λ(t)f c (t s, s) ds, 0 t < c,

Similar documents
j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

Manual for SOA Exam MLC.

T h e C S E T I P r o j e c t

Stochastic Numerical Analysis

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

PRISON POLICY INITIATIVE ANNUAL REPORT

Tyler Hofmeister. University of Calgary Mathematical and Computational Finance Laboratory

Gwinnett has an amazing story to share, spanning 200 years from 1818 until today.

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model.

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

DISCRETE GRONWALL LEMMA AND APPLICATIONS


Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Stochastic Networks and Parameter Uncertainty

Stat 217 Final Exam. Name: May 1, 2002

Computational Intelligence Seminar (8 November, 2005, Waseda University, Tokyo, Japan) Statistical Physics Approaches to Genetic Algorithms Joe Suzuki

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have

Tornado, Squalls Strike Kinston Area

Math 180C, Spring Supplement on the Renewal Equation

Housing Market Monitor

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES

Lecture 5 Rational functions and partial fraction expansion

CDA5530: Performance Models of Computers and Networks. Chapter 3: Review of Practical

STAT Sample Problem: General Asymptotic Results

Stochastic process. X, a series of random variables indexed by t

TMA 4265 Stochastic Processes

October 4, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

SYSTEM BRIEF DAILY SUMMARY

EDRP lecture 7. Poisson process. Pawe J. Szab owski

U a C o & I & I b t - - -, _...

Convex Geometry. Carsten Schütt

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

Markov Chains (Part 4)

UNIVERSITY of LIMERICK

LOWELL STORES SERVE THRONGS OF LOV PEOPLE ON FRIDAY NIGHT

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Musical Instruments. Answers

SYSTEM BRIEF DAILY SUMMARY

Exponential Distribution and Poisson Process

1 Delayed Renewal Processes: Exploiting Laplace Transforms

I.G Approach to Equilibrium and Thermodynamic Potentials

Intro Refresher Reversibility Open networks Closed networks Multiclass networks Other networks. Queuing Networks. Florence Perronnin

P a g e 3 6 of R e p o r t P B 4 / 0 9

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday

Synthesis of passband filters with asymmetric transmission zeros

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k

CHAPTER 6 : LITERATURE REVIEW

P E R E N C O - C H R I S T M A S P A R T Y

Introduction to Queuing Networks Solutions to Problem Sheet 3

= p(t)(1 λδt + o(δt)) (from axioms) Now p(0) = 1, so c = 0 giving p(t) = e λt as required. 5 For a non-homogeneous process we have

3.1 Markov Renewal Chains and Semi-Markov Chains

CONSTANT SLOPE MAPS AND THE VERE-JONES CLASSIFICATION.

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

Motion to Review the Academic Calendar Passed by Admissions and Standards, September 24, 2009

1. Determine the Zero-Force Members in the plane truss.

MULTIPLIERS OF THE TERMS IN THE LOWER CENTRAL SERIES OF THE LIE ALGEBRA OF STRICTLY UPPER TRIANGULAR MATRICES. Louis A. Levy

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

Econ Lecture 14. Outline

Constant Slope Maps and the Vere-Jones Classification

September 26, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

ISyE 6761 (Fall 2016) Stochastic Processes I

Peak Load Forecasting

Continuous-Time Markov Chain

Poisson processes and their properties

THE VITA TEETH STOCK YOU WANT WHEN YOU NEED IT OR IT S ON US!

STAT 380 Markov Chains


A CLT FOR MULTI-DIMENSIONAL MARTINGALE DIFFERENCES IN A LEXICOGRAPHIC ORDER GUY COHEN. Dedicated to the memory of Mikhail Gordin

Stochastic Processes

Statistical test for some multistable processes

arxiv: v1 [math.oc] 22 Sep 2016

Chapter 30 Design and Analysis of

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes

WILLPOWER! yalerep.org. WILL POWER! is supported by YALE REPERTORY THEATRE STUDY GUIDE WRITERS EDITORS SPECIAL THANKS

Efficient Monitoring Algorithm for Fast News Alert

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

Second-Order Analysis of Spatial Point Processes

Exam Session 2 (13:00 EDX IAL) PM: EDX - IAL. ****Revision**** Yr 11. Maths 10:45 to 11:45

ceducate. SCIENCE

The exponential distribution and the Poisson process

Convex Geometry. Otto-von-Guericke Universität Magdeburg. Applications of the Brascamp-Lieb and Barthe inequalities. Exercise 12.

