Light & Matter Interactions

Similar documents
Light & Matter Interactions

General Physics (PHY 2140)

Particle nature of light & Quantization

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

The Bohr Model of the Atom

Energy levels and atomic structures lectures chapter one

Chapter 28. Atomic Physics

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

SCH4U: History of the Quantum Theory

Ch 7 Quantum Theory of the Atom (light and atomic structure)

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Physics 1C. Modern Physics Lecture

From Last Time. Summary of Photoelectric effect. Photon properties of light

Chemistry is in the electrons

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

Stellar Astrophysics: The Interaction of Light and Matter

Chapter 5 Light and Matter

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Planck s Quantum Hypothesis Blackbody Radiation

Electrons! Chapter 5

Chapter 28. Atomic Physics

Spectroscopy. Hot self-luminous objects light the Sun or a light bulb emit a continuous spectrum of wavelengths.

Historical Background of Quantum Mechanics

Earlier we learned that hot, opaque objects produce continuous spectra of radiation of different wavelengths.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

Lecture 11 Atomic Structure

The Quantum Mechanical Atom

Quantum theory and models of the atom

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Atomic Structure and the Periodic Table

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

Astronomy 1 Winter 2011

Quantum and Atomic Physics - Multiple Choice

Electron Arrangement - Part 1

Quantum Theory of the Atom

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4

Lecture 5: the Hydrogen Atom

is the minimum stopping potential for which the current between the plates reduces to zero.

Semiconductor Physics and Devices

The Electron Cloud. Here is what we know about the electron cloud:

ATOMIC PHYSICS. history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

WAVE NATURE OF LIGHT

ASTR-1010: Astronomy I Course Notes Section IV

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

Chapter 4. Spectroscopy. Dr. Tariq Al-Abdullah

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN

Physical Electronics. First class (1)

General Physics (PHY 2140)

QUANTUM THEORY & ATOMIC STRUCTURE

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Quantum Mysteries. Scott N. Walck. September 2, 2018

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

UNIT : QUANTUM THEORY AND THE ATOM

Experiment 7: Spectrum of the Hydrogen Atom

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

QUANTUM MECHANICS Chapter 12

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

Electronic structure of atoms

1/l = R(1/n' 2-1/n 2 ) n > n', both integers R = nm -1

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

The Photoelectric Effect

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

Chapter 39. Particles Behaving as Waves

Atomic Structure 11/21/2011

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 27 Lecture Notes

Surprise, surprise, surprise

Atomic Structure Part II Electrons in Atoms

PHYSICS 107. Lecture 16 The Quantum

Prof. Jeff Kenney Class 5 June 1, 2018

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 7. Quantum Theory and Atomic Structure

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

Physics 1C Lecture 29B

The Nature of Light. Chapter Five

Chapter 1. From Classical to Quantum Mechanics

An electron can be liberated from a surface due to particle collisions an electron and a photon.

Wavelength of 1 ev electron

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA

Atomic Structure and Periodicity

Quantum Mechanics & Atomic Structure (Chapter 11)

Physics 280 Quantum Mechanics Lecture

Emission Spectroscopy

Chapter 5. Electrons in Atoms

Lecture 11: The Bohr Model. PHYS 2130: Modern Physics Prof. Ethan Neil

LIGHT AND THE QUANTUM MODEL

Chapter 27 Early Quantum Theory and Models of the Atom

38 The Atom and the Quantum. Material particles and light have both wave properties and particle properties.

Models of the Atom. Spencer Clelland & Katelyn Mason

Transcription:

Light & Matter Interactions. Spectral Lines. Kirchoff's Laws 2. Inside atoms 3. Classical Atoms 4. The Bohr Model 5. Lowest energy 6. Kirchoff's laws, again 2. Quantum Theory. The Photoelectric Effect 2. Photons 3. de Broglie wavelength 4. Uncertainty Principle 5. Tunneling Spectral Lines This was the burgeoning field of spectroscopy. Fig.William Hyde Wollaston [766-828] generated a solar spectrum using a prism, and noticed black lines in some sections. "The line A that bounds the red side of the spectrum is somewhat confused, which seems in part owing to want of power in the eye to converge red light. The line B, between red and green, in a certain position of the prism, is perfectly distinct; so also are D and E, the two limits of violet. But C, the limit of green and blue, is not so clearly marked as the rest; and there are also, on each side of this limit, other distinct dark lines, / and g, either of which, in an_ imperfect experiment, might be mistaken for the boundary of these colours." Fig.2Joseph con Fraunhofer [787-826] rediscovered the lines 5 years after Wollaston. If the physical origins of the lines were understood, then we could learn more about the sun and what makes it work. Denkschriften der K. Acad. der Wissenschaften zu München 84-5, pp. 93-226. updated on 208-09-9 Page

