Constraints on Low-Mass WIMP Signals from CDMS. Steven W. Leman (MIT) 18 March 2011 Rencontres de Moriond EW La Thuile, Valle d Aosta, Italy

Similar documents
Recent Results from the Cryogenic Dark Matter Search. Bruno Serfass - UC Berkeley on behalf of the CDMS and SuperCDMS collaborations

Scalability of the SuperCDMS experiment

Pushing the Limits: Dark Matter Search with SuperCDMS. Wolfgang Rau Queen s University Kingston For the SuperCDMS Collaboration

Results from CRESST and CDMS

CDMS-II to SuperCDMS

CDMS. Vuk Mandic. 13. July 2010

Identification of the Surface Event Background in the CDMS II Experiment. Sunil Golwala for the CDMS II Collaboration Caltech August 21, 2008

Present Status of the SuperCDMS program

Supporting Online Material for

Status of the Cryogenic Dark Matter Search Experiment

Analysis of the low-energy electron-recoil spectrum of the CDMS experiment

New Results from the CDMS-II experiment

Search for Axions with the CDMS Experiment

WIMP EXCLUSION RESULTS FROM THE CDMS EXPERIMENT

The complex vacuum configurations contribute to an extra non-perturbative term in the QCD Lagrangian[1],

First CDMS II Five-Tower Results. Sunil Golwala SLAC Summer Institute 2008 August 7, 2008

Limits on spin-dependent WIMP-nucleon interactions from the Cryogenic Dark Matter Search

Dark Matter Direct Detection

Direct Searches for Dark Matter and the CDMS Experiment

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS

arxiv: v3 [physics.ins-det] 4 Oct 2013

SuperCDMS: Recent Results for low-mass WIMPS

CDMS and SuperCDMS. SLAC Summer Institute - CDMS. August 2, 2007 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS

The Cryogenic Dark Matter Search (CDMS) : Status and future. Kipac SLAC April 2009

arxiv: v1 [astro-ph.im] 18 Jan 2012

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment

arxiv: v1 [astro-ph.co] 4 Oct 2014

The XENON1T experiment

Systematics of Low Threshold Modulation Searches in CDMS II

Cryogenic Detectors Direct Dark Matter Search. Dark Matter

The Direct Search for Dark Matter

The CDMS-II Dark Matter Search and SuperCDMS

Monte Carlo Comparisons to a Cryogenic Dark Matter Search Detector with low Transition-Edge-Sensor Transition Temperature

Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Direkte Suche nach Dark Matter

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO

Direct Search for Dark Matter

arxiv:astro-ph/ v1 24 Jun 2004

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

Precision Measurement Of Nuclear Recoil Ionization Yields For Low Mass Wimp Searches

Dark Matter, Low-Background Physics

A survey of recent dark matter direct detection results

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science

Direct Dark Matter Search with Noble Liquids

Status of the EDELWEISS Dark Matter search

Direct Dark Matter Searches

Looking for WIMPs A Review

Dark Matter -- Astrophysical Evidences and Terrestrial Searches

Direct Detection Lecture 2: Current Results

Status of Dark Matter Detection Experiments

DarkSide new results and prospects

Direct Search for Dark Matter

WIMP Direct Detection: an outlook

SuperCDMS at SNOLAB. What is CDMS? Technical Progress. Collaboration. Funding. Schedule and Needs. Why is SuperCDMS 25 kg timely?

WIMP Dark Matter Search with XENON and DARWIN

XMASS: a large single-phase liquid-xenon detector

Ge and Dark Matter Searches: CDEX, present and future

Direct dark matter search using liquid noble gases

Direct Dark Matter and Axion Detection with CUORE

Overview of Direct Detection Dark Matter Experiments

Latest results of EDELWEISS II

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Dark Matter. and TPC Technologies

