Residues and Duality for Schemes and Stacks

Similar documents
Dualizing complexes and perverse sheaves on noncommutative ringed schemes

Weak Proregularity, Weak Stability, and the Noncommutative MGM Equivalence

arxiv: v1 [math.kt] 27 Jan 2015

arxiv: v1 [math.ra] 22 Jul 2014

Homology and Cohomology of Stacks (Lecture 7)

arxiv: v4 [math.kt] 24 Oct 2015

arxiv: v2 [math.ag] 5 Apr 2015

REFLEXIVITY AND RIGIDITY FOR COMPLEXES, II: SCHEMES

Notes on p-divisible Groups

Higher Descent. 1. Descent for Sheaves. 2. Cosimplicial Groups. 3. Back to Sheaves. Amnon Yekutieli. 4. Higher Descent: Stacks. 5.

Basic results on Grothendieck Duality

Duality, Residues, Fundamental class

The moduli stack of vector bundles on a curve

DERIVED CATEGORIES OF STACKS. Contents 1. Introduction 1 2. Conventions, notation, and abuse of language The lisse-étale and the flat-fppf sites

Lectures on Grothendieck Duality II: Derived Hom -Tensor adjointness. Local duality.

arxiv: v2 [math.ac] 21 Jan 2013

1 Notations and Statement of the Main Results

PARABOLIC SHEAVES ON LOGARITHMIC SCHEMES

Duality in Noncommutative Algebra and Geometry

HOMOLOGICAL TRANSCENDENCE DEGREE

THE KEEL MORI THEOREM VIA STACKS

Deformation theory of representable morphisms of algebraic stacks

NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY

Formal completion and duality

Lectures on Grothendieck Duality. II: Derived Hom -Tensor adjointness. Local duality.

arxiv: v2 [math.ct] 12 Sep 2017

arxiv:math/ v1 [math.ra] 30 Sep 2001

Non characteristic finiteness theorems in crystalline cohomology

ON TAME STACKS IN POSITIVE CHARACTERISTIC

SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE P 1 -BUNDLES ADAM NYMAN

ALGEBRAIC GEOMETRY: GLOSSARY AND EXAMPLES

REDUCTION OF DERIVED HOCHSCHILD FUNCTORS OVER COMMUTATIVE ALGEBRAS AND SCHEMES

THE PICARD GROUP OF M 1,1. 1. Introduction

Hochschild homology and Grothendieck Duality

arxiv:math/ v3 [math.ra] 3 Jun 2002

Homework 2 - Math 603 Fall 05 Solutions

1. Algebraic vector bundles. Affine Varieties

AN ALTERNATIVE APPROACH TO SERRE DUALITY FOR PROJECTIVE VARIETIES

Logarithmic geometry and moduli

Categories and functors

Algebra & Number Theory

A p-adic GEOMETRIC LANGLANDS CORRESPONDENCE FOR GL 1

Cohomology and Base Change

ON THE ISOMORPHISM BETWEEN THE DUALIZING SHEAF AND THE CANONICAL SHEAF

THE MODULI SPACE OF CURVES

Some remarks on Frobenius and Lefschetz in étale cohomology

NOTES ON THE CONSTRUCTION OF THE MODULI SPACE OF CURVES

Introduction and preliminaries Wouter Zomervrucht, Februari 26, 2014

Odds and ends on equivariant cohomology and traces

Smooth morphisms. Peter Bruin 21 February 2007

PICARD GROUPS OF MODULI PROBLEMS II

DERIVED CATEGORIES IN REPRESENTATION THEORY. We survey recent methods of derived categories in the representation theory of algebras.

