Gyroviscosity in the NIMROD code. A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger

Similar documents
16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES!

Computational Modeling of Fully Ionized Magnetized Plasmas Using the Fluid Approximation

Elasticity in two dimensions 1

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Comparison of Kinetic and Extended MHD Models for the Ion Temperature Gradient Instability in Slab Geometry

Problem Set 4. Eshelby s Inclusion

Computational modeling of fully ionized magnetized plasmas using the fluid approximation a

Local Anisotropy In Globally Isotropic Granular Packings. Kamran Karimi Craig E Maloney

Homogenization in Elasticity

Fundamentals of Linear Elasticity

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Modeling of ELM Dynamics for ITER

MATH45061: SOLUTION SHEET 1 V

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

Chapter 7. Kinematics. 7.1 Tensor fields

Basic concepts to start Mechanics of Materials

Introduction to fracture mechanics

Constitutive Relations

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

Semi-implicit Treatment of the Hall Effect in NIMROD Simulations

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Constitutive Relations

Math review. Math review

MHD Linear Stability Analysis Using a Full Wave Code

STRESS TRANSPORT MODELLING 2

Waves in plasmas. S.M.Lea

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Waveform inversion and time-reversal imaging in attenuative TI media

3D and Planar Constitutive Relations

CH.1. THERMODYNAMIC FOUNDATIONS OF CONSTITUTIVE MODELLING. Computational Solid Mechanics- Xavier Oliver-UPC

Introduction to Seismology Spring 2008

Waves in plasma. Denis Gialis

Lecture Note 1. Introduction to Elasticity Equations

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

Understand basic stress-strain response of engineering materials.

Elastic Fields of Dislocations in Anisotropic Media

Bulletin of the Transilvania University of Braşov Vol 10(59), No Series III: Mathematics, Informatics, Physics, 49-58

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

6.2 Governing Equations for Natural Convection

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

Tensors, and differential forms - Lecture 2

A.1 Appendix on Cartesian tensors

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

A short review of continuum mechanics

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Dr. Parveen Lata Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India.

Electricity & Magnetism Qualifier

Heating and current drive: Radio Frequency

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

Fluid Dynamics Exercises and questions for the course

Lagrangian Formulation of Elastic Wave Equation on Riemannian Manifolds

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

A Three-Fluid Approach to Model Coupling of Solar Wind-Magnetosphere-Ionosphere- Thermosphere

1 Gauss integral theorem for tensors

Fluid equations, magnetohydrodynamics

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

Exponential Growth and Filamentary Structure of Nonlinear Ballooning Instability 1

MHD RELATED TO 2-FLUID THEORY, KINETIC THEORY AND MAGANETIC RECONNECTION

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Single Particle Motion

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Part 1 ELEMENTS OF CONTINUUM MECHANICS

Part 5 ACOUSTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA

Mechanics of Earthquakes and Faulting

Faculty of Engineering, Mathematics and Science School of Mathematics

Exam paper: Biomechanics

Waves in Linear Optical Media

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ.

Incompressible MHD simulations

E&M. 1 Capacitors. January 2009

AA242B: MECHANICAL VIBRATIONS

Extended MHD simulation of Rayleigh-Taylor/Kelvin-Helmholtz instability

Homework 7-8 Solutions. Problems

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Lecture 8: Tissue Mechanics

Finite Elements for Elastic Shell Models in

ASTR 320: Solutions to Problem Set 2

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency

Hall Viscosity of Hierarchical Quantum Hall States

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Chapter 2 General Anisotropic Elasticity

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

The Rule of Three for commutation relations

Fundamentals of Magnetic Island Theory in Tokamaks

Memoirs on Differential Equations and Mathematical Physics

ICES REPORT February Saumik Dana and Mary F. Wheeler

Introduction and Vectors Lecture 1

Proceedings of Meetings on Acoustics

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

Gyrokinetic simulations of magnetic fusion plasmas

12. MHD Approximation.

Effect of internal state variables in thermoelasticity of microstretch bodies

Macroscopic theory Rock as 'elastic continuum'

