Chapter 11. Displacement Method of Analysis Slope Deflection Method

Similar documents
Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

SLOPE-DEFLECTION METHOD

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

UNIT-V MOMENT DISTRIBUTION METHOD

Example 17.3 Analyse the rigid frame shown in Fig a. Moment of inertia of all the members are shown in the figure. Draw bending moment diagram.

MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD

Structural Analysis III Compatibility of Displacements & Principle of Superposition

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

Structural Analysis III Moment Distribution

UNIT-IV SLOPE DEFLECTION METHOD

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Methods of Analysis. Force or Flexibility Method

8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method. 8-5 Conjugate-Beam method

Chapter 2 Basis for Indeterminate Structures

Due Tuesday, September 21 st, 12:00 midnight

Structural Analysis III Moment Distribution

Internal Internal Forces Forces

k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44


Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Ph.D. Preliminary Examination Analysis

P.E. Civil Exam Review:

TYPES OF STRUCUTRES. HD in Civil Engineering Page 1-1

Method of Consistent Deformation

M.S Comprehensive Examination Analysis

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Chapter 2: Deflections of Structures

Multi Linear Elastic and Plastic Link in SAP2000

7 STATICALLY DETERMINATE PLANE TRUSSES

Lecture 11: The Stiffness Method. Introduction

STATICALLY INDETERMINATE STRUCTURES

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Indeterminate Analysis Force Method 1

Chapter 4.1: Shear and Moment Diagram

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Moment Distribution Method

QUESTION BANK ENGINEERS ACADEMY. Hinge E F A D. Theory of Structures Determinacy Indeterminacy 1

Deflections. Deflections. Deflections. Deflections. Deflections. Deflections. dx dm V. dx EI. dx EI dx M. dv w

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

6. KANIS METHOD OR ROTATION CONTRIBUTION METHOD OF FRAME ANALYSIS

Structural Steel Design Project

3.4 Analysis for lateral loads

2 marks Questions and Answers

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

CHAPTER 5 Statically Determinate Plane Trusses

THEORY OF STRUCTURES CHAPTER 3 : SLOPE DEFLECTION (FOR BEAM) PART 1

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

Ph.D. Preliminary Examination Analysis

Lecture 8: Flexibility Method. Example

Chapter 7: Internal Forces

UNIT I ENERGY PRINCIPLES

Beams. Beams are structural members that offer resistance to bending due to applied load

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1.

If the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.

Lecture 6: The Flexibility Method - Beams. Flexibility Method

Free Body Diagram: Solution: The maximum load which can be safely supported by EACH of the support members is: ANS: A =0.217 in 2

External Work. When a force F undergoes a displacement dx in the same direction i as the force, the work done is

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Method of Virtual Work Frame Deflection Example Steven Vukazich San Jose State University

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

FIXED BEAMS CONTINUOUS BEAMS

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

Lecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction

A New Jacobi-based Iterative Method for the Classical Analysis of Structures

Interstate 35W Bridge Collapse in Minnesota (2007) AP Photo/Pioneer Press, Brandi Jade Thomas

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras

Shear Force V: Positive shear tends to rotate the segment clockwise.

T2. VIERENDEEL STRUCTURES

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Supplement: Statically Indeterminate Trusses and Frames

FORMULA FOR FORCED VIBRATION ANALYSIS OF STRUCTURES USING STATIC FACTORED RESPONSE AS EQUIVALENT DYNAMIC RESPONSE

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

ENG202 Statics Lecture 16, Section 7.1

14. *14.8 CASTIGLIANO S THEOREM

Continuous Beams - Flexibility Method

Moment Distribution The Real Explanation, And Why It Works

Chapter 4-b Axially Loaded Members

MAHALAKSHMI ENGINEERING COLLEGE

Rigid and Braced Frames

Structural Analysis III The Moment Area Method Mohr s Theorems

Shear Forces And Bending Moments

CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions

Preliminaries: Beam Deflections Virtual Work

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

CITY AND GUILDS 9210 UNIT 135 MECHANICS OF SOLIDS Level 6 TUTORIAL 5A - MOMENT DISTRIBUTION METHOD

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

Chapter 2. Shear Force and Bending Moment. After successfully completing this chapter the students should be able to:

7.4 The Elementary Beam Theory

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

Transcription:

Chapter 11 Displacement ethod of Analysis Slope Deflection ethod

Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations & the equation of three moment The primary unknowns are forces or moments Displacement method The slope-deflection method & the moment distribution method The primary unknown is displacements (rotation & deflection) It is particularly useful for the analysis of highly statically indeterminate structures Easily programmed on a computer & used to analyze a wide range of indeterminate structures

Displacement ethod of Analysis Degree of Freedom The number of possible joint rotations & independent joint translations in a structure is called the degree of freedom of the structure In three dimensions each node on a frame can have at most three linear displacements & three rotational displacements. In two dimension each node can have at most two linear displacements & one rotational displacement. DOF = n J R - n number of possible joint s movements - J number of joints - R number of restrained movements

Displacement ethod of Analysis Degree of Freedom DOF = n J R - n number of possible joint s movements - n = 2 for two dimensional truss structures - n = 3 for three dimensional truss structures - n= 3 for two dimensional frame structures - n= 6 for three dimensional frame structures - J number of joints - R number of restrained movements Neglecting Axial deformation DOF = n J R m - m number of members

Displacement ethod of Analysis

Slope-Deflection Equations Derivation

Slope-Deflection Equations Angular Displacement at A, A 1 AB L 1 2L A' 0 L L 0 2 EI 3 2 EI 3 1 L 1 AB 2L B ' 0 L L AL 0 2 EI 3 2 EI 3 4EI 2EI A & B A A L L AB

Slope-Deflection Equations Angular Displacement at B, B AB 4EI B L 2EI B L

Slope-Deflection Equations Relative Linear Displacement B ' 0. 1 2 1 L L L L 2 EI 3 2 EI 3 0. 6EI AB 2 L

Slope-Deflection Equations Fixed-End oment Fy 0. 1 PL 1 L 2 L 0. 2 EI 2 EI Fixed-End moment FE PL 8

Slope-Deflection Equations AB ( FE ) ( FE ) AB

Slope-Deflection Equations Fixed-End oment

Slope-Deflection Equations Slope-deflection equations The resultant moment (adding all equations together) 2 I E 2 3 ( FE ) L L AB A B AB 2 I E 2 3 ( FE ) L L B A Lets represent the member stiffness as k = I/L & The span ration due to displacement as = /L Referring to one end of the span as near end (N) & the other end as the far end (F). Rewrite the equations 2EK 2 3 ( FE ) N N F N 2EK 2 3 ( FE ) F F N F

Slope-Deflection Equations Slope-deflection equations for pin supported End Span If the far end is a pin or a roller support 2EK 2 3 ( FE )' N N F N 0 2EK 2 3 0 F N ultiply the first equation by 2 and subtracting the second equation from it 3 EK ( FE )' N N N

Fixed End oment Table

Fixed End oment Table

Fixed End oment Table- Continue

Summary 2EK 2 3 ( FE ) N N F N 2EK 2 3 ( FE ) F F N F 3 EK ( FE )' N N N

Slope-Deflection Equations N, F = the internal moment in the near & far end of the span. Considered positive when acting in a clockwise direction E, k = modulus of elasticity of material & span stiffness k = I/L N, F = near & far end slope of the span at the supports in radians. Considered positive when acting in a clockwise direction = span ration due to a linear displacement / L. If the right end of a member sinks with respect the the left end the sign is positive

Slope-Deflection Equations Steps to analyzing beams using this method Find the fixed end moments of each span (both ends left & right) Apply the slope deflection equation on each span & identify the unknowns Write down the joint equilibrium equations Solve the equilibrium equations to get the unknown rotation & deflections Determine the end moments and then treat each span as simply supported beam subjected to given load & end moments so you can workout the reactions & draw the bending moment & shear force diagram

Example 1 Draw the bending moment & shear force diagram. Fixed End oment 4 4 FE AB 2 t. m FE 2 t. m 8 2 2 6 FE 6 t. m FE CB 6 t. m 12 4t 4m 2t/m A I B 2I C 6m Slope Deflection Equations I A 0 AB 2E 2 A B 0 2 AB 0.5EIB 2 4 I A 0 2E A 2 B 0 2 EIB 2 4 2I 0 4 C 2E 2 B C 0 6 EIB 6 6 3 2I 0 2 C CB 2E B 2 C 0 6 CB EIB 6 6 3

