Longtime Satelite Observation of Atmospheric Trace Gases

Similar documents
Longtime Satelite Observation of Atmospheric Trace Gases

7.5-year global trends in GOME cloud cover and humidity - a signal of climate change? Institut für Umweltphysik, Uni-Heidelberg, Germany

Atmospheric Measurements from Space

Monitoring of trace gas emissions from space: tropospheric abundances of BrO, NO 2, H 2 CO, SO 2, H 2 O, O 2, and O 4 as measured by GOME

Long term DOAS measurements at Kiruna

Trace gases, aerosols & clouds analysed from GOME, SCIAMACHY and GOME-2. Recommendations for TROPOMI. Thomas Wagner. Satellite Group Mainz Heidelberg

Evidence from Satellite Data for Export phenomena

UV-visible observations of atmospheric O 4 absorptions using direct moonlight and zenith-scattered sunlight for clear-sky and cloudy sky conditions

BIRA-IASB, Brussels, Belgium: (2) KNMI, De Bilt, Netherlands.

Support to H 2 O column retrieval algorithms for GOME-2

Satellite remote sensing of NO 2

WATER VAPOUR RETRIEVAL FROM GOME DATA INCLUDING CLOUDY SCENES

RETRIEVAL OF STRATOSPHERIC TRACE GASES FROM SCIAMACHY LIMB MEASUREMENTS

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

DOAS UV/VIS minor trace gases from SCIAMACHY

Diffuser plate spectral structures and their influence on GOME slant columns

Global long term data sets of the atmospheric H 2 O VCD and of cloud properties derived from GOME and SCIAMACHY

BrO PROFILING FROM GROUND-BASED DOAS OBSERVATIONS: NEW TOOL FOR THE ENVISAT/SCIAMACHY VALIDATION

Improving S5P NO 2 retrievals

Algorithms/Results (SO 2 and ash) based on SCIAMACHY and GOME-2 measurements

UV-Vis Nadir Retrievals

Description of the MPI-Mainz H2O retrieval (Version 5.0, March 2011) Thomas Wagner, Steffen Beirle, Kornelia Mies

SCIAMACHY VALIDATION USING THE AMAXDOAS INSTRUMENT

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Remote Sensing of Atmospheric Trace Gases Udo Frieß Institute of Environmental Physics University of Heidelberg, Germany

CHARACTERIZATION OF VEGETATION TYPE USING DOAS SATELLITE RETRIEVALS

Simulated Radiances for OMI

Spectral surface albedo derived from GOME-2/Metop measurements

Volcanic & Air Quality SO2 Service -- Product Information

Retrieval and Monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument

SCIAMACHY VALIDATION USING GROUND-BASED DOAS MEASUREMENTS OF THE UNIVERSITY OF BREMEN BREDOM NETWORK

Algorithm Document HEIDOSCILI

Overview on UV-Vis satellite work

Supplement of Cloud and aerosol classification for 2.5 years of MAX-DOAS observations in Wuxi (China) and comparison to independent data sets

Simulation of UV-VIS observations

Relation of atmospheric humidity and cloud properties to surface-near temperatures derived from GOME satellite observations

Investigation of the effects of horizontal gradients of trace gases, aerosols and clouds on the validation of tropospheric TROPOMI products (TROPGRAD)

Tropospheric NO 2 column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation

GEMS. Nimbus 4, Nimbus7, NOAA-9, NOAA11, NOAA16, NOAA17

K. Chance, R.J.D. Spun, and T.P. Kurosu. Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA USA ABSTRACT

O3M SAF VALIDATION REPORT

MONITORING NITROGEN OXIDES WITH SATELLITE INSTRUMENTS: HIGH RESOLUTION MAPS FROM GOME NARROW SWATH MODE AND SCIAMACHY

Total column density variations of ozone (O 3 ) in presence of different types of clouds

SCIAMACHY limb measurements of NO 2, BrO and OClO. Retrieval of vertical profiles: Algorithm, first results, sensitivity and comparison studies