The EDELWEISS DM search Phase II to Phase III

Review of dark matter direct detection experiments

Axion search with Dark Matter detector

PoS(VERTEX 2009)026. Dark Matter search with Ge detectors. Paul L. Brink 1

The Search for Dark Matter with the XENON Experiment

Cryodetectors, CRESST and Background

Introduction to Class and Dark Matter

No combined analysis of all experiments available

COUPP: Bubble Chambers for Dark Matter Detection

SuperCDMS SNOLAB: Goals, Design, and Status. Sunil Golwala Caltech DM /02/19

arxiv: v1 [physics.ins-det] 22 Dec 2016

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH

Dark Matter Search with XENON

Dark Matter and the XENON Experiment

China JinPing underground Laboratory (CJPL) and China Darkmatter Experiment (CDEX) Qian Yue Tsinghua University Mar.24, 2011

Background and sensitivity predictions for XENON1T

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Dark Matter Searches. Marijke Haffke University of Zürich

Search for Weakly Interacting Massive Particles with CDMS and XENON

Search for Low Energy Events with CUORE-0 and CUORE

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Chapter 12. Dark Matter

Status of the XENON100 Dark Matter Search

David Reyna Belkis Cabrera-Palmer AAP2010, Japan

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

Direct Detection of Dark Matter with LUX

Can the DAMA annual modulation be explained by Dark Matter?

Sensitivity and Backgrounds of the LUX Dark Matter Search

arxiv: v1 [physics.ins-det] 4 Nov 2017

Recent results from PandaX- II and status of PandaX-4T

Transcription:

Constraints on Low-Mass WIMP Signals from CDMS Steven W. Leman (MIT) 18 March 2011 Rencontres de Moriond EW La Thuile, Valle d Aosta, Italy

CDMS Members California Institute of Technology Z. Ahmed, J. Filippini, S.R. Golwala, D. Moore, R. Nelson, R.W. Ogburn Case Western Reserve University D. Akerib, C.N. Bailey, M.R. Dragowsky, D.R. Grant, R. Hennings-Yeomans Fermi National Accelerator Laboratory D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R. B. Thakur, R.L. Schmitt, J. Yoo Massachusetts Institute of Technology A. Anderson, E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus NIST K. Irwin Queen s University P. Di Stefano, C. Crewdson, J. Fox, O. Kamaev, S. Liu, C. Martinez, P. Nadeau, W. Rau, Y. Ricci, M. Verdier Santa Clara University B. A. Young Southern Methodist University J. Cooley, B. Karabuga, S. Scorza, H. Qiu SLAC/KIPAC M. Asai, A. Borgland, D. Brandt, P.L. Brink, W. Craddock, E. do Couto e Silva, G.G. Godfrey, J. Hasi, M. Kelsey, C. J. Kenney, P. C. Kim, R. Partridge, R. Resch, D. Wright Stanford University B. Cabrera, M. Cherry, R. Moffatt, L. Novak, M. Pyle, M. Razeti, B. Shank, A. Tomada, S. Yellin, J. Yen Syracuse University M. Kos, M. Kiveni, R. W. Schnee Texas A&M A. Jastram, K. Koch, R. Mahapatra, M. Platt, K. Prasad, J. Sander University of California, Berkeley M. Daal, T. Doughty, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. Seitz, B. Serfass, D. Speller, K.M. Sundqvist University of California, Santa Barbara R. Bunker, D.O. Caldwell, H. Nelson University of Colorado Denver B.A. Hines, M.E. Huber University of Florida T. Saab, D. Balakishiyeva, B. Welliver University of Minnesota J. Beaty, H. Chagani, P. Cushman, S. Fallows, M. Fritts, V. Mandic, X. Qiu, A. Reisetter, J. Zhang University of Zurich S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

Our best wishes to those affected by the ongoing crisis

CDMS The Cryogenic Dark Matter Search

Event Discrimination DAMA, ZEPLIN I CLEAN, KIMS Scintillation XENON, LUX WARP, ArDM ZEPLIN II & III CRESST ROSEBUD Phase Transition Ionization CoGeNT, SIMPLE TEXONO CDMS Edelweiss Phonons (heat) CRESST I PICASSO COUPP

Instrumentation Al fins absorb phonons 2 Ionization Channels 4 Phonon Channels Transition Edge Sensors 7.6 cm 1 or 2.5 cm

