Stability data, irregular connections and tropical curves

Similar documents
Quadratic differentials as stability conditions. Tom Bridgeland (joint work with Ivan Smith)

A wall-crossing formula for 2d-4d DT invariants

Outline of mini lecture course, Mainz February 2016 Jacopo Stoppa Warning: reference list is very much incomplete!

Wall-crossing for Donaldson-Thomas invariants

THE OOGURI-VAFA METRIC, HOLOMORPHIC DISCS AND WALL-CROSSING

2d-4d wall-crossing and hyperholomorphic bundles

Riemann-Hilbert problems from Donaldson-Thomas theory

Conjectures on counting associative 3-folds in G 2 -manifolds

Gravitating vortices, cosmic strings, and algebraic geometry

QUADRATIC DIFFERENTIALS AS STABILITY CONDITIONS

BPS states, Wall-crossing and Quivers

HYPERKÄHLER MANIFOLDS

Surface Defects and the BPS Spectrum of 4d N=2 Theories

Moduli theory of Lagrangian immersions and mirror symmetry

Free fermion and wall-crossing

Wall-crossing structures

Quadratic differentials of exponential type and stability

Broken pencils and four-manifold invariants. Tim Perutz (Cambridge)

Donaldson-Thomas invariants

Moduli of Lagrangian immersions in pair-of-pants decompositions and mirror symmetry

Stability and Wall-Crossing

Titles and Abstracts

On the Virtual Fundamental Class

Linear connections on Lie groups

Metric on moduli of Higgs Bundles Andrew Neitzke

Darboux theorems for shifted symplectic derived schemes and stacks

Categorification of shifted symplectic geometry using perverse sheaves

Some new torsional local models for heterotic strings

Homological mirror symmetry via families of Lagrangians

Homological Mirror Symmetry and VGIT

Birational geometry for d-critical loci and wall-crossing in Calabi-Yau 3-folds

The Strominger Yau Zaslow conjecture

Mirror symmetry, Langlands duality and the Hitchin system I

Lagrangian surgery and Rigid analytic family of Floer homologies

Spectral networks at marginal stability, BPS quivers, and a new construction of wall-crossing invariants

Refined Donaldson-Thomas theory and Nekrasov s formula

QK/HK correspondence, Wall-crossing and the Rogers dilogarithm

Shifted Symplectic Derived Algebraic Geometry and generalizations of Donaldson Thomas Theory

Lectures on motivic Donaldson-Thomas invariants and wall-crossing formulas

Wall-crossing from quantum multi-centered BPS black holes

Donaldson Thomas theory of Calabi Yau 3-folds, and generalizations

Elements of Topological M-Theory

Semiclassical Framed BPS States

DONAGI-MARKMAN CUBIC FOR HITCHIN SYSTEMS arxiv:math/ v2 [math.ag] 24 Oct 2006

Stable bundles on CP 3 and special holonomies

arxiv: v2 [hep-th] 23 Sep 2011

Higgs Bundles and Character Varieties

HMS Seminar - Talk 1. Netanel Blaier (Brandeis) September 26, 2016

Dynamics and Geometry of Flat Surfaces

Dualities and Topological Strings

D3-instantons, Mock Theta series and Twistors

DEFECTS IN COHOMOLOGICAL GAUGE THEORY AND DONALDSON- THOMAS INVARIANTS

Moduli Space of Higgs Bundles Instructor: Marco Gualtieri

Deformations of logarithmic connections and apparent singularities

Factorization Algebras Associated to the (2, 0) Theory IV. Kevin Costello Notes by Qiaochu Yuan

Ω-deformation and quantization

Knots and Mirror Symmetry. Mina Aganagic UC Berkeley

Collapsing Calabi-Yau Manifolds workshop Talk Schedule

Del Pezzo surfaces and non-commutative geometry

Geometry of Conformal Field Theory

Research Article A Quantization Procedure of Fields Based on Geometric Langlands Correspondence