Surface UV radiation monitoring based on GOME and SCIAMACHY

Contribution from GOME on the linkage between solar activity and climate

Relationship between ATSR fire counts and CO vertical column densities retrieved from SCIAMACHY onboard ENVISAT

Tropospheric vertical column densities of NO 2. from SCIAMACHY

Feasibility study on retrieval of tropospheric/stratospheric columns of BrO and NO 2

Validation report of the MACC 43- year multi- sensor reanalysis of ozone columns, version 2 Period

Using GOME and SCIAMACHY NO 2 measurements to constrain emission inventories potential and limitations

The STRatospheric Estimation Algorithm from Mainz (STREAM): Implementation for GOME-2. O3M-SAF Visiting Scientist Activity

THE SOLAR RESOURCE: PART I MINES ParisTech Center Observation, Impacts, Energy (Tel.: +33 (0) )

Algorithm Theoretical Basis Document for GOME-2 Total Column Products of Ozone, Minor Trace Gases, and Cloud Properties

7. From Radiation Fields to Atmospheric Concentrations Retrieval of Geophysical Parameters

GAMINGRE 8/1/ of 7

MAX-DOAS observations of NO 2 in NDACC: status and perspectives

Highly resolved global distribution of tropospheric NO 2 using GOME narrow swath mode data

SCIAMACHY Level 1b-2 Data Processing Status & Changes

GROUNDBASED FTIR, OZONESONDE AND LIDAR MEASUREMENTS FOR THE VALIDATION OF SCIAMACHY (AOID 331)

A AVHRR NDVI dataset for Svalbard. Stian Solbø, Inge Lauknes, Cecilie Sneberg Grøtteland, Stine Skrunes, Hannah Vickers, Kjell Arild Høgda

Remote Measurement of Tropospheric NO 2 by a Dual MAX-DOAS over Guangzhou During the 2008 PRD Campaign

Long-Term Halogen Measurements at Cape Verde

The Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments

10-Years Operational GOME/ERS-2 Total Column Products: The GDP 4.0 Algorithm. ESA Atmospheric Science Conference Frascati, 9.

UV/VIS BACKSCATTERED SUN LIGHT RETRIEVALS FROM SPACE BORN PLATFORMS. G. Gonzalez Abad With a lot of help from K. Chance, X. Liu, C.

ALGORITHM THEORETICAL BASIS DOCUMENT

Sentinel 5 Precursor: German and Belgian Contribution to the Operational L2 Products

Aerosol measurements from Space. Gerrit de Leeuw FMI & Uni of Helsinki, Finland & TNO, Utrecht, Netherlands

Estimating the volcanic emission rate and atmospheric lifetime of SO 2 from space: a case study for Kīlauea volcano, Hawai i by S. Beirle et al.

MAX-DOAS observations of NO 2 in NDACC: status and perspectives

CREATE Summer School. Tim Canty

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

Atmospheric Chemistry and Physics

Atmospheric Chemistry and Physics

SATELLITE REMOTE SENSING OF ATMOSPHERIC SO 2 : VOLCANIC ERUPTIONS AND ANTHROPOGENIC EMISSIONS

Introduction to Climate ~ Part I ~

AN IMPROVED TOTAL AND TROPOSPHERIC NO 2 COLUMN RETRIEVAL FOR GOME-2

Comparison of Results Between the Miniature FASat-Bravo Ozone Mapping Detector (OMAD) and NASA s Total Ozone Mapping Spectrometer (TOMS)

Contents. Radiative Transfer, Retrieval of Data products: Verification of atmosheric and tropospheric models. Introduction.

