Bayesian X-ray Computed Tomography using a Three-level Hierarchical Prior Model

Similar documents
A. Mohammad-Djafari, Bayesian Discrete Tomography from a few number of projections, Mars 21-23, 2016, Polytechnico de Milan, Italy.

Hierarchical prior models for scalable Bayesian Tomography

Bayesian inference methods for sources separation

Approximate Bayesian Computation for Big Data

Inverse Problems: From Regularization to Bayesian Inference

Bayesian inference for Machine Learning, Inverse Problems and Big Data: from Basics to Computational algorithms

Bayesian Microwave Breast Imaging

Bayesian Approach for Inverse Problem in Microwave Tomography

Inverse Problems: From Regularization Theory to Probabilistic and Bayesian Inference

Entropy, Information Theory, Information Geometry and Bayesian Inference in Data, Signal and Image Processing and Inverse Problems

Variational inference

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

MAXIMUM ENTROPIES COPULAS

VARIATIONAL BAYES WITH GAUSS-MARKOV-POTTS PRIOR MODELS FOR JOINT IMAGE RESTORATION AND SEGMENTATION

2D X-Ray Tomographic Reconstruction From Few Projections

Outline Lecture 2 2(32)

Hierarchical Sparse Bayesian Learning. Pierre Garrigues UC Berkeley

Density Estimation. Seungjin Choi

Inverse problems in imaging and computer vision

A Variance Modeling Framework Based on Variational Autoencoders for Speech Enhancement

Bayesian Knowledge Fusion in Prognostics and Health Management A Case Study

Variational Methods in Bayesian Deconvolution

The Bayesian approach to inverse problems

Cheng Soon Ong & Christian Walder. Canberra February June 2017

Covariance Matrix Simplification For Efficient Uncertainty Management

Stochastic Spectral Approaches to Bayesian Inference

Expectation Propagation for Approximate Bayesian Inference

Expectation Propagation Algorithm

Bayesian Dropout. Tue Herlau, Morten Morup and Mikkel N. Schmidt. Feb 20, Discussed by: Yizhe Zhang

Lecture 13 : Variational Inference: Mean Field Approximation

PATTERN RECOGNITION AND MACHINE LEARNING

SUPREME: a SUPer REsolution Mapmaker for Extended emission

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

Introduction to the Mathematics of Medical Imaging

Variable selection for model-based clustering

Foundations of Statistical Inference

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Bayesian Methods and Uncertainty Quantification for Nonlinear Inverse Problems

Well-posed Bayesian Inverse Problems: Beyond Gaussian Priors

Variational Principal Components

Bayesian Paradigm. Maximum A Posteriori Estimation

Maximal Entropy for Reconstruction of Back Projection Images

Sensors, Measurement systems and Inverse problems

Bayesian inference J. Daunizeau

Infinite latent feature models and the Indian Buffet Process

Series 7, May 22, 2018 (EM Convergence)

An introduction to Bayesian inference and model comparison J. Daunizeau

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M

Introduction to Probabilistic Machine Learning

Bayesian inference J. Daunizeau

REVEAL. Receiver Exploiting Variability in Estimated Acoustic Levels Project Review 16 Sept 2008

Unsupervised Learning

Lecture 6: Model Checking and Selection

Lecture 1b: Linear Models for Regression

Wavelet Based Image Restoration Using Cross-Band Operators

G8325: Variational Bayes

Algorithms for Variational Learning of Mixture of Gaussians

Faster Stochastic Variational Inference using Proximal-Gradient Methods with General Divergence Functions

Nonparameteric Regression:

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning

GAUSSIAN PROCESS REGRESSION

Sparsity Regularization

Linear Dynamical Systems

General Bayesian Inference I

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

Part 1: Expectation Propagation

Posterior Regularization

State Space Gaussian Processes with Non-Gaussian Likelihoods

Recent Advances in Bayesian Inference Techniques

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

GWAS V: Gaussian processes

Introduction to Machine Learning

Outline lecture 2 2(30)