The geometry of Landau-Ginzburg models

Classical Geometry of Quantum Integrability and Gauge Theory. Nikita Nekrasov IHES

arxiv:math/ v1 [math.dg] 19 Apr 2001

Partition functions of N = 4 Yang-Mills and applications

Periodic Monopoles and qopers

Symplectic 4-manifolds, singular plane curves, and isotopy problems

The Higgs bundle moduli space

Mirror symmetry, Langlands duality and the Hitchin system

Spectral Networks and Their Applications. Caltech, March, 2012

ON 2D-4D MOTIVIC WALL-CROSSING FORMULAS

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

G 2 manifolds and mirror symmetry

Moment map flows and the Hecke correspondence for quivers

Topics in Geometry: Mirror Symmetry

Twistorial Topological Strings and a tt Geometry for N = 2 Theories in 4d

Algebraic structure of the IR limit of massive d=2 N=(2,2) theories. collaboration with Davide Gaiotto & Edward Witten

ALF spaces and collapsing Ricci-flat metrics on the K3 surface

Conification of Kähler and hyper-kähler manifolds and supergr

Algebraic geometry over quaternions

Calabi-Yau Geometry and Mirror Symmetry Conference. Cheol-Hyun Cho (Seoul National Univ.) (based on a joint work with Hansol Hong and Siu-Cheong Lau)

Bipartite Graphs and Microlocal Geometry

Heterotic Flux Compactifications

BPS black holes, wall-crossing and mock modular forms of higher depth - I

Intro to Geometry and Topology via G Physics and G 2 -manifolds. Bobby Samir Acharya. King s College London. and ICTP Trieste Ψ(1 γ 5 )Ψ

INDUCING STABILITY CONDITIONS

Heterotic Torsional Backgrounds, from Supergravity to CFT

Donaldson Invariants and Moduli of Yang-Mills Instantons

Lefschetz pencils and the symplectic topology of complex surfaces

Lagrangian submanifolds in elliptic and log symplectic manifolds

Two simple ideas from calculus applied to Riemannian geometry

Four Lectures on Web Formalism and Categorical Wall-Crossing. collaboration with Davide Gaiotto & Edward Witten

QUIVER ALGEBRAS AS FUKAYA CATEGORIES. 1. Introduction

Categorical Kähler Geometry

Bundles over moduli space of Bohr - Sommerfeld lagrangian cycles

A Crash Course of Floer Homology for Lagrangian Intersections

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

3d Gauge Theories, Symplectic Duality and Knot Homology I. Tudor Dimofte Notes by Qiaochu Yuan

Bobby Samir Acharya Kickoff Meeting for Simons Collaboration on Special Holonomy

Constructing compact 8-manifolds with holonomy Spin(7)

Transcription:

Stability data, irregular connections and tropical curves Mario Garcia-Fernandez Instituto de iencias Matemáticas (Madrid) Barcelona Mathematical Days 7 November 2014 Joint work with S. Filippini and J. Stoppa, arxiv:1403.7404 MGF (IMAT) BMD Barcelona, 7 November 1 / 14

Hitchin systems, stability data and irregular connections Hitchin systems Spaces of stability Irregular connections A) Hitchin integrable systems (Higgs bundles) B) Spaces of stability conditions (à la Bridgeland) ) Irregular connections on P 1 (after P. Boalch) MGF (IMAT) BMD Barcelona, 7 November 2 / 14

Hitchin systems Riemann surface, genus g(). SL(2, )-Higgs bundle: (E, φ), E holomorphic vector bundle, Λ 2 E = O, φ: E E K holomorphic, tr φ = 0. Theorem (Hitchin 86): the moduli space M Dol of (E, φ) s is a completely integrable, algebraic, Hamiltonian system. Hitchin map: M Dol B = H 0 (K 2 ): [(E, φ)] det φ, with fibres abelian varieties. Observation 1 (Diaconescu-Donagi-Dijkgraaf-Hofman-Pantev 05): B parameterises a family of non-compact alabi-yau threefolds. Take V := K 1/2 K 1/2 and consider p : S 2 V (rank 3) with the natural map det: S 2 V Hom(V, V ) K 2 : u det u. Then, X b = {det = p b} S 2 V, b H 0 (K 2 ) Locally v 1 v 2 y 2 = det φ (affine conic fibration over ). MGF (IMAT) BMD Barcelona, 7 November 3 / 14