ON THE FUNDAMENTAL CLASS OF AN ESSENTIALLY SMOOTH SCHEME-MAP

Quotient Stacks. Jacob Gross. Lincoln College. 8 March 2018

Matrix factorizations over projective schemes

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

Logarithmic geometry and rational curves

arxiv: v1 [math.ra] 5 Feb 2015

Schemes via Noncommutative Localisation

Lectures on Galois Theory. Some steps of generalizations

AUSLANDER REITEN TRIANGLES AND A THEOREM OF ZIMMERMANN

Algebraic Geometry Spring 2009

A QUICK NOTE ON ÉTALE STACKS

Factorization of birational maps for qe schemes in characteristic 0

Homotopy types of algebraic varieties

DERIVED CATEGORIES OF COHERENT SHEAVES

Elliptic curves, Néron models, and duality

Algebraic Geometry Spring 2009

Iwasawa algebras and duality

Synopsis of material from EGA Chapter II, 4. Proposition (4.1.6). The canonical homomorphism ( ) is surjective [(3.2.4)].

Formal power series rings, inverse limits, and I-adic completions of rings

1.6.1 What are Néron Models?

Infinite root stacks of logarithmic schemes

The graded module category of a generalized Weyl algebra

GOOD MODULI SPACES FOR ARTIN STACKS. Contents

THE DERIVED CATEGORY OF A GRADED GORENSTEIN RING

Lecture 2 Sheaves and Functors

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

The absolute de Rham-Witt complex

Dualizing complexes and cousin complexes on formal schemes Joseph Lipman Segovia, August 16, 2006

THE FROBENIUS FUNCTOR AND INJECTIVE MODULES

Construction of M B, M Dol, M DR

Descent on the étale site Wouter Zomervrucht, October 14, 2014

PART II.1. IND-COHERENT SHEAVES ON SCHEMES

arxiv: v1 [math.ag] 13 Dec 2007

Bredon-style homology, cohomology and Riemann-Roch for algebraic stacks

Forschungsseminar: Brauer groups and Artin stacks

Identification of the graded pieces Kęstutis Česnavičius

arxiv: v1 [math.ag] 2 Oct 2009

FORMAL GLUEING OF MODULE CATEGORIES

FUJIWARA S THEOREM FOR EQUIVARIANT CORRESPONDENCES

Constructible isocrystals (London 2015)

Synopsis of material from EGA Chapter II, 3

IndCoh Seminar: Ind-coherent sheaves I

INJECTIVE MODULES: PREPARATORY MATERIAL FOR THE SNOWBIRD SUMMER SCHOOL ON COMMUTATIVE ALGEBRA

Locally G-ringed spaces and rigid spaces

Algebraic varieties and schemes over any scheme. Non singular varieties

DOUGLAS J. DAILEY AND THOMAS MARLEY

Zariski s Main Theorem and some applications

1 Replete topoi. X = Shv proét (X) X is locally weakly contractible (next lecture) X is replete. D(X ) is left complete. K D(X ) we have R lim

Transcription:

Outline Outline Residues and Duality for Schemes and Stacks Amnon Yekutieli Department of Mathematics Ben Gurion University Notes available athttp://www.math.bgu.ac.il/~amyekut/lectures Written: 19 Nov 2013 3. Rigid Residue Complexes over Schemes 4. Residues and Duality for Proper Maps of Schemes Some of the work discussed here was done with James Zhang several years ago. Amnon Yekutieli (BGU) Residues 1 / 39 Amnon Yekutieli (BGU) Residues 2 / 39 There is a functor All rings in this talk are commutative. We fix a base ring K, which is regular noetherian and finite dimensional (e.g. a field or Z). Let A be an essentially finite type K-ring. Recall that this means A is a localization of a finite type K-ring. In particular A is noetherian and finite dimensional. We denote by C(Mod A) the category of complexes of A-modules, and D(Mod A) is the derived category. Q : C(Mod A) D(Mod A) which is the identity on objects. The morphisms in D(Mod A) are all of the form Q(φ) Q(ψ) 1, where ψ is a quasi-isomorphism. Inside D(Mod A) there is the full subcategory D b f (Mod A) of complexes with bounded finitely generated cohomology. In [YZ3] we constructed a functor called the squaring. Sq A/K : D(Mod A) D(Mod A) It is a quadratic functor: if φ : M N is a morphism in D(Mod A), and a A, then Sq A/K (aφ) = a 2 Sq A/K (φ). Amnon Yekutieli (BGU) Residues 3 / 39 Amnon Yekutieli (BGU) Residues 4 / 39