Joint Equilibrium Equations Joint B 0 4 1.7 EIB 2 EIB 6 0. B 3 EI Substituting in slope deflection equations 1.7 AB 0.5EI 2 1.15 t. m EI 1.7 EI 2 3.7 t. m EI 3.7 t. m 2 1.7 CB EI 6 7.1 t. m 3 EI 1.15 Computing The Reactions 4t 3.7 R R A B 1 1.15 4 2 3.7 1.36 t 4 4 1.36 2.64t R A R B1

R R B 2 C 263 3.7 7.1 5.43 t 6 2 6 5.43 6.57t 3.7 2t/m 7.1 5.43 R B2 R C 1.36 + - + 2.64-6.57 3.7 7.1 1.15 - + 1.57 - + 3.79 -

Determine the internal moments in the beam at the supports. Fixed End oment FE FE FE AB 2 6042 26.67 kn. m 2 6 2 6024 53.33 kn. m 2 6 2 30 6 135 kn. m 8 Slope Deflection Equations Example 2 60kN I 1 E EI 6 3 I 2 E EI 6 3 I 1 3E B 0 135 EIB 135 6 2 A 0 AB 2 2 A B 0 26.67 AB B 26.67 A 0 2 A 2 B 0 53.33 B 53.33 4m 6m 30kN/m A B C I I 6m

Joint Equilibrium Equations Joint B 0 2 1 7 EIB 53.33 EIB 135 0 EIB 81.67 3 2 6 EI 70 B Substituting in slope deflection equations AB 1 (70) 26.67 3.33 kn. m 3 2 (70) 53.33 100 kn. m 3 1 (70) 135 100 kn. m 2

Example 3 Example 2: Determine the internal moments in the beam at the supports Support A; downward movement of 0.3cm & clockwise rotation of 0.001 rad. Support B; downward movement of 1.2cm. Support C downward movement of 0.6cm. EI = 5000 t.m 2 Fixed End oment FE AB FE FE FE CB Displacements: 0.001 A AB 1.2 0.3 0.0015 600 0.6 1.2 0.001 600 Slope Deflection Equations AB 25000 2 0.001 B 3 0.0015 6 25000 2 B 0.001 3 0.0015 6 0. A B C I 6m I 6m

35000 B 6 Joint Equilibrium Equations Joint B 0 7 0.004 0 B B 0.00057rad 0.001

Substituting in slope deflection equations AB 25000 2 0.001 0.00057 3 0.0015 3.22 t. m 6 25000 2 0.00057 0.001 3 0.0015 3.93 t. m 6 35000 0.00057 0.001 3.93 t. m 6

Example 1b FE AB FE 0.0 A C 0.0

Slope Deflection Equations

Equilibrium Equations

Example 2b

Example 3b

Example 4

Analysis of Frames Without Sway The side movement of the end of a column in a frame is called SWAY.

Example 5 Determine the moment at each joint of the frame. EI is constant Fixed End oment FE FE 0. AB FE FE FE CB CD 2 5248 80 kn. m 96 2 5248 80 kn. m 96 FE 0. DC Slope Deflection Equations I AB 2E 0. B 0. 0 12 AB I 2E 2 B 0 0. 0 12 A = 0. 0.1667EI A = 0. 0.333EI B B

I 2E 2B C 080 8 I CB 2E 2C B 0 80 8 I CD 2E 2 C 0 0. 0 12 I DC 2E 0 C 0. 0 12 Joint Equilibrium Equations Joint B 0 CB CD 0 0.333EI 0.5EI 0.25EI 80 0. C C B D = 0. D = 0. 0.5EI 0.25EI 80 B C 0.5EI 0.25EI 80 CB C B CD DC 0.333EI C 0.1667EI 0.333EI B 0.5EI B 0.25EI C 80 0. 0.833EI B 0.25EI C 80 Joint C C 0.833EI 0.25EI 80 C B

Two equation & two unknown B Substituting in slope deflection equations AB CB CD DC C 137.1 EI 22.9 kn. m 45.7 kn. m 45.7 kn. m 45.7 kn. m 45.7 kn. m 22.9 kn. m 45.7 45.7 82.3 22.9 22.9

Example 6

Example 6b Draw the bending moment diagram Fixed End oment FE FE FE AB FE CB 2 2021 4.44 kn. m 2 3 2 2012 8.89 kn. m 2 3 2 48 4 64 kn. m 12 64 kn. m FE BE FE EB FE CF FE FC 0 A 1m 20kN I 3m B I E 48kN/m 2I 3m 4m C 2I F 4m 2m 30kN I D CD 30 2 60 kn. m Slope Deflection Equations I AB 2E 2A B 0 4.44 3 A = 0. AB 2 EIB 3 4.44