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

COMPARISON OF NEOCLASSICAL ROTATION THEORY WITH EXPERIMENT UNDER A VARIETY OF CONDITIONS IN DIII-D

Transcription:

Gyroviscosity in the NIMROD code A.Y. Pankin D. D. Schnack C. Sovinec S. E. Kruger

Outline Introduction Two possible implementations Testing GV in the NIMROD code Convergence Summary

ε = ω / Ω i ξ = V 0 /V thi δ = ρ i / L Gyroviscous force εξ V i t + ξ δv i V i = 1 n δ p + Π i 0 Π i i + ξ E + V i B p 0 ( ) ratio of the characteristic frequency to the ion gyro-frequency ratio of the characteristic flow velocity to the ion thermal speed ratio of the ion Larmor (gyro-) radius to the macroscopic scale length Properties of Fluid Models Model V i ω β J B Whistlers KAW Hall V thi /δ Ω ci O(δ ) MHD mn dv i Yes No + O(δ) dt Ideal V thi δω ci O(δ) O(δ) No No MHD Drift δv thi δ O(1) Ωci p + O(δ ) No Yes GV force is not caused by particle collisions GV force is nor dissipative

Π i = Π + Π + Π gv Π = 3 η 0 b W b ( ) I 1 3 bb Π = η 1 ( I bb) W I bb Π gv = η 3 Stress tensor ( ) 1 ( I bb) ( I bb) :W [ b W ( I+ 3bb) ( I+ 3bb) W b], + 4[ ( I bb) W bb + transpose]} where W is the rate of strain tensor : W = V + ( V) T 3 I ( V ) η 3 = nt i Ω, η 0 Ω = eb m i = 0.96 nt i ν, η 1 = 3 10 is the ion gyro - frequency nt i ν Ω,

First Implantation: Hooke s law Linear relationship between stress and rate of strain : Π ij = E ijkl W kl Elastic constant tensor : Symmetry : E ijkl Π ij W kl E ijkl = E jikl E ijkl = E 14444 4444 ijlk 3 Π and W are symmetric E ijkl ( B) = E klij ( B) 144 4443 B is a pseudo-vector (Onsager) Elastic constant tensor for a magnetized plasma : E ijkl = 1 η 3( ε imk b m u lj + ε jmk b m u li ), u αβ = δ αβ + 3b α b β E xxxy = E xxyx = E yyxy = E yyyx = η 3 E xyxx = E yxxx = E xyyy = E yxyy = 1 η 3 E xzyz = E zxxy = E zxyz = E zxzy = E yzxz = E zyxz = E zyzx = E yzzx = η 4 (Cartesian representation, b = e z ) 81 components, 16 non - zero, 1 independent (single parameter dependence)

First Implantation: continue Cartesian rate of strain tensor : W = V i + V i T 3 Ι V i ( V) kl = V l x k W ij = A ijkl ( V) kl A ijkl = δ il δ kj + δ ik δ lk 3 δ ijδ km δ ml Write stress directly in terms of rate of strain : Π ij = E ijkl A klmn ( V) mn = D ijmn ( V) mn D ijmn = 1 η 3 ε izn δ mj + 3δ mz δ jz Symmetries : [ ( ) + ε izm ( δ nj + 3δ nz δ jz ) +ε jzn ( δ mi + 3δ mz δ iz ) + ε jzm ( δ nj + 3δ nz δ iz )] Assumes B locally aligned with z axis D ijmn = D jimn, D ijmn = D ijnm, D ijmn = D mnij These symmetries assure GV stress non - dissipative : V Π GV d 3 x = 0