Suppose (N, σ) is another rigid complex. A rigid morphism If A is flat over K then there is an easy formula for the squaring: Sq A/K (M) = RHom A K A(A, M L K M). But in general we have to use DG rings to define Sq A/K (M). A rigidifying isomorphism for M is an isomorphism in D(Mod A). ρ : M Sq A/K (M) A rigid complex over A relative to K is a pair (M, ρ), consisting of a complex M D b f (Mod A) and a rigidifying isomorphism ρ. φ : (M, ρ) (N, σ) is a morphism φ : M N in D(Mod A), such that the diagram is commutative. φ M N ρ σ Sq A/K (M) Sq A/K (φ) Sq A/K (N) We denote by D(Mod A) rig/k the category of rigid complexes, and rigid morphisms between them. Here is the important property of rigidity: if (M, ρ) is a rigid complex such that canonical morphism A RHom A (M, M) is an isomorphism, then the only automorphism of (M, ρ) in D(Mod A) rig/k is the identity. Amnon Yekutieli (BGU) Residues 5 / 39 Amnon Yekutieli (BGU) Residues 6 / 39 Rigid dualizing complexes were introduced by M. Van den Bergh [VdB] in 1997. Note that Van den Bergh considered dualizing complexes over a noncommutative ring A, and the base ring K was a field. More progress (especially the passage from base field to base ring) was done in the papers YZ in the references. Warning: the paper [YZ3] has several serious errors in the proofs, some of which were discovered (and fixed) by the authors of [AILN]. Fortunately all results in [YZ3] are correct, and an erratum is being prepared. Further work on rigidity for commutative rings was done by Avramov, Iyengar, Lipman and Nayak. See [AILN, AIL] and the references therein. Again A is an essentially finite type K-ring. The next definition is from [RD]. A complex R D b f (Mod A) is called dualizing if it has finite injective dimension, and the canonical morphism A RHom A (R, R) is an isomorphism. Grothendieck proved that for a dualizing complex R, the functor RHom A (, R) is a duality (i.e. contravariant equivalence) of D b f (Mod A). Amnon Yekutieli (BGU) Residues 7 / 39 Amnon Yekutieli (BGU) Residues 8 / 39

A rigid dualizing complex over A relative to K is a rigid complex (R, ρ) such that R is dualizing. We know that A has a rigid dualizing complex (R, ρ). Moreover, any two rigid dualizing complexes are uniquely isomorphic in D(Mod A) rig/k. If A = K is a field, then its rigid dualizing complex R must be isomorphic to K[d] for an integer d. We define the rigid dimension to be rig.dim K (K) := d. Example 2.1. If the base ring K is also a field, then On the other hand, for any finite field F q. rig.dim K (K) = tr.deg K (K). rig.dim Z (F q ) = 1 Amnon Yekutieli (BGU) Residues 9 / 39 For a prime idealp Spec A we define where k(p) is the residue field. The resulting function rig.dim K (p) := rig.dim K (k(p)), rig.dim K : Spec A Z has the expected property: it drops by 1 ifp q is an immediate specialization of primes. For any p Spec A we denote by J(p) the injective hull of the A-module k(p). This is an indecomposable injective module. Amnon Yekutieli (BGU) Residues 10 / 39 A rigid residue complex over A relative to K is a rigid dualizing complex (K A, ρ A ), such that for every i there is an isomorphism of A-modules K i A = p Spec A rig.dim K (p)=i J(p). A morphism φ : (K A, ρ A ) (K A, ρ A ) between rigid residue complexes is a homomorphism of complexes φ : K A K A in C(Mod A), such that Q(φ) : (K A, ρ A ) (K A, ρ A) The algebra A has a rigid residue complex (K A, ρ A ). It is unique up to a unique isomorphism in C(Mod A) res/k. So we call it the rigid residue complex of A. Let me mention several important functorial properties of rigid residue complexes. is a morphism in D(Mod A) rig/k. We denote by C(Mod A) res/k the category of rigid residue complexes. Amnon Yekutieli (BGU) Residues 11 / 39 Amnon Yekutieli (BGU) Residues 12 / 39