I 2E A 2B 0 8.89 3 A = 0. 4 EIB 3 8.89 2I 2E 2B C 0 64 4 2I CB 2E B 2C 0 64 4 2EI EI 64 B C EI 2EI 64 CB B C I BE 2E 2B E 0 0 3 I EB 2E 2E B 0 0 3 E = 0. E = 0. BE EB 4 EIB 3 2 EIB 3 2I CF 2E 2C F 0 0 4 2I FC 2E 2F C 0 0 4 F = 0. F = 0. CF FC 2EI EI C C

Equilibrium Equations Joint B BE 0 4 4 EIB 8.89 2EIB EIC 64 EIB 0 3 3 Joint C CB CF CD EI 2EI 64 2EI 60 0 0 B C C EI B 4.67EI EI 55.11 4EI 4 C B C Two equation & two unknown EI B 12.70 EI C 4.18 Substituting in slope deflection equations AB 2 12.7 4.44 4.03 kn. m 3 212.7 4.18 64 42.77 kn. m 4 12.70 8.89 25.83 knm 3 CB 12.7 2 ( 4.18) 64 68.34 kn. m

BE EB 4 12.70 16.94 kn. m 3 2 12.70 8.47 kn. m 3 42.77 25.83 2 EI ( 4.18) 8.35 kn. m CF FC 4.18 kn. m 68.35 60 4.03 16.94 8.35 8.47 4.18

Slope Deflection (Frame with Sway) Analysis of Frames with Sway

Example 7 Draw the bending moment diagram. EI constant Fixed End oment As there is no span loading in any of the member FE for all the members is zero Slope Deflection Equations I AB 2E 0. B 3 0 12 12 1 1 EIB EI 6 24 I 2E 2 B 0. 3 0 12 12 1 1 EIB EI 3 24

0. 4 2 2 I E 2 B C 3 0 EIB EIC 15 15 15 15 2 4 2 I CB E 2 C B 0 0 EIB EIC 15 15 15 2 1 2 I CD E 2C 0 3 0. EIC EI 18 18 9 54 1 1 2 I DC E 0 C 3 0 EIC EI 18 18 9 54 Equilibrium Equations Joint B B = 0 0 1 1 4 2 EIB EI EIB EIC 0. 3 24 15 15 EI 14.4EI 3.2EI 0 1 Joint C C = 0 CB CD 0 B C

2 4 2 1 EIB EIC EIC EI 0. 15 15 9 54 EI 7.2EI B 26.4EI C 0 2 Three unknown & just two equations so we need another equilibrium equation. Let take F x = 0. 40 H H 0. H H A D A D CD 12 18 AB DC 4018 1.5 0. AB CD DC 1 1 1 1 720 1.5 EIB EI EI B EI 3 24 6 24 2 1 1 1 EIC EI EIC EI 0. 9 54 9 54 0.162EI 0.75EI 0.333EI 720 3 B C

Now solve the three equation 1 14.4 3.2 EI 0 1 7.2 26.4 EIB 0 0.162 0.75 0.333 EI C 720 EIC EIB 136.2 438.9 EI 6756.6 Substituting in slope deflection equations AB CB CD DC 208 kn. m 135 kn. m 135 kn. m 95 kn. m 95 kn. m 110 kn. m

135 + 135 + - 95-95 208-110 +

Example 7 Draw the bending moment diagram. EI constant Fixed End oment FE FE FE FE AB CB CD FE 0. 2 2015 375 kn. m 12 2 2015 375 kn. m 12 FE 0. DC Slope Deflection Equations I AB 2E 0. B 3 0 12 12 1 1 EIB EI 6 24

I 2E 2 B 0. 3 0 12 12 1 1 EIB EI 3 24 I 0. 4 2 2E 2B C 3 375 15 15 EIB EIC 375 15 15 I 2 4 CB 2E 2C B 0 375 EIB EIC 375 15 15 15 I 2 1 CD 2E 2 C 0 3 0. 18 18 EIC EI 9 54 I 1 1 DC 2E 0 C 3 0 18 18 EIC EI 9 54 Equilibrium Equations Joint B B = 0 0 1 1 4 2 EIB EI EIB EIC 375 0. 3 24 15 15 EI 14.4EI 3.2EI 9000 1 B C