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

< 10 5,... m νe /m e. y ν. m ν y ν φ. φφ M. m ν y 2 ν. m ν y ν φ ν. φ ν 0.1 ev

c 2002 Society for Industrial and Applied Mathematics

Nature of Lesson (Lecture/Tutorial) H3 WK No. Day/ Date. Remarks. Duration. 4.00pm 6.30pm ALL. 2.5 hours. Introduction to Semiconductors Lecture 01

9.5 The Transfer Function

Lecture 4a: Continuous-Time Markov Chain Models

Figure 10.1: Recording when the event E occurs

P(X 0 = j 0,... X nk = j k )

Machine Learning - MT Linear Regression

CHAPTER 5. Basic Iterative Methods

Application of Edge Coloring of a Fuzzy Graph

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU

STAT331. Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Ch 3: Multiple Linear Regression

Transcription:

L = λw d

L k = λ k j Fk j,j, c k = 0, 1,..., d 1, d L k k λ k k Fk,j c j 0 k j k + md m 0 λ k Fk, c L k k L(t) = c 0 λ(t)f c (t s, s) ds, 0 t < c, c d d d

25 number of patients 0 10 20 30 40 50 60 Estimated mean from data Estimated mean from simulation Sun Mon Tue Wed Thu Fri Sat time of a week L = λw

M t /GI/1 1

i i 0 j j 0 X {X i,j : i 0; j 0} X i,j i j 0 X Y i,j A i s=j X i,s i j j 0 Y i,0 = s=0 X i,s i Q i i Y i j,j = i A Y i j,j i j i A i j i 0 0/0 0 0

n λ k (n) 1 n Q k (n) 1 n Ȳ k,j (n) 1 n d A k+(m 1)d, m=1 Q k+(m 1)d = 1 n m=1 m=1 Y k+(m 1)d,j, j 0, m=1 ( k+(m 1)d Y k+(m 1)d j,j ), F k,j(n) c Ȳk,j(n) n λ k (n) = Y m=1 k+(m 1)d,j n A, j 0, m=1 k+(m 1)d W k (n) F k,j(n), c 0 k d 1, λ k (n) k 0 k d 1 n Qk (n) k Ȳk,j(n) k j F c k,j(n) k Wk (n) k n (A1) λk (n) λ k, n, 0 k d 1, (A2) (A3) c F k,j(n) Fk,j, c n, 0 k d 1, j 0, Wk (n) W k F c k,j n, 0 k d 1, d = 1 (A2)

k 0 ( ) k 0 d ( ) (A1) (A2) (A3) Q k (n) n L k L k = λ k j F c k j,j <, 0 k d 1, λ k Fk,j c (A1) (A2) ( ) d = 1 k = 0 L 0 lim Q0 (n) lim λ0 (n) = λ 0 λ k j F c k j,j = λ 0 F c 0,j = λ 0 W 0. L 0 = λ 0 W 0,

L λ W λ W L L = λw λ k (n) A1 λ k (n) k 0 k d 1 W k (n) A3 W k (n) k 0 k d 1 k 0 k d 1 A2 ( ) F c k,j(n) F c k,j d = 2 2 2 0 2 2 1 λ k W k λ 0 = 2 λ 1 = 0 W 0 = 2 W 1 = 0 lim Q0 (n) = 3 lim Q0 (n) = 2 L k L k L k

0 λ k j F c k j,j = k i=0 λ i l=0 F c i,k i+ld + i=k+1 L k L k (n) k λ i (n) i=0 l=0 F c i,k i+ld(n) + i=k+1 λ i λ i (n) l=1 l=1 F c i,k i+ld, 0 k d 1. F c i,k i+ld(n), 0 k d 1, λ i (n) F c i,j(n) n L k (n) Q k (n) ( ) lim L k (n) = L k 0 k d 1, L k (n) L k m > 1 X i,j = 0 j md (A3) (A2) L k Ē k (n) L k (n) Q k (n), Q k (n) L k (n) ( ) (A1) (A2) m u > 0 X i,j = 0 i 0 j dm u (A3) λ u > 0 A i λ u i 0 R n max 0 k d 1 {Ēk(n)} λ ud(m u + 2) 2, n m u, 2n Ēk(n)

