Time-dependent variational principle for quantum many-body systems

Similar documents
Entanglement spectrum and Matrix Product States

Entanglement and variational methods for strongly correlated quantum many-body systems

3 Symmetry Protected Topological Phase

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

Rigorous free fermion entanglement renormalization from wavelets

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Time Evolving Block Decimation Algorithm

Quantum many-body systems and tensor networks: simulation methods and applications

Fermionic tensor networks

4 Matrix product states

Efficient time evolution of one-dimensional quantum systems

Disentangling Topological Insulators by Tensor Networks

Matrix-Product states: Properties and Extensions

Variational Simulation of Continuous Quantum Systems

Matrix Product Operators: Algebras and Applications

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Tangent space methods for matrix product states

The density matrix renormalization group and tensor network methods

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

Lecture 3: Tensor Product Ansatz

Excursion: MPS & DMRG

arxiv: v2 [hep-th] 18 Feb 2011

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Symmetry protected topological phases in quantum spin systems

Tensor network renormalization

A new perspective on long range SU(N) spin models

Fermionic tensor networks

Effective Constraints

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks.

From Path Integral to Tensor Networks for AdS/CFT

Advanced Computation for Complex Materials

PHY 396 K. Problem set #5. Due October 9, 2008.

Special Conformal Invariance

Preparing Projected Entangled Pair States on a Quantum Computer

Positive Tensor Network approach for simulating open quantum many-body systems

Entanglement spectrum as a tool for onedimensional

Aditi Mitra New York University

Recent developments in DMRG. Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany

Quantum Many Body Systems and Tensor Networks

Introduction to Tensor Networks: PEPS, Fermions, and More

The Density Matrix Renormalization Group: Introduction and Overview

Scale invariance on the lattice

Renormalization of Tensor- Network States Tao Xiang

Quantum Hamiltonian Complexity. Itai Arad

Quantum Quenches in Extended Systems

arxiv: v1 [quant-ph] 25 Apr 2016

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Quantum Mechanics. Problem 1

The Quantum Heisenberg Ferromagnet

Frustration-free Ground States of Quantum Spin Systems 1

arxiv: v2 [cond-mat.str-el] 28 Apr 2010

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Introduction to string theory 2 - Quantization

Berry phase, Chern number

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation

Dynamical low-rank approximation

Renormalization of Tensor Network States

Efficient description of many body systems with prjected entangled pair states

Frustration-free Ground States of Quantum Spin Systems 1

Gravity Actions from Tensor Networks

1 Mathematical preliminaries

Efficient Numerical Simulations Using Matrix-Product States

Matrix product states for the fractional quantum Hall effect

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009

Quantum quenches in 2D with chain array matrix product states

Aditi Mitra New York University

Typical quantum states at finite temperature

Advanced Quantum Mechanics

Automorphic Equivalence Within Gapped Phases

A Deterministic Interpretation of Quantum Mechanics

Lorentz invariant scattering cross section and phase space

Nonlinear instability of half-solitons on star graphs

Light Cone Matrix Product

Quantum Information and Quantum Many-body Systems

Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Matrix product approximations to multipoint functions in two-dimensional conformal field theory

Minimum Uncertainty for Entangled States

BRST and Dirac Cohomology

Tensor network simulations of strongly correlated quantum systems

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups

Pseudo-Hermitian eigenvalue equations in linear-response electronic-structure theory

Floquet Topological Insulators and Majorana Modes

Tensor network renormalization

1 The Quantum Anharmonic Oscillator

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Quantum Phase Transitions

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

Breakdown and restoration of integrability in the Lieb-Liniger model

Linked-Cluster Expansions for Quantum Many-Body Systems

arxiv: v4 [quant-ph] 13 Mar 2013

Tensor operators: constructions and applications for long-range interaction systems

arxiv: v2 [quant-ph] 12 Aug 2008

Quantum Simulation. 9 December Scott Crawford Justin Bonnar

arxiv: v1 [hep-lat] 31 Oct 2014

Anomalies and SPT phases

Matrix Product States

Axial symmetry in the chiral symmetric phase

Loop optimization for tensor network renormalization

Transcription:

Quantum Information in Quantum Many-Body Physics October 21, 2011 Centre de Recherches Mathematiques, Montréal Time-dependent variational principle for quantum many-body systems PRL 107, 070601 (2011) arxiv:1103.0936 arxiv: 1103.2286 Jutho Haegeman, in collaboration with: Iztok Pižorn, Tobias J. Osborne, J. Ignacio Cirac, Frank Verstraete, Henri Verschelde

Variational Principle (time-independent: ground state) Ψ(z) Ĥ Ψ(z) E 0 min z Ψ(z) Ψ(z) Non-perturbative No sign problems Accuracy depends on adequacy of variational manifold = Ψ(z), z 2/25

Variational Principle (time-independent: ground state) Good variational ansätze for quantum many body systems?! Role of entanglement! Quantum lattice systems: (cf. PC s talk) " MPS, PEPS, MERA Quantum field theories: (cf. TJO s talk) " cmps, cmera 3/25