Joint C C = 0 CB CD 0 2 4 2 1 EIB EIC 375 EIC EI 0. 15 15 9 54 EI 7.2EI 26.4EI 20250 2 Three unknown & just two equations so we need another equilibrium equation. Let take F x = 0. 40 H H 0. A D AB H A 12 CD DC H D 18 4018 1.5 0. AB CD DC B 1 1 1 1 720 1.5 EIB EI EI B EI 3 24 6 24 2 1 1 1 EIC EI EIC EI 0. 9 54 9 54 0.162EI 0.75EI 0.333EI 720 3 B C C

Now solve the three equation 1 14.4 3.2 EI 9000 1 7.2 26.4 R1-R2 EIB 20250 0.162 0.75 0.333 EI 720 0.162R1-R3 C 1 14.4 3.2 EI 9000 0 7.2 23.2 0.22R2-R3 EIB 29250 0 1.58 0.185 EI C 2178 1 14.4 3.2 EI 9000 0. 7.2 23.2 EIB 29250 0. 0. 5.29 EI C 4257 Substituting in slope deflection equations AB 1 1 1467.2 9587.2 155 kn. m 6 24 1 1 1469.6 9587.2 90 kn. m 3 24 4257 EIC 804.7 5.29 EIB 1469.6 EI 9587.2

- CB 4 2 1469.6 ( 804.7) 375 90 kn. m 15 15 2 4 1469.6 ( 804.7) 375 356 kn. m 15 15 CD DC 2 1 ( 804.7) 9587.2 356 kn. m 9 54 1 1 ( 804.7) 9587.2 267 kn. m 9 54 90 90 - - 356 356 155 267

Example 8

Draw the bending moment diagram. EI constant Fixed End oment Example 9 As there is no span loading in any of the member FE for all the members is zero Slope Deflection Equations I AB E 5 5 2 6 EIB EI 1 5 25 1 2 0. B 3 0 I E 5 5 4 6 EIB EI 1 5 25 1 2 2 B 0 3 0

I 0 BE 2E 2B E 3 0 7 7 I 0 EB 2E 2E B 3 0 7 7 I 1 FE 2E 0. E 3 0 5 5 I 1 EF 2E 2 E 0 3 0 5 5 I E 5 5 I 2 CB 2E 2C B 3 0 5 5 2 2 2 B C 3 0 4 2 EIB EIE 7 7 2 4 EIB EIE 7 7 2 6 EIE EI 5 25 4 6 EIE EI 5 25 4 2 6 EIB EIC EI 5 5 25 2 4 6 EIB EIC EI 5 5 25 1 1 2 2 I 0 CD 2E 2C D 3 0 7 7 I 0 DC 2E 2D C 3 0 7 7 4 2 EIC EID 7 7 2 4 EIC EID 7 7

I E 5 5 I 2 ED 2E 2E D 3 0 5 5 2 DE 2 2 D E 3 0 4 2 6 EID EIE EI 5 5 25 2 4 6 EID EIE EI 5 5 25 2 2 Equilibrium Equations Joint B B = 0 BE 0 4 6 4 2 6 4 2 EIB EI 1 EIB EIC EI 2 EIB EIE 5 25 5 5 25 7 7 380EI 70EI 50EI 42EI 42EI 0 1 Joint E E = 0 B C E 1 2 EB ED EF 0 2 4 2 4 6 4 6 EIB EIE EID EIE EI 2 EIE EI 1 7 7 5 5 25 5 25 50EI 70EI 380EI 42EI 42EI 0 2 B D E 1 2 0 0

Joint C C = 0 CB CD 0 2 4 6 4 2 EIB EIC EI 2 EIC EID 0 5 5 25 7 7 70EI 240EI 50EI 42EI 0 3 B C D 2 Joint D D = 0 DC DE 0 2 4 4 2 6 EIC EID EID EIE EI 2 0 7 7 5 5 25 50EI 240EI 70EI 42EI 0 4 C D E Top story F X = 0 40 H H 0 H H B E B E CB DE 5 5 ED 2 H B H E