Carrier Transient Carriers (bulk events) go the right way Carriers (surface events) injected into the wrong electrode γ e - phonons h + + ballistic phonons γ -3V

CDMS Low Energy Analyses Stanford Underground Facility Soudan

DAMA and CoGeNT annual modulation Aalseth et al., arxiv:1002.4703 WIMP-like exponential spectra Bernabei et al., Eur. Phys. J. C 56 333 (2008), arxiv:0804.2741

WIMP Event Rates 1 10-41 cm 2 cross section 544 km s -1 escape velocity 0.3 GeV cm -3 density Event rate (kg 1 kev 1 d 1 ) 10 0 10 1 10 2 10 2 10 4 10 6 5 GeV c -2 100 GeV c -2 0.1 1 10 100 Recoil energy (kev) Ge Si

Stanford Result Akerib et al, PRD 82, 122004 (2010) Shallow site (17 m water equivalent overburden) 118 live days from Dec 2001 - June 2002 4 224 g Ge 1 Ge not used due to high analysis threshold 1 Ge sensitive to cryostat temperature, live time reduced 2 105 g Si

Cuts Data Quality (No energy dependence, 99% efficiency) Noise 1 Pileup Chi2 0.5 Phonon and ionization pretrigger 0 < 5 σ from mean Single scatter (100% efficiency) no Muon veto, 50-80 µs (67-78% efficiency) Inner electrode (83% eff) Nuclear recoil (93-96% eff) Threshold efficiency Cut efficiency 0.6 0.5 Z6 (Si) Z2 (Ge) 0.5 1 10 100 Recoil energy (kev) mean lower limit

Energy Calibration Cosmic ray activated Z3 (Ge) (Ge68) and neutron activated (Ge71) lines at 1.3 and 10.4 kev Cosmogenic (Ge73m) at 66.7 kev Event rate (kg 1 kev 1 d 1 ) 100 10 1 0.5 1 10 100 Recoil energy (kev) [Y corrected] ER

WIMP Candidates cut and threshold adjusted event rate cut adjusted event rate raw event rate Event rate (kg 1 kev 1 d 1 ) 10 Ge 1 0.1 0.01 10 1 0.1 0.01 0.5 1 10 Recoil energy (kev) 100 Si

Ionization vs. Energy Ge Si Total 1080 970 Event Accounting (%) 1.3 kev line 32 0 Zero-charge 30-40 30-40 14C betas 0 40 Compton 10-20 10-20 Cosmogenic 6 2 Other 2-22 0-18 Ionization yield Ionization yield 1 0.5 0 1 0.5 0 Z5 (Ge) Z4 (Si) Zero Ionization Events Electron Capture Lines Nuclear Recoils Electron Recoils 0.5 1 10 100 Recoil energy (kev)

Ionization vs. Energy Ge Si Total 1080 970 Event Accounting (%) 1.3 kev line 32 0 Ionization yield 1 0.5 Z5 (Ge) Electron Capture Lines Known events NOT 0 subtracted 1 Zero-charge 30-40 30-40 14C betas 0 40 Compton 10-20 10-20 Cosmogenic 6 2 Other 2-22 0-18 Ionization yield 0.5 0 Z4 (Si) Zero Ionization Events Nuclear Recoils Electron Recoils 0.5 1 10 100 Recoil energy (kev)

WIMP nucleon cross section (cm 2 ) 10 38 10 39 10 40 10 41 WIMP-Nucleon 90% Exclusion Limits 2 4 6 8 10 100 WIMP mass (GeV/c 2 ) DAMA / LIBRA Si only Ge Si + Ge (500 km s -1 ) DAMA / LIBRA + CoGeNT (600 km s -1 ) XENON100 (scintillation eff.) WIMP nucleon cross section (cm 2 ) constant decreasing - CoGent + CRESST - 10 38 10 39 10 40 10 41 2 4 6 8 10 100 WIMP mass (GeV/c 2 ) C. Savage, et al, J. Cosmol. Astropart. Phys. 04 (2009) 010 C. Savage, et al, J. Cosmol. Astropart. Phys. 09 (2009) 036 C. Savage, et al, arxiv:1006.0972 D. Hooper et al., Phys. Rev. D 82, 123509 (2010) A. Bottino, et al, Phys. Rev. D 67, 063519 (2003) A. Bottino, et al, ibid.68, 043506 (2003); 69, 037302 (2004) G. Belanger, et al, J. High Energy Phys. 03 (2004) 012