First Implantation: Computation of GV stress 1. Compute D ijmn once at beginning of run. Transform D ijmn to cylindrical coordinates at each spatial location, depending on local direction of magnetic field D αβγδ = S iα S jβ D ijkl S kγ S lδ i, j, k, l = x, y,x α, β, γ, δ = r,θ,z cosα sinα 0 S = cosβ sinα cosβ cosα sinβ sinβ sinα sinβ cosα cosβ α = tan 1 B r, β = tan 1 B r + B θ B θ B z 3. Stress tensor components in cylindrical coordinates is Π ij = V r r ( V) 1 V = r r θ V θ r V r z D ijmn ( V) mn V θ r 1 V r r θ + V r r V θ z V z r 1 V z r θ V z z 4. FE divergence in cylindrical coordinates ( Π GV ) p = dv ( α p D α q ) V q,.

Second Implementation A r,p,n Based on weak formulation of the stress tensor force - dxa ν,p,n Π = dx( A ) T ν,p,n :Π ds Π A ν,p,n α p,n 0 0 r α = p,n 0 0 z in r α 0 α r A z,p,n α 0 p,n 0 r α = 0 p,n 0 z 0 in r α 0 IS ZERO for non-slip boundary conditions A φ,p,n α 0 0 p,n r α = 0 0 p,n z α 0 in r r α Find product ( A ) T :Π ν,p,n and heating - V :Π - > - dxa ν,p,n V :Π