Detection of ship NO 2 emissions over Europe from satellite observations

Emission Limb sounders (MIPAS)

Life Cycle of Convective Systems over Western Colombia

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region

STRATOSPHERIC OClO AND BrO PROFILES FROM SCIAMACHY LIMB MEASUREMENTS

Multi axis differential optical absorption spectroscopy (MAX-DOAS)

Vicarious calibration of GLI by global datasets. Calibration 5th Group Hiroshi Murakami (JAXA EORC)

PHEOS - Weather, Climate, Air Quality

A feasibility study for GMAP-Asia and APOLLO UV-visible observations and its implications for GEMS

The Odin/OSIRIS time series from 2001 to now

SC-WACCM! and! Problems with Specifying the Ozone Hole

Using visible spectra to improve sensitivity to near-surface ozone of UV-retrieved profiles from MetOp GOME-2

Appendix B. A proposition for updating the environmental standards using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis

Global observations and spectral characteristics of desert dust and biomass burning aerosols

Satellite Constraints on Arctic-region Airborne Particles Ralph Kahn NASA Goddard Space Flight Center

Scientific challenges in chemical data assimilation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

VERTICAL PROFILES OF BrO AND OClO MEASURED BY SCIAMACHY

Today s Lecture: Land, biosphere, cryosphere (All that stuff we don t have equations for... )

Progress of total ozone data retrieval from Phaeton - REG(AUTH)

Transcription:

Longtime Satelite Observation of Atmospheric Trace Gases T. Wagner, S. Beirle, C. v. Friedeburg, M. Grzegorski, J. Hollwedel, S. Kühl, S. Kraus, W. Wilms-Grabe, M. Wenig, U. Platt Institut für Umweltphysik, University of Heidelberg, INF 229, D-69120 Heidelberg, Germany

Overview DOAS Analysis of GOME Data Tropospheric trace gases derived from GOME Satelite Data at the internet, TROPOSAT Cloud influence and -correction Outlook...SCIAMACHY

GOME (Global Ozone Monitoring Experiment) Launch: ERS-2, April 1995 GOME-Infos: DLR:http://auc.dfd.dlr.de/GOME/ ESA:http://earth.esa.int/eeo4.96 Uni-Bremen: http://www-iup.physik.uni-bremen.de/gome/ Uni-Heidelberg:http://giger.iup.uni-heidelberg.de/indexengl.html Spectral resolution 0.2-0.4 nm between 240 und 790 nm In addition to Ozone several other trace gases can be measured NO 2 BrO OClO HCHO, SO 2 H 2 O O 2 O 4

VCD BrO, 05.04.1997 Earth s coverage by GOME VCD NO 2, 10.08.1998

Atmospheric trace gas absorptions detected in satellite spectra O 4 O 3 UV OClO H 2 O HCHO O 2 Intensity [arbitrary units 1E+16 1E+14 1E+12 1E+10 1E+08 Satellite group: http://giger.iup.uni-heidelberg.de/ 200 300 400 500 600 700 800 W avelength [nm ] SO 2 NO 2 BrO O 3 vis

Atmospheric Species measured by GOME & analysed at the University of Heidelberg OClO NO 2 BrO Stratosphere Satellite group: http://giger.iup.uni-heidelberg.de/ Troposphere n m ) NO 2 BrO HCHO SO 2 H 2 O O 4 / O 2

Tropospheric Satellite Data Products available via the TROPOSAT Web-Page http://crusoe.iup.uni-heidelberg.de/luftchem/troposat/ PI Institution Species Details Initial contact John Burrows Andreas Richter IUP Bremen NO 2 BrO SO 2 HCHO O 3 tropical GOME Global and regional 1996 2001 andreas.richter@iup.physik.uni-bremen.de web page: www.doas-bremen.de Rodolfo Guzzi ISAO-CNR, I aerosol GOME 1996-2001 r.guzzi@isao.bo.cnr.it Hennie Kelder Henk Eskes KNMI, NL O 3 columns & profiles NO 2 GOME Global and regional 1996 2001 O 3 in near real time eskes@knmi.nl web page: www.knmi.nl/gome_fd Gerrit de Leeuw TNO, NL aerosol unconfirmed various satellites, 2000 deleeuw@fel.tno.nl Martin Riese Uni-Wuppertal H 2 O (HNO 3 ) (CFC-11) CRISTA Nov. 1994, Aug. 1997 upper-troposphere riese@wpos2.physik.uni-wuppertal.de

