How High Can You Jump On Mars? (A Lesson In High School Algebra)

Similar documents
Gravitation & Kepler s Laws

Math Lecture 9

The Force of Gravity exists between any two masses! Always attractive do you feel the attraction? Slide 6-35

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion

Newton s Laws and the Nature of Matter

The beginnings of physics

The Cycloid. and the Kinematic Circumference. by Miles Mathis

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

AP Physics Multiple Choice Practice Gravitation

Sir Isaac Newton. How and why does matter move? DEFINITION: [Who was a Sir Isaac Newton?] SENTENCE: [Use Sir Isaac Newton in a sentence]

Universal gravitation

Finding Extrasolar Planets. I

Quest Chapter 12. What things did Newton bring together and what did he toss? Read the text or check your notes. How does the moon move?

Steve Smith Tuition: Physics Notes

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors

AP Physics 1 Chapter 7 Circular Motion and Gravitation

P - f = m a x. Now, if the box is already moving, for the frictional force, we use

Gravitation -- Conceptual Solutions

Chapter 5 Lecture Notes

Kepler's Laws and Newton's Laws

= v = 2πr. = mv2 r. = v2 r. F g. a c. F c. Text: Chapter 12 Chapter 13. Chapter 13. Think and Explain: Think and Solve:

Chapter 2. Forces & Newton s Laws

Preparing for Six Flags Physics Concepts

Chapter: The Laws of Motion

Point values are given for each problem. Within a problem, the points are not necessarily evenly divided between the parts. The total is 50 points.

Chapter 6: Systems in Motion

Problem Solving. Undergraduate Physics

PHYSICS CLASS XI CHAPTER 8 GRAVITATION

Unit 5 Circular Motion and Gravitation

Chapter 7: Circular Motion

Circular Motion 1

ASTRONAUT PUSHES SPACECRAFT

Chapter: The Laws of Motion

Lesson 6 Plane Geometry Practice Test Answer Explanations

Gravity. Gravity and Newton. What really happened? The history of Gravity 3/9/15. Sir Isaac Newton theorized the Law of Gravitation in 1687

Unit 5: Energy (Part 2)

The Gravity of the Situation. PTYS Mar 2008

Newton's Law of Universal Gravitation

When you walk around, you are stuck to the ground. You can jump up. You always come back down. Why is this?

In physics, motion in circles is just as important as motion along lines, but there are all

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Casting Physics Simplified Part Two. Frames of Reference

The Hertzsprung Russell Diagram. The Main Sequence

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

LESSON EII.C EQUATIONS AND INEQUALITIES

A100 Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy

The passengers ride in capsules. Each capsule moves in a circular path and accelerates.

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation

GRAVITY IS AN ATTRACTIVE FORCE

Lesson 29: Newton's Law of Universal Gravitation

07. GRAVITATION. Questions and Answers

PH 2213 : Chapter 05 Homework Solutions

SUPERCHARGED SCIENCE. Unit 2: Motion.

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

Chapter 5 Review : Circular Motion; Gravitation

Vibratory Motion -- Conceptual Solutions

Gravitation and Newton s Synthesis

UNIT 1 - FORCE GRAVITATIONAL FORCE ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NTS GRAVITATIONAL NOTE GUIDE /10 2. NTS EXAMPLES OF GRAVITY FORMULA /10

CHAPTER 5 -- NEWTON'S LAWS

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

PHYSICS 12 NAME: Gravitation

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

THE LAWS OF MOTION. Mr. Banks 7 th Grade Science

Key Points: Learn the relationship between gravitational attractive force, mass and distance. Understand that gravity can act as a centripetal force.

Gravity. The Universal Force

MITOCW ocw-18_02-f07-lec17_220k

Gravitation. Objectives. The apple and the Moon. Equations 6/2/14. Describe the historical development of the concepts of gravitational force.

AP Physics QUIZ Gravitation

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

Chapter 3 - Gravity and Motion. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2º ESO UNIT 1: Forces and movements. Susana Morales Bernal

Gravitation and Newton s Synthesis

Forces, Momentum, & Gravity. Force and Motion Cause and Effect. Student Learning Objectives 2/16/2016

MITOCW MITRES18_005S10_DiffEqnsMotion_300k_512kb-mp4

Physics Circular Motion Problems. Science and Mathematics Education Research Group

A) Yes B) No C) Impossible to tell from the information given.

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out

Comments about HW #1 Sunset observations: Pick a convenient spot (your dorm?) Try to get 1 data point per week Keep a lab notebook with date, time,

Test, Lesson 7 Waves - Answer Key Page 1

Gravitation. One mark questions.

11 Newton s Law of Universal Gravitation

Tides Unit II: The Bulge Theory of the Tides (3.5 pts)

What changes in space as opposed to being on the Earth? How does this affect mass? Is the car is in equilibrium? Where will the forces act?

One last estimate of the geometry of the whole Earth, and its implications for the composition of the planet.