Reproduced from Philosophical Transactions of the Royal Society of London, vol. 92 (802), p. 380 (Plate XIV). ) Continuous emission spectra show all the frequencies of light, which no breaks in the spectrum 2) An emission spectra shows only the frequencies emitted by the object in question Fig.3Different types of spectra: continuous, emission, and adsorption. 3) An absorption spectrum shows all the frequencies that are not absorbed by the material in the lights path. Black lines are present where certain frequencies have been absorbed. Kirchoff's Laws. A hot, dense gas or hot solid object produces a continuous spectrum with no dark spectral lines 2. A hot, diffuse gas produces bright spectral lines (emissionlines) 3. A cool, diffuse gas in front of a source of a continuous spectrum produces dark spectral lines (absorption lines) in the continous spectrum. Kirchoff Kirchoff and Bunsen noted that a portion of the dark lines visible in the solar spectrum were the same as 70 bright lines found in the emission spectrum of iron vapor. Fig.4Gustov Kirchoff [824-887] Inside atoms Fig.5 = R H ( ) m 2 n 2 updated on 208-09-9 Page 2

The equation shown was found by trial and error by Johann Balmer [825-898] and could predict the position of emission lines from hydrogen. If we let in the above equation, then setting yields the following wavelengths for the expected emissions. m = 2 n = 3, 4,, 6 n [nm] 3 656.3 4 486. 5 434.0 6 40.2 7 397.0 However, even though the equation could predict the lines, there was no physical basis for the equation. It wasn't derived from any principles or theory. Classical Atoms nucleus decrease in ener If an electron in an atom were modeled as a planet-like orbiter, then we would expect it to undergo centripetal acceleration, which in turn would cause it to loose energy, and eventually spiral into the nucleus. Something must be wrong! electron em radiation Fig.6According to Maxwell's laws of EM, a charge moving in a circle should radiate energy because of the centripetal acceleration. The Bohr Model If the energy (or angular momentum) of the electrons where quantized however, then that would suggest the orbits could be stable. The Bohr Radius Starting with Coulomb's Law and F = ma: (Ze)e m = e v 2 4πϵ 0 r 2 r (2) Then taking the kinetic energy of the orbiting particle: updated on 208-09-9 Page 3

K = = 2 m ev 2 Ze 2 (3) 8πϵ 0 r The potential energy is Summing the kinetic and potential to get the total energy: U = Ze2 (4) 4πϵ 0 r Ze E = K + U = 2 Ze 2 Ze = 2 (5) 8πϵ 0 r 4πϵ 0 r 8πϵ 0 r The Bohr model suggests that instead of the total energy being capable of taking on any value, instead it can only take on quantized integer multiples of a constant value. Or, in terms of the angular momentum: nh L = m e vr = = nħ 2π v (3) r Solving for and combining this with the kinetic energy from equation we'll obtain for the radius, : (6) n Here, is called a quantum number and can take integer values starting with. is the number of protons in the nucleus. If and, which corresponds to the lowest energy level of the hydrogen atom, ( A = one tenth of a nanometer or 0 0 m) Lowest energy n = Z = 0 4πϵ r n = 0 ħ 2 n 2 5.29 m = Ze 2 m e Z n 2 (7) r Bohr = 0.529 0 m = 0.529A (8) Z -0.544 ev -0.855 ev -.5 ev -3.4 ev Hydrogen Energy levels ionization n = n = 5 4 n = 3 n = 2 E is the lowest energy of the hydrogen atom: -3.6 ev. The kinetic energy was: K = Ze2 8π r ϵ 0 Using the Bohr radius, we can obtain: -3.6 ev n = Fig.7The energy levels of the hydrogen atom. m E = e e 4 n = 3.6 ev 32π 2 ϵ 2 0h n 2 n 2 Now, if we are interested in the difference between two energies levels of an electron: E = hc ΔE = E high E low = E photon () updated on 208-09-9 Page 4