Hitchin systems Riemann surface, genus g(). SL(2, )-Higgs bundle: (E, φ), E holomorphic vector bundle, Λ 2 E = O, φ: E E K holomorphic, tr φ = 0. Theorem (Hitchin 86): the moduli space M Dol of (E, φ) s is a completely integrable, algebraic, Hamiltonian system. Hitchin map: M Dol B = H 0 (K 2 ): [(E, φ)] det φ, with fibres abelian varieties. Observation 1 (Diaconescu-Donagi-Dijkgraaf-Hofman-Pantev 05): B parameterises a family of non-compact alabi-yau threefolds. Take V := K 1/2 K 1/2 and consider p : S 2 V (rank 3) with the natural map det: S 2 V Hom(V, V ) K 2 : u det u. Then, X b = {det = p b} S 2 V, b H 0 (K 2 ) Locally v 1 v 2 y 2 = det φ (affine conic fibration over ). MGF (IMAT) BMD Barcelona, 7 November 3 / 14

Hitchin systems Riemann surface, genus g(). SL(2, )-Higgs bundle: (E, φ), E holomorphic vector bundle, Λ 2 E = O, φ: E E K holomorphic, tr φ = 0. Theorem (Hitchin 86): the moduli space M Dol of (E, φ) s is a completely integrable, algebraic, Hamiltonian system. Hitchin map: M Dol B = H 0 (K 2 ): [(E, φ)] det φ, with fibres abelian varieties. Observation 1 (Diaconescu-Donagi-Dijkgraaf-Hofman-Pantev 05): B parameterises a family of non-compact alabi-yau threefolds. Take V := K 1/2 K 1/2 and consider p : S 2 V (rank 3) with the natural map det: S 2 V Hom(V, V ) K 2 : u det u. Then, X b = {det = p b} S 2 V, b H 0 (K 2 ) Locally v 1 v 2 y 2 = det φ (affine conic fibration over ). MGF (IMAT) BMD Barcelona, 7 November 3 / 14

Hitchin systems Riemann surface, genus g(). SL(2, )-Higgs bundle: (E, φ), E holomorphic vector bundle, Λ 2 E = O, φ: E E K holomorphic, tr φ = 0. Theorem (Hitchin 86): the moduli space M Dol of (E, φ) s is a completely integrable, algebraic, Hamiltonian system. Hitchin map: M Dol B = H 0 (K 2 ): [(E, φ)] det φ, with fibres abelian varieties. Observation 1 (Diaconescu-Donagi-Dijkgraaf-Hofman-Pantev 05): B parameterises a family of non-compact alabi-yau threefolds. Take V := K 1/2 K 1/2 and consider p : S 2 V (rank 3) with the natural map det: S 2 V Hom(V, V ) K 2 : u det u. Then, X b = {det = p b} S 2 V, b H 0 (K 2 ) Locally v 1 v 2 y 2 = det φ (affine conic fibration over ). MGF (IMAT) BMD Barcelona, 7 November 3 / 14

Stability conditions from quadratic differentials X b = {det = p b} S 2 V, b H 0 (K 2 ) Locally v 1 v 2 y 2 = det φ (affine conic fibration over ). Observation 2 (Smith 13): X b can be endowed with a symplectic structure, which only depends on g(): B parameterises alabi-yau structures in a fixed symplectic manifold Y g(). Observation 3 (Thomas 01): the holomorphic volume form on a alabi-yau manifold determines a stability condition for Lagrangians. Aside: Thomas conjectures that L is stable iff it contains a special Lagrangian on its Hamiltonian isotopy class. onclusion: The base B of the Hitchin system (actually varying ), should be a space of stability conditions for Lagrangians in Y g(). MGF (IMAT) BMD Barcelona, 7 November 4 / 14