Soudan Result Ahmed et al, PRL (accepted), arxiv:1011.2482 Oct 2006 - Sept 2008 241 kg days 8 230 g Ge with lowest-detector thresholds of 2 kev NR band (+1.25, 0.5)σ Maximizes sensitivity to nuclear recoils while minimizing expected backgrounds

Ionization vs. Energy 1.3 kev line 9-1.:;<.-104.+/= "#) "#( "#' "#& "#% "#$ "#! " "#! $ Sidebands for background estimate: Compton Surface 2! zero charge band Zero-charge!"!"" *+,-./0+1+234056+78 Event rate (kev 1 kg 1 day 1 ) 10 0 10 1 10 2 Acceptance 0.5 0.25 0 0 2 4 6 8 10 Recoil energy (kev) 2 5 10 15 20 Recoil energy (kev) Total Zero-charge Surface Bulk 1.3 kev

Ionization vs. Energy 1.3 kev line 9-1.:;<.-104.+/= "#) "#( "#' Compton 10 2 "#& Known events NOT subtracted "#% "#$ "#! " "#! $ Sidebands for background estimate: Surface 2! zero charge band Zero-charge!"!"" *+,-./0+1+234056+78 Event rate (kev 1 kg 1 day 1 ) 10 0 10 1 Acceptance 0.5 0.25 0 0 2 4 6 8 Recoil energy (kev) 2 5 10 15 20 Recoil energy (kev) Total Zero-charge Bulk Surface 1.3 kev 10

CDMS and CoGeNT &! & Efficiency Corrected Spectra - Both use Ge detectors Signal in CoGeNT not seen in CDMS 6*7.89-23(4 & -30 & -:;1 & 5 &!! &! & 7 GeV c -2 90% confidence &! " 6*<(=> 6?@ABB-2;,,-:(85 6?@ABB-2C(98-:(85 -! " # $ '()*+,-(.(/01-23(45 % &! 7 GeV c -2 90% confidence Hooper et al., Phys. Rev. D 82, 123509 (2010), arxiv:1007.1005

WIMP-Nucleon 90% Exclusion Limits CDMS Stanford 1 kev -- CDMS Soudan 2 kev CDMS Soudan 10 kev - XENON100 + DAMA / LIBRA CoGeNT DAMA + CoGeNT CDMS Soudan 10 kev - CRESST -- XENON10 WIMP nucleon SI (cm 2 ) WIMP neutron SD (cm 2 ) 10 39 10 40 10 33 10 34 10 35 10 36 WIMP mass (GeV/c 2 ) 10 37 4 6 8 10 12 WIMP mass (GeV/c 2 )

SuperCDMS Interleaved Detectors

Microstrip Gas Chamber A. Oed 1988 NIM A 263 (1988) 351-359

SCDMS izip Detectors MSGC concept extended to CdZnTe, P. Luke Appl. Phys. Lett. 65 (22) 1994 SCDMS, P. Brink et al NIM A 559 (2006) 414-416

SCDMS izip Detectors

Surface Discrimination 1:10 4 surface Surface γ + e - discrimination from ionization signal Bulk γ Surface γ + e -

Log 10 (Muon Flux) (m -2 s -1 ) Future Limits Depth (meters water equivalent)

Backup Slides

Inner Charge Cut Area_qi = 83% Cf-252 passage = 81-83% Energy dependence 84% (4 kev) - 79% (100 kev) <4 kev, qi and qo indistinguishable, linearly extrapolate to 100% passage

Search Complementarity Direct bulk focus point Production coannihilation bulk Indirect coannihilation Higgs funnel