Suppose A B is an essentially étale homomorphism of K-algebras. There is a unique homomorphism of complexes q B/A : K A K B, satisfying suitable conditions, called the rigid localization homomorphism. The homomorphism q B/A induces an isomorphism of complexes B A K A = KB. If B C is another essentially étale homomorphism, then q C/A = q C/B q B/A. In this way rigid residue complexes form a quasi-coherent sheaf on the étale topology of Spec A. This will be important for us. Now let A B any homomorphism between essentially finite type K-algebras. There is a unique homomorphism of graded A-modules Tr B/A : K B K A, satisfying suitable conditions, called the ind-rigid trace homomorphism. It is functorial: if B C is another algebra homomorphism, then Tr C/A = Tr B/A Tr C/B. When A B is a finite homomorphism, then Tr B/A is a homomorphism of complexes. The ind-rigid traces and the rigid localizations commute with each other. Amnon Yekutieli (BGU) Residues 13 / 39 Example 2.2. Take an algebraically closed field K (e.g. K = C), and let A := K[t], polynomials in a variable t. The rigid residue complex of A is concentrated in degrees 1, 0 : K 1 A = Ω1 K(t)/K A = m K 0 A = m A max Hom cont K ( m, K) Note that for a maximal idealm = (t λ), λ K, the complete local ring is  m = K[[t λ]]. The local component m sends a meromorphic differential form α to them-adically continuous functional m (α) on  m coming from the residue pairing: m (α)(a) := Res m (aα) K. The rigid residue complex of K is just K 0 K = K. Now consider the ring homomorphism K A. Amnon Yekutieli (BGU) Residues 15 / 39 Amnon Yekutieli (BGU) Residues 14 / 39 (cont.) The ind-rigid trace Tr A/K is the vertical arrows here: K 1 A = Ω1 K(t)/K Tr 1 A/K =0 A = m K 1 K = 0 K =0 The homomorphism Tr 0 A/K is K 0 A = m A max Hom cont K ( m, K) Tr 0 A/K K 0 K = K Tr 0 A/K( m φ m ) := m φ m (1) K. Taking α := dt t Ω 1, whose only pole is a simple pole at the K(t)/K origin, we have (Tr 0 A/K A)(α) = 1. We see that the diagram is not commutative; i.e. Tr A/K is not a homomorphism of complexes. Amnon Yekutieli (BGU) Residues 16 / 39

3. Rigid Residue Complexes over Schemes 3. Rigid Residue Complexes over Schemes The last property I want to mention is étale codescent. Suppose u : A B is a faithfully étale ring homomorphism. This means that the map of schemes Spec B Spec A is étale and surjective. Let v 1, v 2 : B B A B the two inclusions. Then for every i the sequence of A-module homomorphisms Now we look at a finite type K-scheme X. If U X is an affine open set, then A := Γ(U,O X ) is a finite type K-ring. Let M be a quasi-coherent O X -module. For any affine open set U, Γ(U,M) is a Γ(U,O X )-module. If V U is another affine open set, then is exact. K i B A B Tr v1 Tr v2 K i B Tr u K i A 0 is an étale ring homomorphism. And there is a homomorphism Γ(U,O X ) Γ(V,O X ) of Γ(U,O X )-modules. Γ(U,M) Γ(V,M) Amnon Yekutieli (BGU) Residues 17 / 39 3. Rigid Residue Complexes over Schemes Amnon Yekutieli (BGU) Residues 18 / 39 3. Rigid Residue Complexes over Schemes A rigid residue complex on X is a complex K X of quasi-coherent O X -modules, together with a rigidifying isomorphism ρ U for the complex Γ(U,K X ), for every affine open set U. There are two conditions: (i) The pair ( Γ(U,K X ), ρ U ) is a rigid residue complex over the ring Γ(U,O X ) relative to K. (ii) For an inclusion V U of affine open sets, the canonical homomorphism Γ(U,K X ) Γ(V,K X ) is the unique rigid localization homomorphism between these rigid residue complexes. We denote by ρ X := {ρ U } the collection of rigidifying isomorphisms, and call it a rigid structure. Suppose (K X, ρ X ) and (K X, ρ X ) are two rigid residue complexes on X. A morphism of rigid residue complexes φ : (K X, ρ X ) K X, ρ X ) is a homomorphism φ : K X K X of complexes of O X-modules, such that for every affine open set U, with A := Γ(U,O X ), the induced homomorphism Γ(U, φ) is a morphism in C(Mod A) res/k. We denote the category of rigid residue complexes by C(QCoh X) res/k. Every finite type K-scheme X has a rigid residue complex (K X, ρ X ); and it is unique up to a unique isomorphism in C(QCoh X) res/k. Amnon Yekutieli (BGU) Residues 19 / 39 Amnon Yekutieli (BGU) Residues 20 / 39