Motion. Argument: (i) Forces are needed to keep things moving, because they stop when the forces are taken away (evidence horse pulling a carriage).

General strategy for using Newton's second law to solve problems:

In the y direction, the forces are balanced, which means our force equation is simply F A = F C.

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Chapter 5 Gravitation Chapter 6 Work and Energy

Unit 2 Part 2: Forces Note 1: Newton`s Universal Law of Gravitation. Newton`s Law of Universal Gravitation states: Gravity. Where: G = M = r =

Chapter 5: Applications of Newton's laws Tuesday, September 17, :00 PM. General strategy for using Newton's second law to solve problems:

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

Assignment - Periodic Motion. Reading: Giancoli, Chapter 5 Holt, Chapter 7. Objectives/HW:

5. Universal Laws of Motion

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Chapter 5 Part 2. Newton s Law of Universal Gravitation, Satellites, and Weightlessness

Newton s Law of Universal Gravitation

MITOCW free_body_diagrams


Gravity and Spacetime: Why do things fall?

Transcription:

How High Can You Jump On Mars? (A Lesson In High School Algebra) by Tom Atwood October 11, 016 Phun with Physics This article uses nothing more than high school algebra to show some of the astounding bits of knowledge that can be had just by moving some simple equations around. Oh, you're not a math freak? That's OK. Skip over the math and just read the words. You'll be able to understand what is happening. My goal here is not to force you to read through a lot of mathematics, but rather to show you how one can start with a couple of discoveries about natural law and apply a little math logic to reach some interesting conclusions. Read on and be amazed! Newton II If you could only ever know one single law of physics, it shouldn't be Einstein's famous E = mc.it should be Newton's second law of motion, which actually aects just about everything that Figure 1: The planet Mars goes on in your life. Newton's second law says that if you apply a force to a massive object (in the absence of friction, etc.), it will accelerate in the direction of the applied force, and the rate of acceleration will be the amount of force applied divided by the mass of the object: Acceleration of the object = F orce applied to the object/mass of the object In mathematical shorthand, this is written a = F/m (If you multiply both sides of this equation by the mass m, the two sides remain equal, and you get F = ma This is the way most physicists remember Newton's second law.) 1

Gravity As if this weren't enough, Newton also discovered the law of gravitation, which describes the force of gravitational attraction between two masses. What he discovered was that if you were to place two masses, say M and m a distance d apart (measured from their centers), each mass will be attracted toward the other with a gravitational force given by F = GMm where G is a universal constant. So, if M is the mass of the Earth and m is your mass, we can use these two laws to determine what your acceleration would be if you were falling near the surface of the Earth. Just substitute the expression for the gravitational force into Newton's second law: F = GMm = ma Well, would you look at that! Your mass is on both sides of the equation. We can divide both sides of the equation by your mass and what remains will still be an equality (Remember your high school algebra?) So your acceleration due to the force of Earth's gravity doesn't depend on your mass at all: a = GM It only depends on the mass of the Earth and how far you are from the center of the Earth. Well, if you are falling near the surface of the Earth, then the value of the distance d between you and the center of the Earth is essentially the radius of the Earth, which is about 4, 000 miles. If you look up the mass of Earth and the value of the universal constant G, you can work this out, and you would nd that the acceleration you compute is about 3 feet per second per second. Physicists usually use the symbol g to representation this value of acceleration. So, when you hear that some jet ghter pilot experienced an acceleration of 4 g's during a turn, you now know that she was accelerating at a rate of 4 x 3 feet per second per second. Calculating the Mass of the Earth But how do we know the mass of the Earth? Take a good look at that equation for gravitational acceleration. Your mass cancelled out. Suppose we ask about the acceleration of the moon toward the center of the Earth under the inuence of Earth's gravity. Suppose we let m be the mass of the moon and d be the distance from the center of the Earth to the center of the moon. Just as we saw for your mass, the acceleration of the moon depends on the mass of the Earth, not the mass of the moon. Can we measure the acceleraton experienced by the moon as it moves in its circular orbit around the Earth? You betcha! Then we can use our high school algebra to solve our acceleration equation for the mass of the Earth: M = ad G But it's even easier than this. We don't have to measure the acceleration of the moon revolving around the Earth. I won't show it here, but it is easy to show that the acceleration of any object moving uniformly around a circular path is given by a = v R

