Simulation and validation of the ATLAS Tile Calorimeter response

Similar documents
Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

Muon reconstruction performance in ATLAS at Run-2

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter

ATLAS Tile Calorimeter Calibration and Monitoring Systems

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

Available online at Physics Procedia 37 (2012 )

Future prospects for the measurement of direct photons at the LHC

Granularity of ATLAS Tile Calorimeter studied through simulations

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

ATLAS NOTE October 12, 2009

Jet Reconstruction and Energy Scale Determination in ATLAS

ATLAS Tile Calorimeter performance for single particles in beam tests

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS

ATLAS Hadronic Calorimeters 101

ATLAS EXPERIMENT : HOW THE DATA FLOWS. (Trigger, Computing, and Data Analysis)

Performance of muon and tau identification at ATLAS

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision

Validation of Geant4 Physics Models Using Collision Data from the LHC

Electronic calibration of the ATLAS LAr calorimeter and commissioning with cosmic muon signals

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Jet reconstruction with first data in ATLAS

ATLAS NOTE. August 25, Electron Identification Studies for the Level 1 Trigger Upgrade. Abstract

Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington

Reconstruction in Collider Experiments (Part IX)

Commissioning of the ATLAS LAr Calorimeter

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. First Physics at CMS

CALICE Test Beam Data and Hadronic Shower Models

Study of TileCal Sampling Fraction for Improvement of Monte-Carlo Data Reconstruction

Status of ATLAS and Preparation for the Pb-Pb Run

Results from combined CMS-TOTEM data

5 Hadronic calorimetry

Physics potential of ATLAS upgrades at HL-LHC

Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC

arxiv: v1 [physics.ins-det] 10 Apr 2013

Studies on the e + e - spectrum with the first data of the CMS experiment at the Large Hadron Collider

Mini-Bias and Underlying Event Studies at CMS

PERFORMANCE OF THE ATLAS LIQUID ARGON FORWARD CALORIMETER IN BEAM TESTS

The ATLAS muon and tau triggers

CALICE scintillator HCAL

Dario Barberis Evaluation of GEANT4 Electromagnetic and Hadronic Physics in ATLAS

Correction for PMT temperature dependence of the LHCf calorimeters

Physics studies to define the CMS muon detector upgrade for High-Luminosity LHC

arxiv:hep-ex/ v1 7 Oct 1999

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector

Physics at Hadron Colliders

Status and Performance of the ATLAS Experiment

Equalisation of the PMT response to charge particles for the Lucid detector of the ATLAS experiment

Jet Energy Calibration. Beate Heinemann University of Liverpool

CMS ECAL status and performance with the first LHC collisions

The Fast Interaction Trigger Upgrade for ALICE

2 ATLAS operations and data taking

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group

Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

Particle Identification: Computer reconstruction of a UA1 event with an identified electron as a candidate for a W >eν event

Performance of the CMS drift tube chambers with cosmic rays

Expected Performance of the ATLAS Inner Tracker at the High-Luminosity LHC

The ATLAS Detector - Inside Out Julia I. Hofmann

Z 0 /γ +Jet via electron decay mode at s = 7TeV in

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

First indication of LPM effect in LHCf, an LHC experiment

David Gascón. Daniel Peralta. Universitat de Barcelona, ECM department. E Diagonal 647 (Barcelona) IFAE, Universitat Aut onoma de Barcelona

First Run-2 results from ALICE

The ATLAS trigger - commissioning with cosmic rays

Commissioning and Calibration of the Zero Degree Calorimeters for the ALICE experiment

CMS Simulation Software

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Les Premières Données dans ATLAS et le Calorimètre à Argon Liquide

New Results from the DREAM project

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2

Tracking at the LHC. Pippa Wells, CERN

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Studies of the performance of the ATLAS detector using cosmic-ray muons