Markov Chain Monte Carlo

Mixture Models and Expectation-Maximization

Kernel-based Image Reconstruction from scattered Radon data by (anisotropic) positive definite functions

Latent Dirichlet Allocation

Compressive Sensing (CS)

Introduction to Probabilistic Graphical Models: Exercises

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Frequentist-Bayesian Model Comparisons: A Simple Example

13 : Variational Inference: Loopy Belief Propagation and Mean Field

an introduction to bayesian inference

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Variational Inference via Stochastic Backpropagation

Gaussian Processes (10/16/13)

Regularized Regression A Bayesian point of view

Reinforcement Learning as Variational Inference: Two Recent Approaches

CSci 8980: Advanced Topics in Graphical Models Gaussian Processes

Introduction to Machine Learning

Bayesian Regression Linear and Logistic Regression

On the coherence barrier and analogue problems in compressed sensing

Approximating mixture distributions using finite numbers of components

Data assimilation with and without a model

Bayesian Multi-Task Compressive Sensing with Dirichlet Process Priors

The Expectation Maximization or EM algorithm

Bayesian Regularization

Bayesian estimation of the discrepancy with misspecified parametric models

Bayesian methods in economics and finance

Introduction to Probability and Statistics (Continued)

Transcription:

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 1/26 Bayesian X-ray Computed Tomography using a Three-level Hierarchical Prior Model Li Wang, Ali Mohammad-Djafari, Nicolas Gac Laboratoire des Signaux et Systèmes (L2S) UMR8506 CNRS-CentraleSupélec-UNIV PARIS SUD SUPELEC, 91192 Gif-sur-Yvette, France http://l2s.centralesupelec.fr Email: li.wang@lss.supelec.fr djafari@lss.supelec.fr nicolas.gac@lss.supelec.fr

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 2/26 General presentation Context: X ray Computed Tomography (CT) Classical methods: Analytic(FBP), Algebraic and iterative(ls,qr,l1,reg,tv,etc.) Proposed Bayesian methods: Sparsity enforcing unsupervised three-level hierarchical model 1 Simulation performances Conclusion and perspectives [1], Computed tomography reconstruction based on a hierarchical model and variational Bayesian method. L.Wang, A.Mohamma-Djafari, N.Gac, M.Dumitru. ICASSP 16.

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 3/26 Context: X-ray Computed Tomography (CT) (I) Low dose Reduce intensity of rays Reduce number of projections Figure: X-ray CT scanner. http://www.analogic.com/products-medical-computer-tomography.htm

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 4/26 Context: X-ray Computed Tomography (CT) (II) Non Destructive Testing Limited number of projections Limited angles of projections Figure: X-ray CT scanner. left: http://www.mat-test.com, right: http://www.qnde.ca

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 5/26 Context: Radon Transformation g(r, ) I0 l(r, ) f(x,y) Figure: Parallel beam tomography projection interpretation. y r Hij fj x projection i g(r, φ) = l r,φ f (x, y)dl Without noise: g [i] = j H [i, j] f [j] Accounting for errors: g [i] = j H [i, j] f [j] + ɛ[i] Notations: f = {f 1, f 2,, f N } The quantified object pixel value; ɛ = {ɛ 1, ɛ 2,, ɛ N } additive noise; H = (h mn ) 1<n<N,1<m<M the projection operator; g = {g 1, g 2,, g N } measured projection data;

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 6/26 Operators and back-projections g = Hf + ɛ (1) Forward operator: g = Hf Adjoint operator: f = H g Back-projection: f = H g Filtered back-projection: f = H ( HH ) 1 g H huge dimensional In general not accessible directly

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 7/26 An example of the direct model original image Projection Back-Projection 10 30 50 1 1 1 1 1 f (128 128) g (64 128) fbp Filtered Back-Projection Filtered Back-Projection Filtered Back-Projection 1 1 1 1 1 1 f FBP (64 in [0, π]) ffbp (32 in [0, π]) ffbp (64 in [0, 1 2 π]) Figure: An example of projection.