(A3) (A2) X i,j = 0 i 0 j > dm u F k,j (n) = 0 0 k d 1 j dm u dm u W k (n) = j=1 F c k,j(n), 0 k d 1, F c k,j = 0 0 k d 1 j > dm u lim (A3) dm u W k (n) = lim dm u F k,j(n) c = lim dm u F k,j(n) c = F c k,j = W k, ( (A2) (A3)) (A2) (A3) (A3) (A2) D i i X i j,j i 0 i D i = Q i Q i+1 + A i+1, i 0. δ k (n) 1 D k+(m 1)d, n 0 k d 1. m=1

( ) δ k (n) n δ k δ k = λ k j f k j,j λ k j (F c k j,j Fk j,j+1) c 0 k d 1 λ k F c k,j f k,j F c k,j F c k,j+1 δ k (n) = 1 n D k+(m 1)d = 1 n m=1 (Q k+(m 1)d Q k+1+(m 1)d + A k+1+(m 1)d ) m=1 Q k (n) Q k+1 (n) + λ k+1 (n), 0 k < d 1, = Q d 1 (n) Q 0 (n + 1) + λ 0 (n + 1) + 1 n Q 0 1 n A 0, k = d 1. 1 lim n Q 1 0 = 0 lim n A 0 = 0 (A1) lim δ k (n) = L k L k+1 + λ k+1 = λ k j F c k j,j λ k+1 j F c k+1 j,j + λ k+1 = λ k j (F c k j,j fk j,j+1) c λ k+1 + λ k+1 = λ k j f k j,j. C Q (n) C L (n) nd 1 Q k+(m 1)d = Q i, m=1 k=0 m=1 k=0 i=0 (j + 1)X k+(m 1)d,j = m=1 k=0 nd 1 Y k+(m 1)d,j = i=0 Y i,j. C Q (n) n C L (n) n

35 1 C Q (n) C L (n) d = 5 n = 4 nd = 20 C Q(4) C L(4) Area(A) = C Q (n) = n k=0 k=0 Q k (n), Area(A B) = C L (n) = n λ k (n) W k (n) = n L k (n). k=0

C Q (n) C L (n) C L (n) = Y k+(m 1)d,j = n m=1 k=0 = n λ k (n) W k (n). k=0 k=0 Ȳ k,j (n) = n k=0 λ k (n) F k,j(n) c 0 k d 1 k=0 L k (n) = λ k (n) F k,j(n) c = λ k (n) W k (n). k=0 k=0 Ē(n) Ē k (n) = (B)/n 0 n, k=0 Ēk(n) 0 0

Q L i i Q L k (n) 1 n m=1 X i,j Y i,j Q L k+(m 1)d. ( ) Q L k (n) n L L k L L k = L k δ k 2λ k + λ k f k,0 L k 0 k d 1, L k λ k (A1) δ k f k,0 i i i i i i Q L i = Y i j,j+1 Y i,0 = Y i j,j X i j,j Y i,0 = Y i j,j X i j,j 2A i + X i,0 j=1 j=1 j=1 = Q i D i 2A i + X i,0, 0 Q L k (n) = 1 Q L k+(m 1)d = 1 (Q k+(m 1)d D k+(m 1)d 2A k+(m 1)d + X k+(m 1)d,0 ) n n m=1 m=1 = Q k (n) δ k (n) 2 λ k (n) + (Ȳk,0(n) Ȳk,1(n)). (A1) (A2) lim Ȳ k,j (n) = λ k F c k,j lim Q L k (n) = L k δ k 2λ k + λ k (F c k,0 Fk,1) c = L k δ k 2λ k + λ k f k,0.