Stability conditions from quadratic differentials X b = {det = p b} S 2 V, b H 0 (K 2 ) Locally v 1 v 2 y 2 = det φ (affine conic fibration over ). Observation 2 (Smith 13): X b can be endowed with a symplectic structure, which only depends on g(): B parameterises alabi-yau structures in a fixed symplectic manifold Y g(). Observation 3 (Thomas 01): the holomorphic volume form on a alabi-yau manifold determines a stability condition for Lagrangians. Aside: Thomas conjectures that L is stable iff it contains a special Lagrangian on its Hamiltonian isotopy class. onclusion: The base B of the Hitchin system (actually varying ), should be a space of stability conditions for Lagrangians in Y g(). MGF (IMAT) BMD Barcelona, 7 November 4 / 14

Stability conditions from quadratic differentials X b = {det = p b} S 2 V, b H 0 (K 2 ) Locally v 1 v 2 y 2 = det φ (affine conic fibration over ). Observation 2 (Smith 13): X b can be endowed with a symplectic structure, which only depends on g(): B parameterises alabi-yau structures in a fixed symplectic manifold Y g(). Observation 3 (Thomas 01): the holomorphic volume form on a alabi-yau manifold determines a stability condition for Lagrangians. Aside: Thomas conjectures that L is stable iff it contains a special Lagrangian on its Hamiltonian isotopy class. onclusion: The base B of the Hitchin system (actually varying ), should be a space of stability conditions for Lagrangians in Y g(). MGF (IMAT) BMD Barcelona, 7 November 4 / 14

Stability conditions... and quivers Theorem (Bridgeland-Smith 13): for suitable irregular Hitchin systems there exists a triangulated category D with combinatorial description (quivers with potential), such that the base H 0 (K 2 (D)) (varying ) is a connected component of Stab(D). Aside: (A, Z) Stab(D) is given by an abelian subcategory A and an homomorphism Z : K(A) Z such that Z(K >0 (A)) H, plus conditions. MGF (IMAT) BMD Barcelona, 7 November 5 / 14

Stability conditions... and quivers Theorem (Bridgeland-Smith 13): for suitable irregular Hitchin systems there exists a triangulated category D with combinatorial description (quivers with potential), such that the base H 0 (K 2 (D)) (varying ) is a connected component of Stab(D). Aside: (A, Z) Stab(D) is given by an abelian subcategory A and an homomorphism Z : K(A) Z such that Z(K >0 (A)) H, plus conditions. Example: = P 1, φ with singularity of order 4 at, nilpotent leading part at the pole. Generically det φ H 0 (K 2 (7 )), with three simple zeroes. Let R be the path algebra of. Then, A = Mod fin (R) and D = D b (Mod fin ( R)) ( R completed (Ginzburg dg) algebra). MGF (IMAT) BMD Barcelona, 7 November 6 / 14

What is all this good for? 1) Geometric description of Stab(D) for amenable (combinatorial) D. 2) ombinatorial description of Fukaya. 3) (onjectural) description of hyperkähler geometry of M Dol! Theorem (Hitchin 86): the moduli space M Dol has a compatible hyperkähler metric g. onjecture (Gaiotto Moore Neitzke 09): the category D recovers the hyperkähler metric g. Physical Theorem (BPS spectrum of susy Gauge Theory Donaldson-Thomas invariants for D.) MGF (IMAT) BMD Barcelona, 7 November 7 / 14

What is all this good for? 1) Geometric description of Stab(D) for amenable (combinatorial) D. 2) ombinatorial description of Fukaya. 3) (onjectural) description of hyperkähler geometry of M Dol! Theorem (Hitchin 86): the moduli space M Dol has a compatible hyperkähler metric g. onjecture (Gaiotto Moore Neitzke 09): the category D recovers the hyperkähler metric g. Physical Theorem (BPS spectrum of susy Gauge Theory Donaldson-Thomas invariants for D.) MGF (IMAT) BMD Barcelona, 7 November 7 / 14

What is all this good for? 1) Geometric description of Stab(D) for amenable (combinatorial) D. 2) ombinatorial description of Fukaya. 3) (onjectural) description of hyperkähler geometry of M Dol! Theorem (Hitchin 86): the moduli space M Dol has a compatible hyperkähler metric g. onjecture (Gaiotto Moore Neitzke 09): the category D recovers the hyperkähler metric g. Physical Theorem (BPS spectrum of susy Gauge Theory Donaldson-Thomas invariants for D.) MGF (IMAT) BMD Barcelona, 7 November 7 / 14