Overview of validations at LHC

Jet physics in ATLAS. Paolo Francavilla. IFAE-Barcelona. Summer Institute LNF , QCD, Heavy Flavours and Higgs physics

Early SUSY searches at the LHC

A gas-filled calorimeter for high intensity beam environments

Particle detection 1

Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS

The CMS Particle Flow Algorithm

QCD Studies at LHC with the Atlas detector

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

PoS(BORMIO2016)013. PANDA Forward Spectrometer Calorimeter. P.A. Semenov IHEP NRC KI S.I. Bukreeva IHEP NRC KI ITEP NRC KI

PoS(CORFU2016)060. First Results on Higgs to WW at s=13 TeV with CMS detector

arxiv: v2 [physics.ins-det] 19 Nov 2010

PoS(Vertex 2016)004. ATLAS IBL operational experience

Jet Calibration Issues in t t Events

Jet energy measurement in the ATLAS detector

Physics object reconstruction in the ATLAS experiment

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Study of di-muon production with the ZEUS detector at HERA

Jet Energy Scale in ATLAS

ATLAS Calorimetry (Geant)

arxiv: v1 [physics.ins-det] 3 Dec 2018 Fast Interaction Trigger for the upgrade of the ALICE experiment at CERN: design and performance

Transcription:

Home Search Collections Journals About Contact us My IOPscience Simulation and validation of the ATLAS Tile Calorimeter response This content has been downloaded from IOPscience. Please scroll down to see the full text. (http://iopscience.iop.org/1748-0221/9/09/c09018) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 188.184.3.52 This content was downloaded on 20/09/2014 at 01:41 Please note that terms and conditions apply.

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB RECEIVED: June 9, 2014 ACCEPTED: July 14, 2014 PUBLISHED: September 16, 2014 INTERNATIONAL CONFERENCE ON INSTRUMENTATION FOR COLLIDING BEAM PHYSICS BUDKER INSTITUTE OF NUCLEAR PHYSICS, NOVOSIBIRSK, RUSSIA FEBRUARY 24 MARCH 1, 2014 Simulation and validation of the ATLAS Tile Calorimeter response S.N. Karpov on behalf of the ATLAS Collaboration Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow region, 141980, Russia E-mail: Sergey.Karpov@cern.ch ABSTRACT: The Tile Calorimeter is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider. Scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are amplified, shaped and digitized before being transferred to off-detector data acquisition systems. This paper describes the detailed simulation of this large scale calorimeter from the implementation of the geometrical elements down to the realistic description of the electronics readout pulses, the special noise treatment and the signal reconstruction. Recently improved description of the optical and electronic signal propagation is highlighted and the validation with the real particle data is presented. KEYWORDS: Calorimeters; Large detector systems for particle and astroparticle physics; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) c CERN 2014 for the benefit of the ATLAS collaboration, published under the terms of the Creative Commons Attribution 3.0 License by IOP Publishing Ltd and Sissa Medialab srl. Any further distribution of this work must maintain attribution to the author(s) and the published article s title, journal citation and DOI. doi:10.1088/1748-0221/9/09/c09018