A(t) t 1 A(t) Λ(t) t, Λ(t) = t 0 λ(u) du 0 < λ U λ(u) λ U <, u t λ c D(t) δ(t) ( ) c d d 0 d 0 L k L L k = δ k + 2λ k λ k f k,0 d λ d,k 0 δ d,k 0 d ( ) ( ) d d ( )

G t /GI t / L k λ k F c k,j k {Y n : n Z} Y n {Y nd+k,j : 0 k d 1; j 0} n n Y n (Z d ) Z d Z d

Z k k (n 1,..., n k ) Z (Y n1,..., Y nk ) d = (Y n1 +m,..., Y nk +m) m Z, = d {Y n : n Z} {(A nd+k, Q nd+k ) : n Z} A nd+k nd + k Q nd+k nd + k A nd+k Y nd+k,0 Q nd+k Y nd+k j,j. ({Y k,j : j 0}, A k, Q k ) λ k E[A k ] = E[Y k,0 ] L k E[Q k ] = E[Y k j,j ]. Fk,j c P (W k > j) W k k Fk,j c F k,j(n) c 0 < E[Y k,0 ] < k ( ) {Y n : n Z} 0 < λ k E[Y k,0 ] < 0 k d 1 k 0 k d 1 j 0 F c k,j(n) F c k,j E[Y k,j] E[Y k,0 ] n

L k E[Q k ] = λ k j Fk j,j. c Ȳ k,j (n) E[Y k,j ] = λ k F c k,j n k j F c k,j λ k E[Q k ] E[Y k j,j ] E[Q k ] = E[Y k j,j ] = λ k = λ k λ k Fk j,j. c F k,j G t /GI t / G t /GI t / Fk,j c P (W k j) k k ( G t /GI t / ) G t /GI t / Y {Y n : n Z} E[Y k,j ] = F c k,je[y k,0 ],

{W k,i : i 1} k m E[Y k,j ] = P (W k,i > j)p (A k = m) = m=1 i=1 mfk,jp c (A k = m) = Fk,jE[A c k ] = Fk,jE[Y c k,0 ]. m=1 GI t k k A (m) k k m 1 k 7 24 = 168 m 1 25 W (i) k k m k A (i) k W (m) k A (m) k > 0 r k 168 A (m) k r k = 25 25 > 0 m m=1 (A(m) k m=1 (A(m) k Āk (1/25) 25 i=1 A(m) k W k (1/25) 25 (m) Āk)(W k W k ) Āk) 25 2 (m) m=1 (W W (m) i=1 k k W k ) 2, m A (m) k = 0 168 0.056 0.21 (A (m) 36, W (m) 36 ) W (m) 36

i A (m) k = 0 k = 1, 2,, 7 24 = 168

corrrelation of num. of arrivals vs LoS 0.4 0.2 0.0 0.2 0.4 0.6 Sun Mon Tue Wed Thu Fri Sat time of a week (hour) Normal Q Q Plot Sample Quantiles 0.4 0.2 0.0 0.2 0.4 0.6 LoS (hour) 2 3 4 5 6 7 8 9 2 1 0 1 2 Theoretical Quantiles 4 6 8 10 12 14 16 number of arrivals in the hour number of hours with 0 arrival 0 2 4 6 8 10 Sun Mon Tue Wed Thu Fri Sat time of a week Q Q

λ(t) t N(t) N(s) [s, t] E[N(t)] E[N(s)] = t s λ(s) ds, λ(t) c W (t) t {W (t) : t R} Q {Q(t) : t R} c Q c {N s : s R} N c F c t,x P t (W (t) > x) P t c M t /GI/1 ( ) F c t s,s E[Q(t)] = 0 F c t s,sλ(t s) ds

2 A1 A2 A3 lim F k+ld,j(n) c lim Wk+ld (n) 0 k d 1 l 0 j 0 lim λk+ld (n) lim λ k+ld (n) λ k+ld = λ k, c lim F k+ld,j(n) F c k+ld,j = Fk,j, c lim Wk+ld (n) W k+ld = W k, λ k F c k,j W k λ k 1 λ k = lim λk (n) = lim n m=1 m=1 A k+(m 1)d 1 = lim n (A n 1 n 1 1 n 1 k + A (k+d)+(m 1)d ) = lim n n 1 m=1 A (k+d)+(m 1)d = λ k+d. Ȳk,j(n) = λ k (n) F c k,j(n) A1 A2 A3 lim Ȳ k,j (n) = λ k F c k,j 0 k d 1 j 0 λ k lim Ȳ k+d,j (n) = lim Ȳ k,j (n) 0 k d 1 j 0 F c c k+d,j = lim F k+d,j(n) = W k+d lim Ȳ k+d,j (n) lim λ k+d (n) = λ kf c k,j λ k = F c k,j, 0 k d 1, j 0. W k+d = F c k+d,j = F c k,j = W k 0 k d 1.