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 8/26 Outline Classical methods Proposed methods: The Hierarchical Haar Transformation Based Method (HHBM) Conclusion and Perspectives

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 9/26 Context: Classical methods f = arg minf g Hf 2 2 + λr(f ) Least Square R(f ) = 0 l 2 : Quadratic Regularization(QR) R(f ) = j f j 2 = f 2 l 2 : General QR R(f ) = 2 j [Df ] j = Df 2 l 1 : LASSO R(f ) = j f j = f 1 Total Variation(1D) R(f ) = Df 1 Total Variation(2D) R(f ) = D x f 1 + D y f 1 Main difficulties: How to choose λ? (Cross Validation, L-Curve) How to quantify uncertainties?

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 10/26 Bayesian inference Supervised method: Unsupervised method: p (f g) = p (g f ) p (f ) p (g) (2) p (f, θ g) = p (g f, θ) p (f θ) p (θ) p (g) (3) where θ the hyper-parameters. Main steps: Choose prior models: p(f θ) and p(θ); Computation: JMAP, VBA...

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 11/26 Outline Classical methods Proposed methods: The Hierarchical Haar Transformation Based Method (HHBM) Conclusion and Perspectives

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 12/26 Sparsity in a transform domain Sparsity Specific: volume domain, f is sparse Generally: transformation domain, Df is sparse D: Fourier, Wavelet, Dictionary, etc. 1 1 1 1 Sparsity enforcing distribution: Generalized Gaussian distributions (Laplace, double exponential, etc) Gaussian Mixture distributions Heavy tailed distributions (Student-t, Cauchy, etc)

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 13/26 Multilevel Haar Transformation 1 1 1 1 1 1 (a) (b) (c) (a) Original image; (b) Level 1 Haar transformation; (c) Level 2 Haar transformation. f = Dz + ξ, where z and ξ sparse.

(Generalized) Student-t and Sparsity coefficient 0.5 0.45 0.4 Pdf Normal, St t and St g Normal St t St g 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 5 4 3 2 1 0 1 2 3 4 5 Figure: Pdfs of Normal, Student-t and Generalized Student-t distribution St(f ν) = 0 St g (f α, β) = N (f 0, z) IG(z ν 2, ν 2 ) dz = Γ ( ) ν+1 2 ( νπ Γ ν ) (1 + f 2 ν 2 0 ) ν+1 2 N (f 0, v)ig(v α, β) dv = Γ(α + 1 ) ( 2 1 + f ) 2 (α+ 2 1 ) 2βπ Γ(α) 2β [1] A generalization of Student-t based on Infinite Gaussian Scaled Mixture model and its use as a sparsity enforcing in Bayesian signal processing. M.Dumitru, L.Wang, A.Mohammad-Djafari. L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 14/26

Proposed three-level hierarchical model f H g ɛ Direct model { g = Hf + ɛ L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 15/26

Proposed three-level hierarchical model ξ z D f ɛ H g Direct model { g = Hf + ɛ f = Dz + ξ D: Haar transformation operator. z: Haar transformation coefficient of f. L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 16/26

Proposed three-level hierarchical model α z0, β z0 v z ξ z D f ɛ H g Direct model { g = Hf + ɛ f = Dz + ξ D: Haar transformation operator. z: Haar transformation coefficient of f. L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 17/26

Proposed three-level hierarchical model α ξ0, β ξ0 α z0, β z0 Direct model v ξ v z v ɛ ξ α ɛ0, β ɛ0 z D f ɛ H (Details: Appendix I) g { g = Hf + ɛ f = Dz + ξ D: Haar transformation operator. z: Haar transformation coefficient of f. Likelihood: p(g f, v ɛ ). Prior p(f z, v ξ ), p(z v z ), p(v ɛ ), p(v ξ ) and p(v z ). Posterior p(f, z, v ɛ, v ξ, v z g) L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 18/26