Contents 1 The ATLAS Tile Calorimeter 1 2 Simulation of the ATLAS Tile Calorimeter 1 2.1 Tile Calorimeter simulations with calibration hits 2 2.2 Cell response as function of the particle impact point 2 2.3 Sampling fraction calculation 4 3 Validation of the Tile Calorimeter response 5 3.1 Validation of EM scale with muons in ATLAS 5 3.2 Electronic noise 5 3.3 Noise with pileup 7 4 Conclusion 7 1 The ATLAS Tile Calorimeter The Tile Calorimeter (TileCal) [1] is the central section of hadronic calorimeter of the ATLAS experiment [2] at the Large Hadron Collider [3]. The total length is 12 m and the diameter is 8.5 m. There are 3 cylindrical sections: Long Barrel and two Extended Barrels. Each barrel is divided in 64 modules in φ. The module consists of alternating layers of steel absorber and scintillating tiles. The cell granularity is η φ = 0.1 0.1 (0.2 0.1 in the outermost radial sample D). The granularity corresponds to trigger towers of the calorimeters. There are over 5000 cells in total. Each scintillating tile is being read by two photomultiplier tubes (PMTs) from either side of the cell (except for some special cells) via wavelength shifting fibers. The cell energy is the sum of the energy measured in the two channels. The design resolution of TileCal for jets is: σ E /E = 50% / E 3%, E in GeV [4]. The double readout reduces the dependence on the light attenuation in the scintillator and improves the response uniformity. The readout electronics (including the PMTs) is located at the outer radius of the calorimeter (inside the girder). The total thickness of TileCal is 7.4 λ int at η = 0. Three radial samplings A, BC, D correspond to 1.5, 4.1, 1.8 λ int in the Long Barrel and 1.5, 2.6, 3.3 λ int in the Extended Barrel. TileCal covers the pseudo-rapidity region η < 1.7. 2 Simulation of the ATLAS Tile Calorimeter In a Geant4 simulation the passage of particles through the ATLAS detector is characterized by hits. Each hit is defined by the energy deposition, its position and time. We have only information from the sensitive material of the detector from the real experiment. The sensitive part of the TileCal is the scintillator and therefore Birks saturation law must be applied to every Geant4 hit before adding this hit energy to the total energy. When the simulation is finished (the hits are collected and stored), the next step is the digitization. 1

Simulation of cosmic muons is slightly different from simulation of pp collisions. In particular, the internal time of Geant4 hits in the calorimeter can be an arbitrary value not a few nanoseconds, but hundreds of nanoseconds. It is the arrival time of muons passing from the earth surface to the detector in the pit. And special precautions have to be made in order to collect and to reconstruct those hits properly. The η, φ and radial segmentation define the three dimensional cells in TileCal. The geometry of TileCal is not completely symmetric relative to interaction point along z (beam axis) and in φ direction. A few cells have a special shape, asymmetric inactive material etc. All currently known geometric details are carefully described in the MC geometry model. 2.1 Tile Calorimeter simulations with calibration hits Calibration hits allow us to record not only the energy deposited in the scintillator, but also in the non-sensitive parts of TileCal. The energy of the event is divided in electromagnetic, nonelectromagnetic, invisible (neutrino) and escaping (leakage energy) components. By definition the sampling calorimeter consists of active and inactive materials, but material of support such as: saddle, girder and extra iron structures at outer radius of the calorimeter, readout electronics inside the girder, cables, and other services are called dead material. The calibration hits give us very useful information for the energy calibration studies: calibration of each ATLAS sub-detector and verification of its geometry; understanding of the full energy balance of specific event types, for example evaluation of missing visible energy which can be caused by energy deposits in dead materials, by leakage, or by energy flow at η > 5.9; identification of the full energy which is associated with each jet in multi-jet events. The calibration hits are also used in the determination of the PMT response as a function of the coordinates of the energy deposition point and the sampling fraction determination. It is also possible to simulate the TileCal standalone Test Beams (3 barrel modules or 2 barrels and 2 extended barrels) as well as the Combined Test Beam of 2004 [5]. This is particularly useful for the sampling fraction calculation. 2.2 Cell response as function of the particle impact point The dependences of the scintillating tile response to the particle impact point are obtained in measurement of the <de/dx> value of muons produced in leptonic decays of W µν. They are represented in figure 1 [6]. φ is the azimuthal angle difference between the muon track impact point on the cell and the center of the cell. These dependences have the so-called U-shape. They were obtained for the cells of the three radial layers of the TileCal Long end Extended Barrels. The criteria are applied to select well reconstructed tracks and to select W µν events: exactly one muon, p T µ > 15 GeV, transverse mass M T > 40 GeV, missing E T > 25 GeV, p T < 1 GeV in a cone of R = η φ = 0.4 around track, E LAr < 3 GeV in a cone of R = 0.4, 20 < p µ < 100 GeV, the energy deposited in the cell E > 60 MeV and the path length of muon in the cell x > 15 cm. The response correction factor is necessary that the tile response in the Monte Carlo simulation bring into accord with the data U-shape. The factor for each PMT was estimated as the ratio of the <de/dx> for single PMT from the collision data at s = 8 TeV divided by <de/dx> using total energy deposited in the cell in simulation before correction. Muons from the W µν events 2