3. Rigid Residue Complexes over Schemes 4. Residues and Duality for Proper Maps of Schemes Suppose f : X Y is any map between finite type K-schemes. The complex f (K X ) is a bounded complex of quasi-coherent O Y -modules. The ind-rigid traces for rings that we talked about before induce a homomorphism of graded quasi-coherent O Y -modules (3.1) Tr f : f (K X ) K Y, which we also call the ind-rigid trace homomorphism. It is functorial: if g : Y Z is another map, then Tr g f = Tr g Tr f. It is not hard to see that if f is a finite map of schemes, then Tr f is a homomorphism of complexes. 4. Residues and Duality for Proper Maps of Schemes Theorem 4.1. (Residue Theorem, [Ye2]) Let f : X Y be a proper map between finite type K-schemes. Then the ind-rigid trace is a homomorphism of complexes. Tr f : f (K X ) K Y The idea of the proof (imitating [RD]) is to reduce to the case when Y = Spec A, A is a local artinian ring, and X = P 1 A (the projective line). For this special case we have a proof that relies on the following fact: the diagonal map X X A X endows the A-module H 1 (X, Ω 1 X/A ) with a canonical rigidifying isomorphism relative to A. Amnon Yekutieli (BGU) Residues 21 / 39 4. Residues and Duality for Proper Maps of Schemes Amnon Yekutieli (BGU) Residues 22 / 39 4. Residues and Duality for Proper Maps of Schemes Theorem 4.2. (Duality Theorem, [Ye2]) Let f : X Y be a proper map between finite type K-schemes. Then for any M D b c(mod X) the morphism ( Rf RHomOX (M,K X ) ) ( ) RHom OY Rf (M),K Y in D(Mod Y), that is induced by the ind-rigid trace Tr f : f (K X ) K Y, is an isomorphism. One advantage of our approach using rigidity is that it is much cleaner and shorter than the original approach in [RD]. This is because we can avoid complicated diagram chasing (that was not actually done in [RD], but rather in follow-up work by Lipman, Conrad and others). See Lipman s book [LH] for a full account. Another advantage, as we shall see next, is that the rigidity approach gives rise to a useful duality theory for stacks. The proof of Theorem 4.2 imitates the proof of the corresponding theorem in [RD], once we have the Residue Theorem 4.1 at hand. The proofs of Theorems 4.1 and 4.2 are sketched in the incomplete preprint [YZ1]. Complete proofs will be available in [Ye2]. Amnon Yekutieli (BGU) Residues 23 / 39 Amnon Yekutieli (BGU) Residues 24 / 39