lim Lk (n) = λ k jf c k j,j k = 0, 1,, d 1 L lim Qk (n) = lim Lk (n) ϵ > 0 A1 N 1 n > N 1 sup 0 k d 1 λ k (n) λ k < ϵ A2 A3 lim F k,j(n) c Fk,j c = 0. N 2 n > N 2 max{n 1, N 2 } n > N 3 = = L k (n) i=0 λ k j Fk j,j c k λ i (n) k i=0 λ i l=0 l=0 F c i,k i+ld(n) + F c i,k i+ld i=k+1 k λ k j (n) F k j,j(n) c + k λ k j F c k j,j k λ k j F c k j,j(n) + m=1 j=1 k λ k j F c k j,j i=k+1 λ i m=1 j=1 l=1 λ i (n) l=1 F c i,k i+ld sup F k,j(n) c F k,j c < ϵ N 3 = 0 k d 1 F c i,k i+ld(n) λ d j (n) F d j,(m 1)d+j+k(n) c λ d j Fd j,(m 1)d+j+k c m=1 j=1 m=1 j=1 +ϵ ( k F k j,j(n) c + m=1 j=1 λ d j F c d j,(m 1)d+j+k(n) λ d j Fd j,(m 1)d+j+k c F d j,(m 1)d+j+k(n) ) c ( max λ k) ( k F k j,j(n) c F k j,j c + 0 k d 1 +ϵ ( k F k j,j(n) c + m=1 j=1 m=1 j=1 F d j,(m 1)d+j+k(n) ) c ( max λ k)dϵ + ϵd ( max W k + ϵ ). 0 k d 1 0 k d 1 F d j,(m 1)d+j+k(n) c Fd j,(m 1)d+j+k ) c

lim L k (n) λ k jf c k j,j = 0 0 k d 1 L k lim Qk (n) = lim Lk (n) Ē(n) Ē k (n) L k (n) Q k (n) 0 n. k=0 k=0 Ē(n) 0 n Q k (n) 1 n = 1 n = 1 n = 1 n = 1 n Q k+(m 1)d = 1 n m=1 m=1 m=1 m=1 m=1 m=1 k Y k j+(m 1)d,j + 1 n ( k+(m 1)d m=2 k Y k j+(m 1)d,j + 1 n 1 md n k Y k j+(m 1)d,j + 1 n m=1 j=1 n 1 m=1 j=1 k Y k j+(m 1)d,j + 1 n 1 n s n Y k+(m 1)d j,j ) k+(m 1)d j=k+1 Y k j+(m 1)d,j Y d j+(m 1)d,j+k Y d j+(m 1)d,j+k + 1 n 2 md n s=1 m=1 j=1 m=1 j=1 Y d j+(m 1)d,j+k+(s 1)d, Y d j+(m 1)d,j+k+d k L k (n) = Ȳ k j,j (n) + Ȳ d j,j+k+(s 1)d (n) = 1 n m=1 s=1 j=1 k Y k j+(m 1)d,j + 1 n Y d j+(m 1)d,j+k+(s 1)d. s=1 m=1 j=1 L k (n) Q k (n) Ē k (n) L k (n) Q k (n) = 1 n 1 Y d j+(m 1)d,j+k+(s 1)d + 1 n n = 1 n s=1 m=n s+1 j=1 m=1 j=1 s=n m+1 Y d j+(m 1)d,j+k+(s 1)d, s=n m=1 j=1 Y d j+(m 1)d,j+k+(s 1)d