Tropospheric Satellite Data Products available via the TROPOSAT Web-Page http://crusoe.iup.uni-heidelberg.de/luftchem/troposat/ PI Institution Species Details Initial contact M. van Roozendael BIRA-IASB, B NO 2 BrO GOME Global and regional 1996-2001 michelv@oma.be Anne Thompson NASA (Goddard) O 3 TOMS 1997-2001 (20oN to 20oS) NIMBUS 1979 to 1992 also SHADOZ 1998 to 2000 1200 sonde profiles in the tropics thompson@gator1.gsfc.nasa.gov web page: metosrv2.umd.edu/~tropo SHADOZ: code916.gsfc.nasa.gov/data_services/shad oz Thomas Wagner Ulrich Platt Jerry Ziemke IUP, Heidelberg NASA Goddard NO 2 BrO SO 2 H 2 O HCHO GOME Global and regional 1996-2001 O 3 Nimbus 7 Earth Probe TOMS 1979-2001 (15oS-15oN) thomas.wagner@iup.uni-heidelberg.de web page: http://giger.iup.uni-heidelberg.de/ ziemke@jwocky.gsfc.nasa.gov web page: hyperion.gsfc.nasa.gov/data_services/clou d_slice/index.html

GOME Viewing Geometry

Dependence of the GOME measurements on the solar zenith angle SZA 12 albedo 0.8 albedo 0.0 geometric AMF AMF 8 4 stratospheric AMF 0 tropospheric AMF 20 30 40 50 60 70 80 90 SZA [ ]

Stratospheric NO 2 Latitude 80 60 40 20 0-20 -40-60 -80 Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct 1997 1996 1998 1999 2000 stratospheric NO2 VCDs [1e15 molec./scm] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

50 70 Shape of the polar vortex (35 PV units at 475K, ECMWF analysis) 90 SCD OClO [molec/cm²] 0 1.3e14 GOME OClO Observations Arctic winter 1997

16.02.2000 17.01.2001

Tmin 475 K 210 200 1995/96 OClOmax (90 SZA) 2 190 1 180 26-Nov 26-Dec 25-Jan 24-Feb 25-Mar 210 200 190 1996/97 0 2 1 T min (475K) [K] 180 26-Nov 26-Dec 25-Jan 24-Feb 26-Mar 210 200 190 180 26-Nov 26-Dec 25-Jan 24-Feb 26-Mar 210 200 190 1997/98 1998/99 0 2 1 0 2 1 SCD OClO [1e14 molec/cm²] 180 26-Nov 26-Dec 25-Jan 24-Feb 26-Mar 210 200 190 1999/2000 0 2 1 180 26-Nov 26-Dec 25-Jan 24-Feb 25-Mar 210 200 190 2000/01 0 2 1 180 26-Nov 26-Dec 25-Jan 24-Feb 26-Mar 210 2001/02 200 190 0 2 1 180 26-Nov 26-Dec 25-Jan 24-Feb 26-Mar Time 0

NO2 VCD 9 days average 07.05.1998-15.05.1998 clear sky minimum over 9 days NO2 VCDs [1e15 molec./scm] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

NO2 VCD 9 days minimum (cloud free pixel) 07.05.1998-15.05.1998 clear sky minimum over 9 days NO2 VCDs [1e15 molec./scm] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Selecting only measurements over the oceans 15.05.1998 filtered NO2 VCD pixels [1e15 molec./scm] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Interpolation and smoothing 15.05.1998 Stratospheric NO2 VCDs [1e15 molec./scm] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Difference between total VCD and stratospheric background => tropospheric NO2 Autumn 1997 tropospheric NO2 VCDs (uncorrected) [1e15 molec./scm] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Tropospheric NO2 after correction for different sensitivity to stratosphere and troposphere Autumn 1997 troposp. NO2 VCDs (albedo corrected) [1e15 molec./scm] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

NO 2 by lightning Lightning frequency compared to GOME-NO 2 * values for different months

Correlation of NO 2 * monthly means and Lightning activity 6 5 NO 2 * [10 14 molec/cm 2 ] 4 3 2 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Lightning Activity [Flashes/day/pixel]