We will only consider noetherian finite type DM K-stacks. Unfortunately I do not have time to give background on stacks. For those who do not know about stacks, it is useful to think of a Deligne-Mumford stackxas a scheme, with an extra structure: the points of X are clumped into finite groupoids. Here are some good references on algebraic stacks: [LMB], [SP] and [Ol]. Before going on, I should mention the paper [Ni] by Nironi, that also addresses Grothendieck duality on stacks. The approach is based on Lipman s work in [LH]. Not all details in that paper are clear to me. Dualizing complexes on stacks are also discussed in [AB], but that paper does not touch Grothendieck duality for maps of stacks. Amnon Yekutieli (BGU) Residues 25 / 39 Let X be such a stack. If g : U X is an étale map from an affine scheme, then Γ(U,O U ) is a finite type K-ring. The definition of a rigid residue complex onxis very similar to the scheme definition. A rigid residue complex onxis a complex of quasi-coherento X -modules K X, together with a rigid structure ρ X. However here the indexing of the rigid structure ρ X = {ρ (U,g) } is by étale maps g : U X from affine schemes. For any such (U, g) there is a rigidifying isomorphism ρ (U,g) for the complex Γ(U, g (K X )), and the pair ( Γ(U, g (K X )), ρ (U,g) ) is a rigid residue complex over the ring Γ(U,O U ) relative to K. Amnon Yekutieli (BGU) Residues 26 / 39 The compatibility condition is this: suppose we have a commutative diagram of étale maps U 2 h where U 1 and U 2 are affine schemes. Then the homomorphism of complexes g 2 U 1 X h : Γ(U 1, g 1(K X )) Γ(U 2, g 2(K X )) is the unique rigid localization homomorphism, w.r.t. ρ (U1,g 1 ) and ρ (U2,g 2 ). g 1 Theorem 5.1. ([Ye3]) LetXbe a finite type DM stack over K. The stack X has a rigid residue complex (K X, ρ X ). It is unique up to a unique rigid isomorphism. The proof is by étale descent for quasi-coherent sheaves. Theorem 5.2. ([Ye3]) Let f : X Y be a map between finite type DM K-stacks. There is a homomorphism of graded quasi-coherent O Y -modules Tr f : f (K X ) K Y called the ind-rigid trace, extending the ind-rigid trace on K-algebras. The proof relies on the étale codescent property of the ind-rigid trace. Amnon Yekutieli (BGU) Residues 27 / 39 Amnon Yekutieli (BGU) Residues 28 / 39

The obvious question now is: do the Residue Theorem and the Duality Theorem hold for a proper map f : X Y between stacks? I only know a partial answer. By the Keel-Mori Theorem, a separated stackxhas a coarse moduli space π : X X. The map π is proper and quasi-finite, and X is, in general, an algebraic space. Let us callxacoarsely schematic stack if its coarse moduli space X is a scheme. This appears to be a rather mild restriction: most DM stacks that come up in examples are of this kind. A map f : X Y is called a coarsely schematic map if for some surjective étale map V Y from an affine scheme V, the stack is coarsely schematic. X := X Y V Amnon Yekutieli (BGU) Residues 29 / 39 A separated map f : X Y is called a tame map if for some surjective étale map V Y from an affine scheme V, the stackx := X Y V is tame. Theorem 5.4. (Duality Theorem, [Ye3]) Suppose f : X Y is a proper tame coarsely schematic map between finite type DM K-stacks. Then Tr f induces duality (as in Theorem 4.2). Remark 5.5. It is likely that the coarsely schematic condition could be removed from these theorems; but I don t know how. Here is a sketch of the proofs of Theorems 5.3 and 5.4. Take a surjective étale map V Y from an affine scheme V such that the stackx := X Y V is coarsely schematic. Amnon Yekutieli (BGU) Residues 31 / 39 Theorem 5.3. (Residue Theorem, [Ye3]) Suppose f : X Y is a proper coarsely schematic map between finite type DM K-stacks. Then the rigid trace Tr f : f (K X ) K Y is a homomorphism of complexes of O Y -modules. It is not expected that duality will hold in this generality. In fact, there are easy counter examples. The problem is finite group theory in positive characteristics! Following [AOV], a separated stackxis called tame if for every algebraically closed field K, the automorphism groups in the finite groupoidx(k) have orders prime to the characteristic of K. Amnon Yekutieli (BGU) Residues 30 / 39 Consider the commutative diagram of maps of stacks X π g where f is gotten from f by base change, and X is the coarse moduli space ofx. It suffices to prove residues and duality for the map f. X V Because X is a scheme, the proper map g satisfies both residues and duality (by Theorems 4.1 and 4.2). It remains to verify residues and duality for the map π : X X. f Amnon Yekutieli (BGU) Residues 32 / 39 X f Y