What is all this good for? 1) Geometric description of Stab(D) for amenable (combinatorial) D. 2) ombinatorial description of Fukaya. 3) (onjectural) description of hyperkähler geometry of M Dol! Theorem (Hitchin 86): the moduli space M Dol has a compatible hyperkähler metric g. onjecture (Gaiotto Moore Neitzke 09): the category D recovers the hyperkähler metric g. Physical Theorem (BPS spectrum of susy Gauge Theory Donaldson-Thomas invariants for D.) MGF (IMAT) BMD Barcelona, 7 November 7 / 14

What is all this good for? 1) Geometric description of Stab(D) for amenable (combinatorial) D. 2) ombinatorial description of Fukaya. 3) (onjectural) description of hyperkähler geometry of M Dol! Theorem (Hitchin 86): the moduli space M Dol has a compatible hyperkähler metric g. onjecture (Gaiotto Moore Neitzke 09): the category D recovers the hyperkähler metric g. Physical Theorem (BPS spectrum of susy Gauge Theory Donaldson-Thomas invariants for D.) MGF (IMAT) BMD Barcelona, 7 November 7 / 14

What is all this good for? 1) Geometric description of Stab(D) for amenable (combinatorial) D. 2) ombinatorial description of Fukaya. 3) (onjectural) description of hyperkähler geometry of M Dol! Theorem (Hitchin 86): the moduli space M Dol has a compatible hyperkähler metric g. onjecture (Gaiotto Moore Neitzke 09): the category D recovers the hyperkähler metric g. Physical Theorem (BPS spectrum of susy Gauge Theory Donaldson-Thomas invariants for D.) MGF (IMAT) BMD Barcelona, 7 November 7 / 14

Gaiotto Moore Neitzke coordinates Observation 4: the twistor family of holomorphic symplectic structures recovers g. ϖ(ζ) = i 2ζ (ω J + iω K ) + ω I iζ 2 (ω J iω K ), ζ P 1 IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) i) (A b, Z b ) Stab(D) ii) Ω(γ, b) Q (if semistable = stable, χ(m s γ )), iii) K(A b ) = H 1 (M Dol b, Z) pairing γ, γ, angular coordinates θ γ iv) X sf γ (x, ζ) = exp(ζ 1 Z b (γ) + iθ γ + ζz b (γ)) MGF (IMAT) BMD Barcelona, 7 November 8 / 14

Gaiotto Moore Neitzke coordinates Observation 4: the twistor family of holomorphic symplectic structures recovers g. ϖ(ζ) = i 2ζ (ω J + iω K ) + ω I iζ 2 (ω J iω K ), ζ P 1 IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) i) (A b, Z b ) Stab(D) ii) Ω(γ, b) Q (if semistable = stable, χ(m s γ )), iii) K(A b ) = H 1 (M Dol b, Z) pairing γ, γ, angular coordinates θ γ iv) X sf γ (x, ζ) = exp(ζ 1 Z b (γ) + iθ γ + ζz b (γ)) MGF (IMAT) BMD Barcelona, 7 November 8 / 14

Gaiotto Moore Neitzke coordinates Observation 4: the twistor family of holomorphic symplectic structures recovers g. ϖ(ζ) = i 2ζ (ω J + iω K ) + ω I iζ 2 (ω J iω K ), ζ P 1 IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) i) (A b, Z b ) Stab(D) ii) Ω(γ, b) Q (if semistable = stable, χ(m s γ )), iii) K(A b ) = H 1 (M Dol b, Z) pairing γ, γ, angular coordinates θ γ iv) X sf γ (x, ζ) = exp(ζ 1 Z b (γ) + iθ γ + ζz b (γ)) MGF (IMAT) BMD Barcelona, 7 November 8 / 14