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 19/26 Estimation Algorithms Bayesian Inference p(f, z, v ɛ, v ξ, v z g) p(g f, v ɛ ) p(f z, v ξ )p(z v z )p(v ɛ )p(v ξ )p(v z ) }{{}}{{} Likelihood Prior Joint Maximum A Posterior (JMAP) ( f, ẑ, v ɛ, v ξ, v z ) = arg max f,z,v ɛ,v ξ,v z {p(f, z, v ɛ, v ξ, v z g)} Posterior Mean (PM) via Variational Bayesian Approach (VBA) p(f, z, v ɛ, v ξ, v z g) q(f, z, v ɛ, v ξ, v z ) = q 1 (f )q 2 (z)q 3 (v ɛ )q 4 (v ξ )q 5 (v z ) by minimizing the Kullback-Leibler divergence: ( ) KL q(θ) : p(θ g) = q(θ) ln q(θ) p(θ g) dθ

Results(I) Original 128 128 images and Reconstructed results using 128 projections with SNR=dB. δ f = f f 2 f 2 2 1.8 0.9 1.8 1.6 0.8 1.6 1.4 1.2 1 0.7 0.6 0.5 0.4 1.4 1.2 1 0.8 0.8 0.3 0.6 0.6 0.2 0.4 0.4 0.1 0.2 1 1 0.2 0 1 1 0 0.1 1 1 0 0.2 Original Image FBP (δ f = 0.32) QR (δ f = 0.056) 1.8 1.8 2 1.6 1.6 1.8 1.4 1.4 1.6 1.2 1.2 1.4 1 1 1.2 0.8 0.8 1 0.6 0.6 0.8 0.4 0.2 0.4 0.2 0.6 0.4 1 0 1 0 1 0.2 1 0.2 1 1 0 LASSO (δ f = 0.0541) TV (δ f = 0.0528) HHBM (δ f = 0.038) L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. /26

f Results(II) Zone of profiles of Original and reconstructed Shepp-Logan image. Results are obtained with 128 projections and noise of db. Profile case 128 projection and noise db 1 0.8 Original FBP QR LASSO L1Haar TV HHBM 0.6 0.4 0.2 0 85 90 95 105 110 115 x L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 21/26

Results(III) δ f 0.12 0.11 0.1 0.09 δ f with 128 projections and noise db FBP QR LASSO TV HHBM 0.08 0.07 0.06 δ f 0.05 0 10 30 50 iteration 0.2 0.18 0.16 0.14 0.12 δ f while using 128 projections with SNR=dB δ f with 64 projections and noise db FBP QR LASSO TV HHBM 0.1 0.08 0.06 0 10 30 50 iteration δ f while using 64 projections with SNR=dB L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 22/26

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 23/26 Outline Classical methods Proposed methods: The Hierarchical Haar Transformation Based Method (HHBM) Conclusion and Perspectives

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 24/26 Conclusion and Perspectives Conclusions: Using sparsity of Haar transformation coefficient Joint MAP estimations Method realizable in 3D case Perspectives: Reconstruction of object and contours simultaneously Using our methods and ASTRA toolbox to solve large scale data problems Find ways to decrease the iterative methods cost

Thank you very much! L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 25/26

L. Wang, A. Mohammad-Djafari, N. Gac, MaxEnt 16, Ghent, Belgium. 26/26 Appendix (I) The three-level hierarchical haar transformation based model: p(g f, v ɛ ) = N (g Hf, V ɛ ) V ɛ 1 2 exp [ 1 2 (g Hf ) V 1 ɛ (g Hf ) ] [ ] p(f z, v ξ ) = N (f Dz, v ξ ) v ξ 1 2 exp 1 2 (f Dz) V 1 ξ (f Dz) p(z v z ) = N (z 0, V z ) V z 1 2 exp [ ] 1 2 z V 1 z z p(v z α z0, β z0 ) = N j IG(v zj α z0, β z0 ) [ ] N j v (αz 0 +1) z j exp β z0 v 1 z j p(v ɛ α ɛ0, β ɛ0 ) = M i IG(v ɛi α ɛ0, β ɛ0 ) M i v (αɛ 0 +1) ɛ i exp [ ] β ɛ0 v 1 ɛ i p(v ξ α ξ0, β ξ0 ) = N j IG(v ξj α ξ0, β ξ0 ) [ N j v (α ξ 0 +1) exp β ξ0 v 1 ξ j ξ j ]