These properties are étale local on X. Namely let U 1,..., U n be affine schemes, and let (5.6) U i X i be a surjective étale map. For any i let X i := X X U i. It is enough to check residues and duality for the maps π i : X i U i. i X i X It is possible to choose a covering (5.6) such that X i = [W i /G i ] and U i = W i /G i. Here W i is an affine scheme, G i is a finite group acting on W i, [W i /G i ] is the quotient stack, and W i /G i is the quotient scheme. Moreover, in the tame case we can assume that the order of the group G i is invertible in the ring Γ(U i,o U i ). i π i i U i X π Note that U i is the coarse moduli space of the stackx i. Amnon Yekutieli (BGU) Residues 33 / 39 Amnon Yekutieli (BGU) Residues 34 / 39 References We have now reduced the problem to proving residues and duality for the map of stacks π : [W/G] W/G, where W = Spec A for some ring A, and G is a finite group acting on A. The proofs are by direct calculations, using the fact that QCoh[W/G] Mod G A, the category of G-equivariant A-modules, and under this equivalence the functor π becomes π (M) = M G. - END - [AIL] References L.L. Avramov, S.B. Iyengar and J. Lipman, Reflexivity and rigidity for complexes, I. Commutative rings, Algebra and Number Theory 4:1 (2010). [AILN] L.L. Avramov, S.B. Iyengar, J. Lipman and S. Nayak, Reduction of derived Hochschild functors over commutative algebras and schemes, Advances in Mathematics 223 (2010) 735-772. [AOV] D. Abramovich, M. Olsson and A. Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier 58, 4 (2008), 1057-1091. [AB] D. Arinkin and A. Bezrukavnikov, Perverse Coherent Sheaves, Moscow Math. J. 10, number 1 (2010), pages 3-29. Amnon Yekutieli (BGU) Residues 35 / 39 Amnon Yekutieli (BGU) Residues 36 / 39

References References [LH] J. Lipman and M. Hashimoto, Foundations of Grothendieck duality for diagrams of schemes, LNM 1960, Springer, 2009. [LMB] G. Laumon and L. Moret-Bailly, Champs Algébriques, Springer, 2000. [Ni] [Ol] [RD] [SP] F. Nironi, Grothendieck duality for deligne-mumford stacks, eprint arxiv:0811.1955v2. M. Olsson, An Introduction to Algebraic Spaces and Stacks, book in preparation. R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966. The Stacks Project, J.A. de Jong (Editor),http: //math.columbia.edu/algebraic_geometry/stacks-git [VdB] [Ye1] [Ye2] [Ye3] [YZ1] [YZ2] M. Van den Bergh, Existence theorems for dualizing complexes over non-commutative graded and filtered ring, J. Algebra 195 (1997), no. 2, 662-679. A. Yekutieli, Rigid Dualizing Complexes via Differential Graded Algebras (Survey), in Triangulated Categories, LMS Lecture Note Series 375, 2010. A. Yekutieli, Rigidity, residues and duality for schemes, in preparation. A. Yekutieli, Rigidity, residues and duality for DM stacks, in preparation. A. Yekutieli and J.J. Zhang, Rigid Dualizing Complexes on Schemes, Eprint math.ag/0405570 at http://arxiv.org. A. Yekutieli and J.J. Zhang, Residue complexes over noncommutative rings, J. Algebra 259 (2003) no. 2, 451-493. Amnon Yekutieli (BGU) Residues 37 / 39 Amnon Yekutieli (BGU) Residues 38 / 39 References [YZ3] [YZ4] A. Yekutieli and J.J. Zhang, Rigid Complexes via DG Algebras, Trans. AMS 360 no. 6 (2008), 3211-3248. Erratum: in preparation. A. Yekutieli and J.J. Zhang, Rigid Dualizing Complexes over Commutative Rings, Algebras and Representation Theory 12, Number 1 (2009), 19-52 Amnon Yekutieli (BGU) Residues 39 / 39