Gaiotto Moore Neitzke coordinates Observation 4: the twistor family of holomorphic symplectic structures recovers g. ϖ(ζ) = i 2ζ (ω J + iω K ) + ω I iζ 2 (ω J iω K ), ζ P 1 IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) i) (A b, Z b ) Stab(D) ii) Ω(γ, b) Q (if semistable = stable, χ(m s γ )), iii) K(A b ) = H 1 (M Dol b, Z) pairing γ, γ, angular coordinates θ γ iv) X sf γ (x, ζ) = exp(ζ 1 Z b (γ) + iθ γ + ζz b (γ)) MGF (IMAT) BMD Barcelona, 7 November 8 / 14

Gaiotto Moore Neitzke coordinates Observation 4: the twistor family of holomorphic symplectic structures recovers g. ϖ(ζ) = i 2ζ (ω J + iω K ) + ω I iζ 2 (ω J iω K ), ζ P 1 IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) i) (A b, Z b ) Stab(D) ii) Ω(γ, b) Q (if semistable = stable, χ(m s γ )), iii) K(A b ) = H 1 (M Dol b, Z) pairing γ, γ, angular coordinates θ γ iv) X sf γ (x, ζ) = exp(ζ 1 Z b (γ) + iθ γ + ζz b (γ)) MGF (IMAT) BMD Barcelona, 7 November 8 / 14

Gaiotto Moore Neitzke coordinates IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Important Remarks: Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) A) Xγ sf determine g sf HyperKähler, away from singular fibres, B) X γ instanton correct Xγ sf ( Gross-Siebert), ) X γ discontinuous along R <0 Z b (γ ) with Ω(γ, b) 0. D) Kontsevich-Soibelman wall-crossing formula ϖ(ζ) = i,j d log X γ i (ζ) d log X γj (ζ) smooth E) Ω(γ, b) = Ω( γ, b) (symmetric), by Bridgeland axioms. MGF (IMAT) BMD Barcelona, 7 November 9 / 14

Gaiotto Moore Neitzke coordinates IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Important Remarks: Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) A) Xγ sf determine g sf HyperKähler, away from singular fibres, B) X γ instanton correct Xγ sf ( Gross-Siebert), ) X γ discontinuous along R <0 Z b (γ ) with Ω(γ, b) 0. D) Kontsevich-Soibelman wall-crossing formula ϖ(ζ) = i,j d log X γ i (ζ) d log X γj (ζ) smooth E) Ω(γ, b) = Ω( γ, b) (symmetric), by Bridgeland axioms. MGF (IMAT) BMD Barcelona, 7 November 9 / 14

Gaiotto Moore Neitzke coordinates IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Important Remarks: Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) A) Xγ sf determine g sf HyperKähler, away from singular fibres, B) X γ instanton correct Xγ sf ( Gross-Siebert), ) X γ discontinuous along R <0 Z b (γ ) with Ω(γ, b) 0. D) Kontsevich-Soibelman wall-crossing formula ϖ(ζ) = i,j d log X γ i (ζ) d log X γj (ζ) smooth E) Ω(γ, b) = Ω( γ, b) (symmetric), by Bridgeland axioms. MGF (IMAT) BMD Barcelona, 7 November 9 / 14

Gaiotto Moore Neitzke coordinates IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Important Remarks: Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) A) Xγ sf determine g sf HyperKähler, away from singular fibres, B) X γ instanton correct Xγ sf ( Gross-Siebert), ) X γ discontinuous along R <0 Z b (γ ) with Ω(γ, b) 0. D) Kontsevich-Soibelman wall-crossing formula ϖ(ζ) = i,j d log X γ i (ζ) d log X γj (ζ) smooth E) Ω(γ, b) = Ω( γ, b) (symmetric), by Bridgeland axioms. MGF (IMAT) BMD Barcelona, 7 November 9 / 14

Gaiotto Moore Neitzke coordinates IDEA (GMN 09): find family X γ (, ζ): M of holomorphic Darboux coordinates for ϖ(ζ) solving an integral equation for each x M Dol, over b B: X γ (x, ζ) = Xγ sf (x, ζ) exp γ K(A b ) Important Remarks: Ω(γ, b) γ, γ dζ ζ + ζ R <0Z b (γ ) ζ ζ ζ log(1 X γ (x, ζ )) A) Xγ sf determine g sf HyperKähler, away from singular fibres, B) X γ instanton correct Xγ sf ( Gross-Siebert), ) X γ discontinuous along R <0 Z b (γ ) with Ω(γ, b) 0. D) Kontsevich-Soibelman wall-crossing formula ϖ(ζ) = i,j d log X γ i (ζ) d log X γj (ζ) smooth E) Ω(γ, b) = Ω( γ, b) (symmetric), by Bridgeland axioms. MGF (IMAT) BMD Barcelona, 7 November 9 / 14