Figure 1. The dependence of the scintillating tiles response on the particle impact point for the A, BC and D layers of the Long Barrel of TileCal. The <de/dx> value is obtained from muons produced in leptonic decays of W µν. φ is the azimuthal angle difference between the muon track impact point on the cell and the center of the cell. Figure 2. The dependence of the response correction factor over φ for A-layer cells of the Long Barrel (left panel) and the normalized <de/dx> distributions obtained in the MC simulation with (without) U-shape correction (right panel). were used in the data and single projective muons distributed uniformly in the ATLAS detector were used in simulation. The dependence of the response correction factor over φ for A-layer cells of the Long Barrel is shown in figure 2, left panel [6]. The non-linear form of the dependence originates from the non-uniformity of the light yield over the volume of the scintillating tiles. The U-shape correction is multiplication of simulated energy to the correction factor. Correction factors for channels (PMTs) are organized in look-up tables (LUTs). Nine LUTs have been 3

Figure 3. The dependence of the TileCal inverse sampling fraction (1/SF) over η obtained with full Geant4 simulation of a 100 GeV electron beam. derived and used in the simulation to correct the energy in the cells: 3 radial samplings for the Long Barrel, 3 radial samplings for each Extended Barrel. Each LUT contains 99 points for the φ range [-0.0495, 0.0495]. The LUTs for two PMTs in a cell are symmetric: LUT PMT1 ( φ) = LUT PMT2 ( φ). Moreover, the LUTs are scaled twice: 1) the average value in every LUT for one PMT is set to 0.5; 2) all LUTs are rescaled to have the same sampling fraction for 100 GeV electrons at η = 0.35 in the center of the cell (Test Beam simulation with beam width = 40 mm). The LUTs are now applied to each PMT in all barrels and radial layers of TileCal in the ATLAS full simulation. First the standard Geant4 simulation is carried out for particles passing through the TileCal and then the energy computed by Geant4 for a given cell is corrected using the LUT. The red (green) dots distributions in figure 2 (right) [6] were obtained in the MC simulation with (without) U-shape correction. An up to 6% difference between simulation with and without U-shape correction is observed in the Long Barrel, A-layer. This can reach 10% in other layers and barrels. However, the <de/dx> of muons from the W µν events for the collision data (figure 1, red) agrees very well (within 1%) with simulation with U-shape correction (figure 2, right, red). 2.3 Sampling fraction calculation The sampling fraction (SF) is the conversion factor between the energy released in the scintillators and the total energy deposited in the TileCal cells. The total deposited energy is equal to the beam energy E beam in the Test Beam case (data or MC simulation). The energy in outputs from the ordinary simulations (at hit level) is equal to energy released in the active material (E sci ). The cell energy is then calculated as the energy in the scintillators multiplied by a constant value 1/SF. If the invisible energy and energy leakage are neglected, the inverse sampling fraction is 1/SF = E beam /E sci. Single particles in the Test Beam setup were simulated to obtain the dependence of SF over η. Electron beams at 5, 20 and 100 GeV were simulated in an η-projective geometry (0.05 < η < 0.85). The 1/SF value for 100 GeV electron beam is shown in figure 3 [7]. 4