Variational Principle (time-independent: ground state) Good variational ansätze for quantum many body systems?! Role of entanglement! Quantum lattice systems: (cf. PC s talk) " MPS, PEPS, MERA Quantum field theories: (cf. TJO s talk) " cmps, cmera 3/25

Time-dependence? Quantum lattice systems: " Time-Evolving Block Decimation G. Vidal, PRL 91, 147902 (2003); PRL 93, 040502 (2004). Based on Lie-Trotter decomposition 1D: MPS, 2D: PEPS Lattices of finite and infinite size 4/25

Time-dependence? Quantum lattice systems: " Time-Evolving Block Decimation Breaks either translation invariance or internal symmetries State temporarily leaves manifold Truncation to original manifold is suboptimal for infinite-sized systems Manifestly discrete in time 5/25

Time-dependence? Quantum lattice systems: " Time-Evolving Block Decimation Breaks either translation invariance or internal symmetries State temporarily leaves original manifold How to implement for cmps? 6/25

Time-dependent variational principle iĥ Ψ(z) Dirac, 1930 Ψ(z) Exact time evolution in Hilbert space: (z) d dt Ψ(t) = iĥ Ψ(t) Projection onto the tangent plane : (z) i Ψ z(t) j Ψ z(t) ż j (t)= i i Ψ z(t) Ĥ Ψ z(t) 7/25

Time-dependent variational principle TDVP evolution never leaves : Linear differential equation in large space Non-linear differential equation in Inherently respects all symmetries: no Trotter decomposition! no Trotter error TDVP! = symplectic manifold Globally optimal, no truncation Time-dependent Hartree-Fock, Gross-Pitaevskii 8/25

TDVP for uniform MPS Can we apply TDVP to MPS efficiently? Uniform matrix product states: O(D 3 ) Ψ(A) =... A A A A A A A A A A... Tangent vectors: B i i Ψ(A) = Φ(B) (i = 1,..., dd 2 ) Φ(B) = + +... A A A A A A A A A B... A A A A A A A A A B... A A A A A A A A A B......... +... 9/25

TDVP for uniform MPS Overlap of tangent vectors! metric of Φ(B) Φ( B) = B i i Ψ(A) j Ψ(A) B j Hopelessly complex? And we need to invert this d#d² d#d² matrix i Ψ z(t) j Ψ z(t) ż j (t)= i i Ψ z(t) Ĥ Ψ z(t)! Simplification through gauge fixing prescription 10/25

TDVP for uniform MPS Gauge invariance of MPS: Ψ(A) = Ψ(A G ) A G = G A G 1 (multiplicative) Gauge invariance of tangent vectors: Φ(B) = Φ(B + B X ) = Φ(B) + Φ(B X ) = 0 B = X X A A X (additive) 11/25

TDVP for uniform MPS! Gauge fixing prescription: fix D² components B l = 0 A or B A r = 0 with l A A A = l and r = r A 12/25

TDVP for uniform MPS! Gauge fixing prescription: fix D² components B B l = 0 or r = 0 A B A! Φ(B) Φ(B ) l r B! Now we can find a parameterisation of B such that the effective metric is the unit matrix. 13/25

TDVP for uniform MPS Imaginary-time evolution: Simple Euler update Translation invariant approximation of ground states with great accuracy Real-time evolution: Symmetric second-order implementation Accurate conservation of constants of motion 14/25

TDVP results Imaginary-time MPS example: S=1 Heisenberg AFM: Ĥ = n Ŝ x n Ŝ x n+1 + Ŝ y n Ŝ y n+1 + Ŝ z n Ŝ z n+1 First Schmidt coefficients for a ground state approximation with bond dimension D=128: 0.6961989782 0.0057700505 0.0014877669 0.6961989782 0.0057700505 0.0014877669 0.0860988815 0.0057700505 0.0014877669 0.0860988815 0.0057700505 0.0014877669 0.0860988815 0.0016659093 0.0014877669 0.0860988815 0.0016659093 0.0014877669 0.0200132616 0.0016659093 0.0011065273 0.0200132616 0.0016659093 0.0011065273 S=1/2 S=3/2 S=5/2 15/25

TDVP results Real-time MPS example: S=1/2 Heisenberg AFM: Ĥ = n ˆσ x n ˆσ x n+1 + ˆσ y n ˆσ y n+1 + ˆσ z n ˆσ z n+1 Starting from initial MPS with Ψ(0) ˆσ z Ψ(0) = 0 Ψ(0) ˆσ x,y Ψ(0) = 0 h(a(t), A(t)) σ z (A(t), A(t))!1.66!1.68 0.063 0.062 0.061 σ x (A(t), A(t)) 2"10!11 0!2"10!11 TDVP TEBD 0 1 2 3 4 5 6 7 8 9 10 t 16/25