A very rough approximation of GMN coordinates (Γ,, ) a symplectic lattice and V Γ a cone. onsider g V the corresponding commutative associative algebra over e γ e γ = e γ+γ, γ, γ V Fix Z Hom(Γ, Z). onsider maps X : Aut(ĝ V ) (completion), as unknowns for the integral equation: X (ζ)(e γ ) = X sf (ζ)(e γ ) exp Ω(γ, Z) γ, γ γ Γ R <0Z(γ ) dζ ζ ζ + ζ ζ ζ log (1 X (ζ )(e γ ) Remarks: A) X sf (ζ)(e γ ) = exp Aut(ĝV )(ζ 1 Z + ζz)(e γ ) = exp(ζ 1 Z(γ) + ζz(γ))e γ B) exp, log formal series, ) Ω(γ, Z) Q, γ Γ collection of numbers. Analogy: X (ζ) complexified diffeomorphism of fiber M Dol b. MGF (IMAT) BMD Barcelona, 7 November 10 / 14

A very rough approximation of GMN coordinates (Γ,, ) a symplectic lattice and V Γ a cone. onsider g V the corresponding commutative associative algebra over e γ e γ = e γ+γ, γ, γ V Fix Z Hom(Γ, Z). onsider maps X : Aut(ĝ V ) (completion), as unknowns for the integral equation: X (ζ)(e γ ) = X sf (ζ)(e γ ) exp Ω(γ, Z) γ, γ γ Γ R <0Z(γ ) dζ ζ ζ + ζ ζ ζ log (1 X (ζ )(e γ ) Remarks: A) X sf (ζ)(e γ ) = exp Aut(ĝV )(ζ 1 Z + ζz)(e γ ) = exp(ζ 1 Z(γ) + ζz(γ))e γ B) exp, log formal series, ) Ω(γ, Z) Q, γ Γ collection of numbers. Analogy: X (ζ) complexified diffeomorphism of fiber M Dol b. MGF (IMAT) BMD Barcelona, 7 November 10 / 14

Irregular connections on P 1 X (ζ)(e γ ) = X sf (ζ)(e γ ) exp Ω(γ, Z) γ, γ γ Γ R <0Z(γ ) dζ ζ ζ + ζ ζ ζ log (1 X (ζ )(e γ ) ASSUMPTION: Ω positive (Ω(γ, Z) = 0 if γ / V ). Observation 5 (GMN,, Filippini, Stoppa): The integral equation has a solution X : Aut(ĝ V ) by iteration on X sf (Z-dependent) which defines a connection (Z) on P 1 with order 2 poles at {0, } ( ζ X )X 1 (ζ) = ( ζ 2 A 1 (Z) + ζ 1 A 0 (Z) + A 1 (Z) ) dz Ω 1 (Der(ĝ V )) A) Well defined limit g(z) = lim ζ 0 X (X sf ) 1 (ζ) Aut(ĝ V ) (frame) B) Ω(γ, Z) Q satisfy KS wall-crossing formulae iff (Z) is isomonodromic. MGF (IMAT) BMD Barcelona, 7 November 11 / 14