2 4 6 4 2 6 200 EIB EIC EI 2 EIB EIC EI 2 5 5 25 5 5 25 4 2 6 2 4 6 EID EIE EI 2 EID EIE EI 2 0 5 5 25 5 5 25 6EI 6EI 6EI 6EI 4.8EI 1000 B C D E 2 5 Bottom story F X = 0 40 80 H H 0 A F AB H A 5 EF FE H F 5 4 6 2 6 600 EIB EI 1 EIB EI 1 5 25 5 25 4 6 2 6 EIE EI 1 EIE EI 1 0 5 25 5 25 30EI 30EI 24EI 15000 6 B E 1 H A H F

6 unknown and 6 equation 380 70 0 50 42 42 EIB 0 50 0 70 380 42 42 EI 0 C 70 240 50 0 0 42 EID 0 0 50 240 70 0 42 EIE 0 6 6 6 6 0 4.8 EI 1 1000 30 0 0 30 24 0 EI 2 15000 Substituting in slope deflection equations AB 184.4 kn. m 115.6 kn. m BE EB 147.2 kn. m 147.2 kn. m FE EF EIB EIC EI D EIE 171.79 79.80 79.80 171.79 EI 1 1054.46 EI 2 837.29 184.4 kn. m 115.6 kn. m 31.6 kn. m CD 68.4 kn. m DE 68.4 kn. m CB 68.4 kn. m DC 68.4 kn. m ED 31.6 kn. m

68.4 31.6-147.2 68.4 + + + + 115.6 - - - - + 31.6 68.4 68.4 147.2 115.6 184.4 184.4 +-

Example 10 Draw the bending moment diagram. EI constant Degree of freedom DOF = 3x4-6-3 = 3 That means we got three unknown & we need three equations Before we start let us discus the relative displacement () of each span

The relative displacement () for span AB is equal AB 0. = AB (clockwise) B CD C The relative displacement () for span is equal 0. = (counterclockwise) The relative displacement () for span CD is equal 0. ( CD )= CD (clockwise) A 60 o AB Let us build a relationship between AB, & CD take AB = = AB sin30 = 0.5 CD = AB cos30 = 0.866 So in the slope deflection equations we will use; as the relative displacement of span AB. 0.5 as the relative displacement of span. 0.866 as the relative displacement of span CD. B 60 o 60 o CD AB =30 o D

Fixed End oment FE FE AB FE CB FE CD FE 2 4 12 2 2.667. m FE DC 0. 2.667 t. m 0. Slope Deflection Equations I AB 2E 0. B 3 0 3 3 I 2E 2 B 0 3 0 3 3 I 0.5 2E 2B C 3 2.667 4 4 I 0.5 CB 2E B 2C 3 2.667 4 4 2 2 EIB EI 3 3 4 2 EIB EI 3 3 1 3 EIB EIC EI 2.667 2 16 1 3 EIB EIC EI 2.667 2 16

I 0.866 CD 2E 2 C 0 3 0 6 6 I 0.866 DC 2E 0 C 3 0 6 6 2 0.866 EIC EI 3 6 1 0.866 EIC EI 3 6 Equilibrium Equations Joint B B = 0 0 4 2 1 3 EIB EI EIB EIC EI 2.667 0 3 3 2 16 112EI B 24EI C 23EI 128 1 Joint C C = 0 CB CD 0 1 3 2 0.866 EIB EIC EI 2.667 EIC EI 0 2 16 3 6 24EI B 80EI C 2.072EI 128 2

Third Equilibrium Equations (ethod 1) AB AB DC 3 6 8 2 0.0 DC CD 11 12.92 8.0 8 t 6.92m 21 22 12.92 11.92 96 0 AB CD DC 3.0 2.0 2.0 34.5EI 3.1EI 38.375EI 144 3 B C 3.0 6.0m 6.0

2.6m Third Equilibrium Equations (ethod 2) Third equation F X = 0 H H 0 A D From the free body diagram for column CD H D CD 6 DC B C CD Free body diagram for column AB H 2.6 V 1.5 0 A AB A H A A 1.5m AB Free body diagram for Beam V 4 2 4 2 0 V B CB A V A CB V 4 B 4 1.5 AB CB H A 4 2.6 2.6 4 1.5 AB CB CD DC 4 0. 2.6 2.6 4 6 V B B 2t/m DC D C H D CB