c----------------------------------------------------------------------- c stress tensor for gyro-viscosity c----------------------------------------------------------------------- IF (gyr_visc>0) THEN ALLOCATE(wtmp(3,3,SIZE(int,),SIZE(int,3))) ALLOCATE(b_cross_w(3,3,SIZE(int,),SIZE(int,3))) DO imode=1,nmodes wtmp=0. DO iy=1,ncy DO ix=1,ncx vtmp(1:3,1)=vten(1:3,ix,iy,imode) vtmp(1:3,)=vten(4:6,ix,iy,imode) vtmp(1:3,3)=vten(7:9,ix,iy,imode) T W = V ptmp=vtmp+transpose(vtmp) 3 Ι V i + V i i btmp(1:3,1)=3.(be_eq(1:3,ix,iy)+be(1:3,ix,iy,imode)) (be_eq(1,ix,iy)+be(1,ix,iy,imode)) /btot(ix,iy) btmp(1:3,)=3.(be_eq(1:3,ix,iy)+be(1:3,ix,iy,imode)) ( I+ 3bb) (be_eq(,ix,iy)+be(,ix,iy,imode)) /btot(ix,iy) btmp(1:3,3)=3.(be_eq(1:3,ix,iy)+be(1:3,ix,iy,imode)) (be_eq(3,ix,iy)+be(3,ix,iy,imode)) /btot(ix,iy) btmp(1,1) = 1+btmp(1,1) btmp(,) = 1+btmp(,) btmp(3,3) = 1+btmp(3,3) DO i1=1,3 DO i=1,3 DO i3=1,3 wtmp(i1,i,ix,iy)=wtmp(i1,i,ix,iy)+ptmp(i1,i3) W ( I+ 3bb) btmp(i3,i) call math_cart_cross(b_cross_w(1,:,:,:), be_eq(:,:,:)+be(:,:,:,imode), wtmp(:,1,:,:),1._r8) call b math_cart_cross(b_cross_w(,:,:,:), W ( I+ 3bb) be_eq(:,:,:)+be(:,:,:,imode), wtmp(:,,:,:),1._r8) call math_cart_cross(b_cross_w(3,:,:,:), be_eq(:,:,:)+be(:,:,:,imode), wtmp(:,3,:,:),1._r8) DO iy=1,ncy DO ix=1,ncx η 3 [ b W ( I+ 3bb) ( I+ 3bb) W b] ptmp = gyr_visc(ti_eq(1,ix,iy)zeff)/ (1.9e4btot(ix,iy)) (b_cross_w(:,:,ix,iy) +TRANSPOSE(b_cross_w(:,:,ix,iy))) piten(1:3,ix,iy,imode)= $ piten(1:3,ix,iy,imode)-ptmp(1:3,1) piten(4:6,ix,iy,imode)= $ piten(4:6,ix,iy,imode)-ptmp(1:3,) Π i = piten(7:9,ix,iy,imode)= Π i + Π gv $ piten(7:9,ix,iy,imode)-ptmp(1:3,3) DEALLOCATE(wtmp,b_cross_w) IF (eq_flow/='none') THEN ALLOCATE(wtmpr(3,3,SIZE(int,),SIZE(int,3))) ALLOCATE(b_cross_wr(3,3,SIZE(int,),SIZE(int,3))) DO iy=1,ncy DO ix=1,ncx vtmpr(1:3,1)=veqten(1:3,ix,iy) vtmpr(1:3,)=veqten(4:6,ix,iy) vtmpr(1:3,3)=veqten(7:9,ix,iy) ptmpr=vtmpr+transpose(vtmpr) btmpr(1:3,1)=3.be_eq(1:3,ix,iy)be_eq(1,ix,iy) /btot(ix,iy) btmpr(1:3,)=3.be_eq(1:3,ix,iy)be_eq(,ix,iy) /btot(ix,iy) btmpr(1:3,3)=3.be_eq(1:3,ix,iy)be_eq(3,ix,iy) /btot(ix,iy) btmpr(1,1) = 1+btmpr(1,1) btmpr(,) = 1+btmpr(,) btmpr(3,3) = 1+btmpr(3,3) vtmpr=0. DO i1=1,3 DO i=1,3 DO i3=1,3 wtmpr(i1,i,ix,iy)=wtmpr(i1,i,ix,iy) +ptmpr(i1,i3)btmpr(i3,i) call math_cart_cross(b_cross_wr(1,:,:,:),be_eq, wtmpr(:,1,:,:),1._r8) call math_cart_cross(b_cross_wr(,:,:,:),be_eq, wtmpr(:,,:,:),1._r8) call math_cart_cross(b_cross_wr(3,:,:,:),be_eq, wtmpr(:,3,:,:),1._r8) DO iy=1,ncy DO ix=1,ncx ptmpr = gyr_visczeffti_eq(1,ix,iy)/ (1.9e4btot(ix,iy)) (b_cross_wr(:,:,ix,iy) +TRANSPOSE(b_cross_wr(:,:,ix,iy))) pi_veq(1:3,ix,iy)= $ pi_veq(1:3,ix,iy)-ptmpr(1:3,1) pi_veq(4:6,ix,iy)= $ pi_veq(4:6,ix,iy)-ptmpr(1:3,) pi_veq(7:9,ix,iy)= $ pi_veq(7:9,ix,iy)-ptmpr(1:3,3) DEALLOCATE(wtmpr,b_cross_wr) ENDIF ENDIF

Testing GV implementation Without gyroviscosity With gyroviscosity

Testing GV implementation Dispersion relation Parallel Propagation Dispersion relation: ( ω ± ω 4 )( ω ± ω W ) = ω A ω A ω 4 ω W = B 0 k z µ 0 mn = V A k z = η k 4 z mn = V thi Ω k z = B k 0 z µ 0 ne = ω A Ω = 1 ( ρ k ) Ω i z Ω = 1 ( β ρ k ) Ω i z If ρ i k z <<1, the solutions for the left and right polarized waves are ω L ± = V A k z ±1+ 1+ β β ρ k ( ) i z ω R ± = V A k z ±1 1+ β β ρ k ( ) i z Perpendicular Propagation Dispersion relation: ω s ω + ω A =1+ ω s ω s = C s k x, ω 3 = ω 4 /. ω = V A k x 1+ γβ + β 16 ρ ( ik x ) The mode is elliptically polarized in the plane perpendicular to B iv y = ± 1 β V x 4 1+ γβ/ ρ k i x ω 3 + ω A

Testing GV implementation Without gyroviscosity With gyroviscosity