NO 2 by biomass burning Annual biomass burning in south east Asia:

Fire counts Tropospheric NO 2 x10 15 molec/cm 2

Yearly cycle of NO 2, biomass burning and lightning in South East Asia for 1998-2000 20 Fire counts [0.01/day/pixel] Lightning frequency [0.05/day/pixel] 15 NO 2 * [10 14 molec/cm 2 ] NO 2 * corr [10 14 molec/cm 2 ] 10 5 0 Jun Dec Jun Dec Jun Dec

The Sea-Ice Surface as a BrO Source in Polar Spring Northpole mean BrO VCDs 2000 Feb Mar Apr Southpole mean BrO VCDs 1999 May Aug Sep Oct Nov

GOME SO2 evaluation Nyamuragira Volcano, Orbit 61204081, 04.12.1996, Lat.: -0.8, Long.: 26.8, SZA: 30.9 0.04 0.03 Ring 0.02 0.01 Optical density -0.20-0.40-0.60-0.80 0.00-0.05 O3 SO2-0.10 0.02 0.01 Residual 0.00-0.01 316 320 324 328 Wavelength [nm]

GOME SO2 24.07.2001 25.07.2001

VCD H2O [molec/cm²] 2.5E+23 2E+23 1.5E+23 1E+23 5E+22 Reih e1 GOME Reih ECMWF 0-90 -60-30 0 30 60 Latitude Figure 7: Latitudinal cross section of atmospheric water vapor measured by GOME. The data are compared to model results.

Information on cloud top height (and trace gas profile) is essential Nearly all GOME pixels (320 x 40 km²) are partly covered with clouds Clouds are typically much brighter than the cloud free scenes (except over ice and snow) Two dominant effects of clouds: A) Shielding effect for trace gases below clouds B) Albedo effect for trace gases above clouds (nearly no cloud effect for stratospheric trace gases)

Clouds, trace gas concentrations and surface properties can vary strongly accross one GOME ground pixel Minimum requirements: Cloud Fraction Cloud Top Height

Traditional Cloud algorithms for GOME Cloud fraction from the O 2 -A-band absorption (e.g. FRESCO, ICFA, etc..) Problems: Saturation, complicated radiative transport, interference with snow/ice Cloud fraction from High spatially resolved (20 x 40 km²) broad band spectral measurements (PMD) (e.g. CRAG, PCRA, OCRA, CRUSA, etc.) Problems: Interference with ice/snow

Existing cloud algorithms have problems over polar regions because of the high ground albedo CRUSA (Wenig, 2001) FRESCO (Koelemeijer et al., 2001)

Additional cloud sensitive parameters measured by GOME Cloud sensitive Parameter O 4 -absorption 630 nm O 4 -absorption 360 nm Colour Index Polarisation Ring effect O 2 -absorption 630 & 760 nm Depending on Clear view down to the ground Clear view down to the ground ground albedo Ratio of Rayleigh-scattered light to Mie-scattering and ground reflection Ratio of single Rayleigh scattered light to total intensity Ratio of Raman scattered light to total intensity Clear view down to the ground ground albedo

Absorption spectrum of the oxygen dimer O4 (Greenblatt et al., 1990). O 4 absorption bands analysed in GOME spectra O 4 -Absorptionen (Greenblatt et al., 1990) 300 350 400 450 500 550 600 650 700 Wellenlänge [nm]

0.6 3 Test of different cloud sensitive parameters over extended clouds: 04.09.1996: Hurricane Fran 0.4 0.2 0 0.6 0.55 0.5 0.45 2.00 O2_630 OD_O2_761nm -10-5 0 5 10 15 20 25 30 35 40 Polarisation_UV Polarisation_vis Polarisation_IR -10-5 0 5 10 15 20 25 30 35 40 2 1 0 1.50 1.00 0.50 0.3 0.25 0.2 0.15 0.1 0.05 0 3 CI_UV CI_vis -10-5 0 5 10 15 20 25 30 35 40 O4_360 O4_577 O4_630-10 -5 0 5 10 15 20 25 30 35 40 NOAA GOES-8 Satellite, 16:02 UTC 2 1 Ring_360 Ring_380 0-10 -5 0 5 10 15 20 25 30 35 40 Latitude

