU 7. ns: () h, h 5, U W/m K, 5m, parallel flo H.E exp ( NU) U 5 NU. 5.589 min exp.5 c c min h c c 5 5 c +5 55 Because the hot fluid is steam and hose temp remains constant, the flo is immaterial 8 9, 8 9 m 6.66 9 n m m P U 5 878 6.77 m 6.66 8. ns: (a), m c 5 6 h, P 87 J/g K 8, U W/m K.7 g / sec