TDVP results Imaginary-time cmps example: Ĥ = dx d ˆψ dx (Lieb-Liniger model) (x)d ˆψ dx (x) µ ˆψ (x) ˆψ(x)+g ˆψ (x) ˆψ (x) energy density e/ρ 3 error on energy density (a) (b) 4 2 0 1 10!2 10!4 10!6 10!8 D = 2 D = 4 D = 7 D = 14 D = 25 D = 41 0.1 1 10 100 1000 interaction strength γ= g/ρ ˆψ(x) ˆψ(x) 17 /25

Linearized TDVP Variational optimum satisfies Φ(B) Ĥ Ψ(A ) B i i E(A )=0! Steady state solution of TDVP equations Linearize TDVP around ground state: A(t)=A + ηb(t)! First order linear differential equation in B(t) and B(t) : B(t)=B + e iωt + B e +iωt 18/25

Linearized TDVP ω i Ψ(A ) j Ψ(A ) 0 j B+ 0 i Ψ(A ) j Ψ(A j ) B = i Ψ(A ) Ĥ j Ψ(A ) i j Ψ(A ) Ĥ Ψ(A ) j B+ i j Ψ(A ) Ĥ Ψ(A ) i Ψ(A ) Ĥ j j Ψ(A ) B 19/25

Linearized TDVP ω i Ψ(A ) j Ψ(A ) 0 j B+ 0 i Ψ(A ) j Ψ(A j ) B = i Ψ(A ) Ĥ j Ψ(A ) i j Ψ(A ) Ĥ Ψ(A ) j B+ i j Ψ(A ) Ĥ Ψ(A ) i Ψ(A ) Ĥ j j Ψ(A ) B! ω i Ψ(A ) j Ψ(A ) B j = i Ψ(A ) Ĥ j Ψ(A ) B j Application of variational principle in linear subspace (A ). (Rayleigh - Ritz equations) 19/25

Ansatz for excitations Φ(B) = +... B... B...... +... B... +... 20/25

Ansatz for excitations Φ(B) = e ik(n 1)... B... + e ikn... B... + e ik(n+1)... B... +...! Ansatz for excitations with momentum k Combines: Östlund - Rommer ansatz Single-mode approximation (Feynman-Bijl ansatz) 20/25

Ansatz for excitations: MPS results S=1 Heisenberg AFM: Ĥ = n Ŝ x n Ŝ x n+1 + Ŝ y n Ŝ y n+1 + Ŝ z n Ŝ z n+1 D = 30 : Efficient implementation: D = 208 excitation energy ω / Δ Haldane 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 π/4 π/2 3π/4 π momentum k S=0 S=1 S=2 S=3 Haldane = 0.410479248463 +6 10 12 3 10 12 21/25

Ansatz for excitations: cmps results Lieb-Liniger (cmps approximation with D = 33) (b) 4 2 1 0 4 2 π 2π momentum p / ρ 3π 15 10 5 0 0 25 20 6 energy ΔE / ρ2 energy ΔE / ρ2 3 (c) 8 energy ΔE / ρ2 (a) 0 0 π 2π 3π momentum p / ρ 0 π 2π 3π momentum p / ρ increasing! = g / " 22 /25

Ansatz for excitations: topologically non-trivial Ξ(B) = e ik(n 1)... B... + e ikn... B... + e ik(n+1)... B... +...! Ansatz for domain-walls with momentum k Contains: Mandelstam ansatz 23/25

Ansatz for excitations: topologically non-trivial XXZ model: H = excitation energy energy gap ΔXXZω (a) n x x σ n σ n+1 y y + σ n σ n+1 z z + σ n σ n+1 1 (b) y ~ x1/2 10!2 0.15 10 0.108 y~x 6 0.05 4 0 2!0.050 Δ= 1.6 Δ= 1.3 Δ= 1.2 Δ= 1.1 Δ= 1 1.0 -π 10!4 10!6 ( ) - Δ(D) error on gap ΔXXZ XXZ 14 0.20 12 10!8 1.2!2π/3 1.4 1.6 -π/3 1.8 2.0 100!10 π/3 2π/3 momentum anisotropy parameter Δ error onk energy density e(d) - e( ) XXZ XXZ π 24 /25

Ansatz for excitations: topologically non-trivial XXZ model: Ĥ = n ˆσ x n ˆσ x n+1 + ˆσ y n ˆσ y n+1 + ˆσ z n ˆσ z n+1 energy gap Δ XXZ 0.20 0.15 0.10 0.05 0!0.05 (a) 1.0 1.2 1.4 1.6 1.8 2.0 anisotropy parameter Δ (b) 10!10 y ~ x 1/2 Δ= 1.6 Δ= 1.3 Δ= 1.2 Δ= 1.1 Δ= 1 y ~ x error on energy density e (D) XXZ - e( ) XXZ 1 10!2 10!4 10!6 10!8 error on gap Δ ( ) XXZ - Δ(D) XXZ 24/25

Conclusions: Systematic framework for time evolution and excitations by exploiting the (c)mps tangent plane Efficient implementation possible! Symmetry inherently respected!what about PEPS, (c)mera,...? 25/25

Thank you! Questions?