24 9 10.4 144 AB CB CD DC 4 2 2 2 1 24 EIB EI EIB EI 9 EIB EIC 3 3 3 3 2 3 1 3 EI 2.667 EIB EIC EI 2.667 16 2 16 2 0.866 1 0.866 10.4 EIC EI EIC EI 144 3 6 3 6 34.5EI 3.1EI 38.375EI 144 3 B C Solving the three equation 112 24 23 EIB 128 24 80 2.072 EIC 128 34.5 3.1 38.375 EI 144 EIB EIC 3.11 2.71 EI 6.77

Solving the three equation 112 24 23 EIB 128 24 80 2.072 EIC 128 34.5 3.1 38.375 EI 144 EIB EIC 3.11 2.71 EI 6.77

Substituting in slope deflection equations AB 2.44 t. m 0.36 t. m 2.78 CB 0.36 t. m 2.78 t. m B 0.36 0.36 + _ C _ 2.78 CD DC 2.78 t. m 1.88 t. m 2.44 A 2.8 1.88 + D

Example Draw the bending moment diagram. EI constant Before we start let us discus the relative displacement () of each span

The relative displacement () for span AB is equal AB 0. = AB (clockwise) The relative displacement () for span is equal ( 2 ) 1 = ( 1 + 2 ) = (counterclockwise) The relative displacement () for span CD is equal 0. ( CD )= CD (clockwise) A = 1 + 2 B C 2 1 AB CD D Let us build a relationship between AB, & CD take AB = = 2( AB cos) = 2 5/8.6 = 1.163 CD = AB = So in the slope deflection equations we will use; as the relative displacement of span AB. 1.163 as the relative displacement of span. as the relative displacement of span CD. B AB CD 2 1 1 = 2 & CD = AB because of the symmetry in the geometry

Fixed End oment FE FE AB FE CB FE CD FE 47 12 2 0. 16.33 kn. m FE DC 16.33 kn. m 0. Slope Deflection Equations I AB 2E 0. B 3 0 8.6 8.6 I 2E 2 B 0 3 0 8.6 8.6 I 1.163 2E 2B C 3 16.33 7 7 I 1.163 CB 2E 2C B 3 16.33 7 7 2 6 EIB EI 8.6 73.96 4 6 EIB EI 8.6 73.96 4 2 6.978 EIB EIC EI 16.33 7 7 49 2 4 6.978 EIB EIC EI 16.33 7 7 49

I CD 2E 2 C 0 3 0 8.6 8.6 I DC 2E 0 C 3 0 8.6 8.6 4 6 EIC EI 8.6 73.96 2 6 EIC EI 8.6 73.96 Equilibrium Equations Joint B B = 0 0 4 6 4 2 6.978 EIB EI EIB EIC EI 16.33 0 8.6 73.96 7 7 49 103.65EI 28.57EI 6.13EI 1633 1 CB B Joint C C = 0 CD 0 C 2 4 6.978 4 6 EIB EIC EI 16.33 EIC EI 0 7 7 49 8.6 73.96 28.57EI 103.65EI 6.13EI 1633 2 B C

7m 7m Third equation F X = 0 6 H H 0 A D Free body diagram for column AB H 7 V 5 0 A AB A Free body diagram for Beam V 7 473.5 0 B CB H A AB CB V A V B 14 7 AB 5 CB H A 14 7 7 7 From the free body diagram for column CD H 7 V 5 0 D CD DC D V 7 473.5 0 V C CB D CB VC 14 7 A V A 5m V B B B 4kN/m C V C C CB CD DC D 5m H V D D

5 CD DC CB H D 14 7 7 7 6 H H 0 A D AB CB CD DC CB 649 7 5 7 5 0 7 7 10 294 AB CD DC CB 2 6 4 6 2 6 7 EIB EI EIB EI 7 EIC EI 8.6 73.96 8.6 73.96 8.6 73.96 4 6 4 2 6.978 EIC EI 10 EIB EIC EI 16.33 8.6 73.96 7 7 49 2 4 6.978 EIB EIC EI 16.33 294 7 7 49 3.688EI 3.688EI 5.12EI 294 3 Solving the three equation B 103.65 28.57 6.13 EIB 1633 28.57 103.65 6.13 EIC 1633 3.688 3.688 5.12 EI 294 C EIB EIC 18.897 24.603 EI 61.532

Substituting in slope deflection equations AB 0.6 kn. m 3.8 kn. m CB 3.8 kn. m 16.43 kn. m 3.8 3.8 B + 16.43 _ C 16.43 CD 16.43 kn. m 14.4 DC 10.71 kn. m 0.6 A 10.71 D