A Cloud product for Polar regions? O 4 and O 2 absorptions at 630 nm show different dependence on the cloud top height because of the different height profiles O 4 absorptions at different wavelengths (360 and 630 nm) show different dependence on the cloud top height because of the different strength of multiple scattering From the simultaneous observations of the O 4 bands at 360 and 630 nm as well as the O 2 band at 630 it should thus be possible to separate the effects of varying cloud fraction and cloud top height.

O 2 - and O 4 -absorptions in GOME spectra

O 4-AM F, 360nm SZA: 80, albedo: 80% 12 Modeling of the O 2 and O 4 absorptions as a function of the O 4 360 nm 8 6 4 Cloud top height 4.00-5.00 3.00-4.00 2.00-3.00 1.00-2.00 0.00-1.00 10 2 cloud fraction (x-axis) and 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 c le a r < ------ Cloud fraction ----> cloudy O 4-AM F, 630nm SZA: 80, albedo: 80% 12 cloud top height (y-axis) O 4 630 nm 10 8 6 4 Cloud top height 6.00-7.00 5.00-6.00 4.00-5.00 3.00-4.00 2.00-3.00 1.00-2.00 0.00-1.00 2 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (radiative transport model AMFTRAN, Marquard et al., 2000) O 2 630 nm C lear <------ C lo u d fra c tio n ----> clo u d y O 2 -AMF, 630nm SZA: 80, albedo: 80% 12 10 8 6 4 2 cloud top height [km] 3.5-4 3-3.5 2.5-3 2-2.5 1.5-2 1-1.5 0.5-1 0-0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 clear <------ C lou d fractio n ----> cloudy

Coverage of the earths surface with ice and snow for April 1998 (Klimm, 2000)

Case Study Spitsbergen A B 03 Apr 1998 at IR satellite image (11.5-12.5µm). The red Rectangle indicates the location of the GOME center pixels of Orbit 80403140. Arrows indicate the longitude of two selected observations. The images are obtained via the Dundee Satellite Receiving Station, Dundee University, Scotland (http://www.sat.dundee.ac.uk/).

5 4 O 4 and O 2 absorptions for the center pixel of GOME orbit 80403140. The arrows mark the selected measurements. AMF AMF 3 2 1 O4-AMF (360 nm) 0 0 10 20 30 40 50 60 70 5 4 3 2 1 Longitude [ ] Reihe1 O4-AMF Reihe2 O4-AMF Max O2-AMF (630 nm) 0 0 10 20 30 40 50 60 70 10 8 Longitude [ ] O2_AMF O2AMF_MAX AMF 6 4 2 O4-AMF (630 nm) 0 0 10 20 30 40 50 60 70 Longitude [ ] O4_AMF AMF_MAX

Cloud fraction and top height for case A 12 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Clear <------ Cloud fraction ----> cloudy 10 8 6 4 2 0 Altitude [km] 1.65-1.8 1.5-1.65 1.35-1.5 1.2-1.35 1.05-1.2 0.9-1.05 0.75-0.9 0.6-0.75 0.45-0.6 0.3-0.45 0.15-0.3 0-0.15

Cloud fraction and top height for case B 12 10 8 6 4 2 1.8-1.95 1.65-1.8 1.5-1.65 1.35-1.5 1.2-1.35 1.05-1.2 0.9-1.05 0.75-0.9 0.6-0.75 0.45-0.6 0.3-0.45 0.15-0.3 0-0.15 Altitude [km] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Clear <------ Cloud fraction ----> cloudy 0

Conclusions & Future: Several Tropospheric data are already available (Several Groups and Instruments) More detailed cloud information is needed for the analysis of tropospheric data from space (Additional cloud sensitive parameters have to be used) Development of a new prototype cloud algorithm for polar regions using O 2 and O 4 absorptions Data from SCIAMACHY on ENVISAT