Table 1. The TileCal inverse sampling fraction (1/SF) for various E beam and η. E beam [GeV] η : 0.25 0.75 90 degrees 5 34.341 ± 0.018 33.934 ± 0.019 20 34.140 ± 0.011 33.494 ± 0.009 100 34.045 ± 0.005 33.356 ± 0.004 The 1/SF value is almost constant in the pseudo-rapidity region between 0.15 and 0.85. The increase of the 1/SF at small η = 0.05, i.e. decrease of the energy deposit in the scintillator, can be qualitatively explained by the periodic scintillator/iron structure of the TileCal: the narrow EM shower at low angle can touch only one scintillator and two neighbor iron plate. The single electron samples were also simulated at 90 degrees to the module. The 1/SF values for electron beams at 5, 20 and 100 GeV at various values of η are in the table 1. The value of 1/SF depends slightly on energy. The maximum of the EM shower is shifted to higher depth at higher beam energy. The energy fraction released in the iron front plate of the TileCal becomes smaller and the energy fraction released in scintillator increases somewhat. The systematic error in 1/SF obtained in the MC simulation is 0.8%. The TileCal MC simulation uses a constant 1/SF = 34.0, which is the sampling fraction at η = 0.35. This is also the pseudo-rapidity of the test beam where the electromagnetic scale in TileCal was defined. 3 Validation of the Tile Calorimeter response 3.1 Validation of EM scale with muons in ATLAS The example of the muon signal and corresponding noise is represented in figure 4 (left) [4] for projective cosmic muons entering the barrel modules at 0.3 < η < 0.4. The total energy summed up over the last radial layer of TileCal (D-layer) that can possibly be eventually used to assist the muon identification. The signal (red) comes from the cosmic muon data sample, the corresponding noise (black) is obtained from the random trigger sample. The <de/dx> values for cosmic muons and the Test Beam muons are shown in figure 4 (right) [4] per radial layer and they are compared to Monte Carlo at the bottom. For the cosmic muon data, the results were obtained for modules at the bottom part of the calorimeter. The error bars shown combine both statistical and systematic uncertainty summed in quadrature. The results show that reconstructed de/dx for MC and data are compatible to a level a few percents. 3.2 Electronic noise The electronic noise in TileCal is not Gaussian as one can see in figure 5 (left) [8]. It can be approximated with two Gaussians. Such a shape comes mainly from the Low Voltage Power Supply (LVPS) providing power for front-end electronics. A comparison was made between the reconstructed energy in 100 k events of two high statistics pedestal runs (run 192130 2011 and run 195843 2012), for module LBC41, channel 47, a previously very noisy channel. The reconstruction of energy in the events is performed using the Non-iterative Optimal Filtering method. 5

Figure 4. The cosmic muon signal (data and Monte Carlo) and the random trigger noise in D-layer (left). The <de/dx> for cosmic and test beam muons in various TileCal layers (right). Figure 5. The electronic noise in a TileCal module with old and new LVPS (left). The energy distributions of the TileCal cells in minimum bias events from collision data at 7 TeV, 2.36 TeV, and 0.9 TeV in comparison with Monte Carlo (right). LBC41 had its LVPS changed from version 6.5.4 to version 7.5 in winter 2011 2012. The RMS of the noise distribution for the channel goes down by almost a factor of 2 after changing LVPS. Both noise cases are implemented in Monte Carlo. After the LHC shutdown in 2013 2014, all modules are equipped with new LVPS showing almost perfect Gaussian noise and improved correlated noise as well. The energy of the TileCal cells is shown in figure 5 (right) [9]. Here the distributions from collision data at 7 TeV, 2.36 TeV, and 0.9 TeV are superimposed with Pythia minimum bias Monte Carlo and randomly triggered events. Each distribution is normalized with the number of events. The negative side demonstrates good agreement with the MC noise simulation using the double Gaussian description. 6