Irregular connections on P 1 X (ζ)(e γ ) = X sf (ζ)(e γ ) exp Ω(γ, Z) γ, γ γ Γ R <0Z(γ ) dζ ζ ζ + ζ ζ ζ log (1 X (ζ )(e γ ) ASSUMPTION: Ω positive (Ω(γ, Z) = 0 if γ / V ). Observation 5 (GMN,, Filippini, Stoppa): The integral equation has a solution X : Aut(ĝ V ) by iteration on X sf (Z-dependent) which defines a connection (Z) on P 1 with order 2 poles at {0, } ( ζ X )X 1 (ζ) = ( ζ 2 A 1 (Z) + ζ 1 A 0 (Z) + A 1 (Z) ) dz Ω 1 (Der(ĝ V )) A) Well defined limit g(z) = lim ζ 0 X (X sf ) 1 (ζ) Aut(ĝ V ) (frame) B) Ω(γ, Z) Q satisfy KS wall-crossing formulae iff (Z) is isomonodromic. MGF (IMAT) BMD Barcelona, 7 November 11 / 14

Irregular connections on P 1 X (ζ)(e γ ) = X sf (ζ)(e γ ) exp Ω(γ, Z) γ, γ γ Γ R <0Z(γ ) dζ ζ ζ + ζ ζ ζ log (1 X (ζ )(e γ ) ASSUMPTION: Ω positive (Ω(γ, Z) = 0 if γ / V ). Observation 5 (GMN,, Filippini, Stoppa): The integral equation has a solution X : Aut(ĝ V ) by iteration on X sf (Z-dependent) which defines a connection (Z) on P 1 with order 2 poles at {0, } ( ζ X )X 1 (ζ) = ( ζ 2 A 1 (Z) + ζ 1 A 0 (Z) + A 1 (Z) ) dz Ω 1 (Der(ĝ V )) A) Well defined limit g(z) = lim ζ 0 X (X sf ) 1 (ζ) Aut(ĝ V ) (frame) B) Ω(γ, Z) Q satisfy KS wall-crossing formulae iff (Z) is isomonodromic. MGF (IMAT) BMD Barcelona, 7 November 11 / 14

onformal vs large limit g(z)(e γ ) = e γ exp γ, W T GT 0 (Z) T GT 0 dζ (Z) = R <0Z(γ T ) ζ exp(ζ 1 Z(γT ) + ζ Z(γ T ))e γt G T (ζ, Z) T dζ ζ + ζ G T (ζ, Z) = ζ ζ ζ exp(ζ 1 Z(γT ) + ζ Z(γ T ))e γt G T (ζ, Z) T R <0Z(γ T ) W T = Γ-valued weight, associated to Γ-decorated rooted tree T. Theorem (, Filippini, Stoppa): onsider R > 0 a real constant After change of variable t = R 1 ζ there exists a well-defined limit ( Z lim R 0 g(rz) (RZ)g(RZ) 1 = d t 2 + f (Z) ) dt, t where f (Z) is Joyce s holomorphic generating function for DT invariants. As R, the instanton contribution G (t, RZ) as Z crosses a wall in Hom(Γ, Z) encodes counts of tropical curves immersed in R 2. MGF (IMAT) BMD Barcelona, 7 November 12 / 14

onformal vs large limit g(z)(e γ ) = e γ exp γ, W T GT 0 (Z) T GT 0 dζ (Z) = R <0Z(γ T ) ζ exp(ζ 1 Z(γT ) + ζ Z(γ T ))e γt G T (ζ, Z) T dζ ζ + ζ G T (ζ, Z) = ζ ζ ζ exp(ζ 1 Z(γT ) + ζ Z(γ T ))e γt G T (ζ, Z) T R <0Z(γ T ) W T = Γ-valued weight, associated to Γ-decorated rooted tree T. Theorem (, Filippini, Stoppa): onsider R > 0 a real constant After change of variable t = R 1 ζ there exists a well-defined limit ( Z lim R 0 g(rz) (RZ)g(RZ) 1 = d t 2 + f (Z) ) dt, t where f (Z) is Joyce s holomorphic generating function for DT invariants. As R, the instanton contribution G (t, RZ) as Z crosses a wall in Hom(Γ, Z) encodes counts of tropical curves immersed in R 2. MGF (IMAT) BMD Barcelona, 7 November 12 / 14

Perspectives: Symmetric case, Link with geometric setup, onformal limit as coordinates in submanifold of opers (Gaiotto), MGF (IMAT) BMD Barcelona, 7 November 13 / 14

GRÀIES! MGF (IMAT) BMD Barcelona, 7 November 14 / 14