where v is the linear speed of the object along the circular path and R is the radius of the circle. Remembering Newton's second law, we can multiply both sides of this equation by the mass of the object to nd the force being applied to the object: F = ma = mv R This is the expression for centrifugal force, that strong pull you feel when you are on a fast-moving merry-go-round. But it's even easier than this. The velocity of an object moving in a circle is just the circumference of the circle (distance traveled) divided by the time needed to make a full circle. So the velocity of the moon along its orbit is v = πr T where T is the period of the orbit. For the moon, the period is about 8 days. Substituting this into the equation for acceleration gives a = 4π R T R = 4π R T where I used the last step to cancel out the extra R that appeared in both the numerator and the denominator. Now we can substitute this to get the mass of the Earth in terms of quantities that are easy to measure: M = ad G = ar G = 4π R 3 T G (Here we used the fact that d = R, the distance between the center of the moon and the center of the Earth is the same thing as the radius of the moon's orbit.) Amazing! All we need to know to measure the mass M of the Earth is the radius R of the moons orbit, the period T of the moon's orbit, and the universal constant G. Let's hear a big round of applause for Isaac Newton! Mars has a couple of small moons, Deimos and Phobos. We can measure their orbits. Therefore, we can calculate the mass of the planet Mars in just the same way we calculated the mass of Earth. Just in case this may come in handy. Conservation of Energy When you are relaxing in your easy chair, you are conserving your energy. But in physics the principle of conservation of energy means that the total amount of energy in a closed system is always the same. When it comes to jumping on Earth or on Mars, there are two types of energy that need to be considered. The rst is kinetic energy, the energy of motion. A mass m moving with a velocity v has a kinetic energy Kinetic Energy = mv The other type of energy we need to know about is potential energy. The force of gravity acting on your body endows you with potential energy. Your gravitational potential energy is given by P otential Energy = mgh where m is your mass, g is the acceleration of gravity, and h is your height above the ground. If you are lying on the ground, then h = 0 and you have zero potential energy. You may feel like that in bed sometimes, but remember, you could still roll out of the bed and fall to the oor. Lying there in bed, you may not have much kinetic energy, but you still have some potential energy. 3

But as far as gravity is concerned your total energy is conserved. It remains constant. If you jump, you will start o with zero potential energy (relative to the ground) and as great an initial velocity as the power of your legs can provide. As you move upward through the air, gravity will provide negative acceleration to slow you down and pull you back to earth. At the highest point of your jump, your body will be at its maximum height (h) and will momentarily have zero velocity. The conservation of energy just says the your initial kinetic energy is equal to your potential energy at the highest point: mv = mgh Once again we have a situation where the mass m can be canceled out from both sides of the equation. If we measure the height of your jump, this equation can be multiplied by two to get the square of your initial velocity: v = gh Or, if we know your initial velocity, we can divide both sides of this equation to calculate how high you can jump: h = v g How High Can You Jump on Earth? It's easy to measure how high you can jump on Earth. We don't need to calculate anything. Wikipedia has an interesting article, Vertical Jump, that describes how to measure a person's ability to jump. The average height for males is in the neighborhood of 30 inches, or.5 feet. Since we know this for Earth's gravity, we can use the next-to-last equation above to calculate the initial velocity of your body as it departs the surface of the Earth: v = gh = 3.5 = 160 ft /sec Taking the square root of both sides, v = 1.6 ft/sec How High Can You Jump on Mars? If you jump on Mars, your legs should be able to provide the same amount of thrust as on Earth. Yes, your body weighs less on Mars, but the mass of your body is the same as on Earth. Newton's second law says the resulting acceleration is the force divided by the mass. The force is the same, the mass is the same, so the acceleration that produces your initial velocity will be the same. So your initial velocity in your upward jump will be the same on Mars as it is on Earth. We can calculate how high you can jump on Mars by using the equation we derived above, h = v g since we know your initial velocity is the same as on Earth. But, wait! The acceleration due to gravity, g, is not the same on Mars. But if you go back to the beginning of this lesson, you'll remember we calculated the acceleration due to the gravitational force of a mass: a = GM 4

In this case, we'll let M represent the mass of the planet Mars, and d represent your distance from the center of Mars. G continues to represent that universal gravitational constant discovered by Newton. The value of the acceleration a we are calculating here represents the value of g that applies to the surface of Mars. We can use the orbits of Deimos and Phobos to calculate the mass M of Mars. And the radius of Mars has been measured to be about 100 miles, a little over half that of Earth. If we calculate the gravitational acceleration at the surface of Mars, we nd it to be 0.39 times that of the Earth, or a little over a third of Earths surface gravity: g Mars = 0.39g Earth = 0.39 3 ft/sec = 1.5 ft/sec Plugging this into the equation for how high you can jump on Mars, h = v g = 160 ft /sec = 6.4 ft 1.5 ft/sec (Notice how the units of measure cancel out, leaving the desired unit for height? Physicists use this a lot as a check on their derivations.) Of course, this assumes you are not encumbered by your pressure suit. You shouldn't have any trouble executing a vertical jump of six feet inside the dome. This makes it very clear we will have to change the rules of basketball on Mars. We don't want Grandpa doing slam dunks. This number was calculated for the average male jumper. A good athlete can jump 40 inches, and some have managed 50 inches. So a good athlete could jump about eight and a half feet. Isn't it just a little bit amazing that I was able to tell you this without ever leaving Earth? The power of science. 5