Figure 6. The comparison of the noise distribution with pileup as a function of η in the collision data and in MC simulation for different TileCal cells: layer A top and left panel, layer BC top and right, layer D bottom and left, Special Cells bottom and right. 3.3 Noise with pileup A realistic description of the total noise (Electronic and Pileup noise summed in quadrature) is mandatory for the calorimeter triggers [10] and jet energy reconstruction [11]. The total noise distributions of different Tilecal cells as a function of η are represented in figure 6 [12]. Pileup is characterized by the average number of minimum bias collisions (< µ >) overlaid on a hard scattering event. The distributions were obtained for the zero bias run 216416 of 2012 at a centre-of-mass energy of 8 TeV with a bunch spacing T = 25 ns and an average number of interactions < µ >= 10.0 per bunch crossing. The Monte Carlo simulation was reweighted to the average number of interactions in data. The noise was estimated as the standard deviation of the measured cell energy distribution. The histograms show the results obtained for cells from different layers in TileCal (A, BC, D and Special Cells). Overall, the difference between noise in data and in the MC simulation is not more than 20%. 4 Conclusion The detailed simulation of the Tile Calorimeter and the precise implementation of the detector characteristics for the ATLAS environment led to a very good description of the TileCal response. 7

The simulation with calibration hits is very useful for the energy calibration studies, verification of the ATLAS geometry, determination of the PMT response and the sampling fraction. The PMT response with U-shape correction is more precise and can have some effect on MC systematics. The sampling fraction calculation is in good conformity with earlier Test Beam measurements. The thorough validation of the Tile Calorimeter simulation shows in particular a good description of the muon energy deposition. Models for both electronic noise and pileup noise are implemented in Monte Carlo, and show good agreement with data. A solid basis for the full simulation of Tile Calorimeter and ATLAS was achieved. References [1] ATLAS collaboration, Tile Calorimeter Technical Design Report, CERN, Geneva, Switzerland, CERN-LHCC-96-42, (1996). [2] ATLAS collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003. [3] L. Evans and P. Bryant, LHC Machine, 2008 JINST 3 S08001. [4] ATLAS collaboration, G. Aad et al., Readiness of the ATLAS Tile Calorimeter for LHC collisions, Eur. Phys. J. C 70 (2010) 1193 [arxiv:1007.5423]. [5] ATLAS collaboration, E. Abat et al., Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 GeV to 350 GeV, Nucl. Instrum. Meth. A 621 (2010) 134. [6] ATLAS collaboration, Approved Plots and Public Results, Tile Calorimeter, U-shape, https://twiki.cern.ch/twiki/bin/view/atlaspublic/tilecalopublicresults#u shape. [7] ATLAS collaboration, Approved Plots and Public Results, Tile Calorimeter, Sampling fraction, https://twiki.cern.ch/twiki/bin/view/atlaspublic/approvedplotstile#sampling fraction. [8] ATLAS collaboration, Approved Plots and Public Results, Tile Calorimeter, Noise characteristics, https://twiki.cern.ch/twiki/bin/view/atlaspublic/approvedplotstilenoise#noise characteristics. [9] ATLAS collaboration, Approved Plots and Public Results, Tile Calorimeter, Energy deposition, https://twiki.cern.ch/twiki/bin/view/atlaspublic/tilecalopublicresults#energy deposition. [10] ATLAS collaboration, G. Aad et al., Performance of the ATLAS Trigger System in 2010, Eur. Phys. J. C 72 (2012) 1849 [arxiv:1110.1530]. [11] ATLAS collaboration, G. Aad et al., Jet energy measurement with the ATLAS detector in proton-proton collisions at s = 7 TeV, Eur. Phys. J. C 73 (2013) 2304 [arxiv:1112.6426]. [12] ATLAS collaboration, Approved Plots and Public Results, Tile Calorimeter, Pile-up Noise, https://twiki.cern.ch/twiki/bin/view/atlaspublic/approvedplotstilenoise#pile up Noise 2012. 8