k = 0, 1,, d 1 1 Ē(n) Ē k (n) = n = 1 n k=0 k=0 m=1 j=1 s=(n m)d m=1 j=1 s=n m+1 Y d j+(m 1)d,j+s. Y d j+(m 1)d,j+k+(s 1)d Ē(n) 0 n N 1, N 2 N 3 ϵ n > N 3 Ȳ k,j (n) λ k Fk,j c = λ k (n) F k,j(n) c λ k Fk,j c λ k λ k F c k,j(n) λ k Fk,j c + ϵ F k,j(n) c F c k,j(n) F c k,j + ϵ (W k + ϵ) λ k ϵ + ϵ (W k + ϵ). A1 A2 lim Ȳ k,j (n) = λ k F c k,j lim Ȳk,j(n) λ k Fk,j c = 0. ϵ > 0 λ kf c k,j k = 0, 1,, d 1 J k=0 j=j λ k F c k,j < ϵ. N 4 J/d x x n N 4 nd > J N 5 n > N 5 k=0 N 6 max{n 4, N 5 } n N 6 Ȳk,j(n) λ k Fk,j c < ϵ. k=0 j=n 6 d Ȳ k,j (n) 2ϵ.

N 7 N 6 /ϵ n > N 7 (n N 6 )/n > 1 ϵ n > max{n 7, 2N 6 } Ē(n) = 1 n = = m=1 j=1 s=(n m)d j=1 j=1 j=1 n N 1 6 n m=1 s=(n m)d n N 1 6 n 1 n m=1 s=n 6 d m=1 s=n 6 d j=1 s=n 6 d 2ϵ + 2ϵ + ϵ( Y d j+(m 1)d,j+s Y d j+(m 1)d,j+s + Y d j+(m 1)d,j+s + Y d j+(m 1)d,j+s + Ȳ d j,j+s (n) + k=0 j=1 s=0 λ k F c k,j + ϵ). j=1 j=1 j=1 1 n 1 n 1 n m=n N 6 +1 s=(n m)d m=n N 6 +1 s=0 m=n N 6 +1 s=0 (Ȳd j,s(n) n N 6 n Y d j+(m 1)d,s Y d j+(m 1)d,s Ȳ d j,s (n N 6 )) Y d j+(m 1)d,j+s s m N 6 N 7 2ϵ = j=1 s=0 j=1 s=0 j=1 s=0 2ϵ + ϵ( (Ȳd j,s(n) n N 6 n Ȳ d j,s (n N 6 )) (Ȳd j,s(n) (1 ϵ)ȳd j,s(n N 6 )) (Ȳd j,s(n) Ȳd j,s(n N 6 )) + ϵȳd j,s(n N 6 ) k=0 λ k F c k,j + ϵ). L k lim Qk (n) = lim Lk (n)

Ē k (n) = 1 n m=1 j=1 s=n m+1 Y d j+(m 1)d,j+k+(s 1)d. Y i,j = 0 i 0 j dm u n m u Ē k (n) = 1 n 1 n m u+1 j=1 m=n m u s=n m+1 m u+1 j=1 m=n m u s=n m+1 = 1 n λ ud (m u + 1)(m u + 2) 2 Y d j+(m 1)d,j+k+(s 1)d A d j+(m 1)d 1 n m u+1 j=1 m=n m u s=n m+1 λ ud(m u + 2) 2. 2n H = λg λ u

L = λw L = λw L = λw L = λw

L = λw H = λg L = λw L = λw 50 th L = λw L = λw L = λw L = λw

60% 23, 409 134 4 Mt T /GI t /

ˆσ 2 ˆm 1 T (d w ) = A + C d w + ϵ, T (d w ) A C d w ϵ N(0, σ 2 ) 25 7 = 175 ˆσ 2 = 202 ˆσ 2 / ˆm = 202/134 1.50 p(t) t t p(t)

Mt T /GI/

ˆp(t) p(t) ˆp(t) = 0.001082(x 13.5) 2 + 0.451996 x = ((t 1.5) mod 24) + 1.5 t [0, 24] 5 N N t ˆp(t) 1000 1000

1 25 L. (25) Q. (25)

arrival rate 0 5 10 15 20 1 7 13 19 25 Sun Mon Tue Wed Thu Fri Sat time of a week 10 a.m. 4 p.m. Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 LoS (hour) 0 2 4 6 8 10 LoS (hour) 10 a.m. 4 p.m. average LoS (hour) 4.0 4.2 4.4 4.6 average LoS (hour) 3.2 3.4 3.6 3.8 4.0 5 10 15 20 25 sample size (weeks) 5 10 15 20 25 sample size (weeks)