Since will be: E = hc for a photon, we can see that the wavelength of a photon either absorbed or radiated by this transition m = e e 4 ( ) 64π 3 ϵ 2 0 ħ3 c n 2 low n 2 high (2) Spectrum Lines Now we have a physical model that predicts the observed phenomena. Great! Example Problem #: Find the wavelength of a photon emitted during a transition from to for an electron in a hydrogen atom. n = 3 n = 2 E photon = E high E low (3) Solving for yields: hc = 656.469 nm = 3.6 ev ( 3.6 ev ) n 2 high = 3.6 ev ( ) 3 2 2 2 n 2 low (4) (5) Kirchoff's laws, again. A hot gas, or hot solid produces blackbody radiation. This is a continuous spectrum that follows Plancks Law B (T) for. 2. A hot diffuse gas produces emission lines caused by energy lost by electrons as they go from a higher level to a lower level and emit photons at the corresponding frequencues. 3. A cool diffuse gas in front of a source of continuous spectrum will have dark lines when an electron gets excited by incoming energy. Quantum Theory The Photoelectric Effect incoming em radiation ejected photo-electrons metal Fig.8 energy of the electrons produced. Shining light on a metal can knock electrons out of their atomic orbitals and enable them to become free electrons, and thus produce a current. If you think about this phenomenon based on classical physics, it would seem likely that the amount of energy in each of these electrons would be dependent on the brightness of the light. However, experiments showed that it didn't depend on the brightness of the light. Increasing the intensity of the light does increase the number of electrons produced, but not their kinetic energy. It turned out that the frequency of the light, or its color, was instead correlated with the updated on 208-09-9 Page 5

Each of the metals will have a cut-offfrequency that determines how much energy is needed to knock an electron out of the orbit. Thus, the light hitting the metal will only be able to eject electrons if its frequency is above a certain amount. This is the photoelectric effect in a nutshell. This was a mystery because the classical Maxwell equations didn't imply that different colors have different energies. Einstein solved this problem by suggesting that light traveled as photons, each with a definite energy given by: Modern terminology call this the workfunction, E photon ϕ = hν = of the metal: hc h f 0 where is the Planck Constant, and is the threshold frequency of the material. Photons The energy of a single, reddish, photon: ϕ = hf 0 E photon hc 240 ev nm = hν = =.77 ev 700 nm (6) is about half that of a blue photon: E photon hc 240 ev nm = hν = = 3.0 ev 400 nm (7) While the spectroscopy experiments were made possible by the wave nature of light, a full explanation of what caused the dark (or bright) lines would require using the particle description of light: the photon. *Note on the electron-volt: remember the definition of a volt: the potential difference that will give a Coulomb charge Joule of energy if it passes through that difference. The units are: V = Potential Energy Charge So if we multiply the Volt times a Coulomb, we'll obtain a unit of energy, and that's exactly what an electron volt is: It's the energy gained or lost by an electron as it moves across volt or potential difference. It's a very small amount of energy, but useful when dealing with photons. Some of the other physical constants can be expressed in units of ev rather than Joules: an electronvolt = Volt Charge = energy ev = V.602766208(98) 0 9 C Constant symbol SI ev h -34-5 Planck's Constant 6.626 0 J s 4.357 0 ev s updated on 208-09-9 Page 6

Reduced.055 0 J s / rad 6.582 0 ev s / rad de Broglie wavelength ħ -34-6 hc -25.99 0 J m 240 ev nm = h p (8) Louis de Broglie [892-987] proposed that all matter should have be able to be considered a wave. Anything with a p (momentum) will have a debrogliewavelength. If that wavelength is too small (i.e. if momentum is large) then we don't see the effects. If however, that wavelength is big, then we might se wavelike effects. Uncertainty Principle ΔxΔp ħ 2 (9) Start with a pure sine wave. Since the frequency is the same everywhere, it is known with infinite precision. However, since the amplitude is also the same everywhere, the position is not known at all. Adding more waves of slightly different frequencies will cause interference amongst all the waves. This ends up creating the wave packet shape visible when you select n = 50 from the radio buttons. Now, the position is well known (or better known) but the frequency is harder to determine since it's made up of all the different summed waves, each with a different frequency! Other forms of the uncertainty Principle ΔEΔt ħ (20) Tunneling Fig.9 Tunneling through a barrier. updated on 208-09-9 Page 7