KM3NeT: Towards a km 3 Mediterranean Neutrino Telescope

Similar documents
The KM3NeT Project: A km 3 Scale Mediterranean Neutrino Telescope and Deep-Sea Research Infrastructure

Neutrino Telescopy Today and Tomorrow Towards km 3 -Scale Detectors

Fishing for Neutrinos Science, Technology and Politics

(Towards) a km 3 detector in the Mediterranean Sea

KM3NeT. P. Piattelli, INFN SciNeGHE 2010, Trieste, september

High energy neutrino astronomy with the ANTARES Cherenkov telescope

Mediterranean Neutrino Telescopes

Progress and latest results from Baikal, Nestor, NEMO and KM3NeT

Underwater Neutrino Telescopes

Introduction to future synergy options

S. E. Tzamarias Hellenic Open University. BAIKAL-ANTARES Mediterranean km 3 Neutrino Telescope

Neutrino Astronomy in Greece NESTOR-KM3NET

KM3NeT towards a km 3 -Scale Neutrino Telescope in the Mediterranean Sea

Resent results from Antares Aart Heijboer, Nikhef on behalf of the Antares collaboration.

Status of the KM3NeT Project. Oleg Kalekin Astroparticle Physics Workshop Baikal, Ulan-Ude Maksimiha

KM3NeT-ARCA project status and plan

PoS(Texas 2010)235. KM3NeT: A km 3 -scale neutrino telescope in the Mediterranean Sea. Véronique Van Elewyck, for the KM3NeT Consortium

Università degli Studi di Pisa Dipartimento di Fisica E. Fermi. I.N.F.N. - Pisa

PoS(ICRC2015)1106. GEANT4 simulation of optical modules in neutrino telescopes. Christophe M.F. Hugon

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

PoS(EPS-HEP2017)008. Status of the KM3NeT/ARCA telescope

THE KM3NET NEUTRINO TELESCOPE IN THE MEDITERRANEAN SEA

KM3NeT. Astro-particle and Oscillations Research with Cosmics in the Abyss (ARCA & ORCA)

The KM3NeT Neutrino Telescope

J. P. Gómez-GonzálezGonzález

THE ANTARES NEUTRINO TELESCOPE: CURRENT STATUS AND FIRST RESULTS

Neutrino Telescopy a1er the new developments in Par8cle and Astropar8cle Physics

KM3NeT and Baikal-GVD New Northern Neutrino Telescopes

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

Potential Neutrino Signals from Galactic γ-ray Sources

High Energy Astrophysics with underwater neutrino detectors. Marco Anghinolfi INFN, Genova, Italia

arxiv: v1 [astro-ph.im] 5 Aug 2014

Experimental high energy neutrino astronomy

Status and first results of the ANTARES neutrino telescope

The sources of cosmic neutrinos The scientific exploitation of the KM3NeT detector

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

LATTES Large Array Telescope to Tracking Energetic Sources

High Energy Neutrino Astrophysics Latest results and future prospects

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

Astroparticle Physics

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

Particle Physics Beyond Laboratory Energies

SELECTED RESULTS OF THE ANTARES TELESCOPE AND PERSPECTIVES FOR KM3NET. D. Dornic (CPPM) on behalf the ANTARES Coll.

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

The new Siderius Nuncius: Astronomy without light

TeV Future: APS White Paper

H.E.S.S. High Energy Stereoscopic System

Neutrino Astronomy fast-forward

A Galaxy in VHE Gamma-rays: Observations of the Galactic Plane with the H.E.S.S. array

Matt Kistler Ohio State University In collaboration with John Beacom

Search for high energy neutrino astrophysical sources with the ANTARES Cherenkov telescope

Cherenkov Telescope Array Status And Outlook. Stefan Schlenstedt Oct 30, 2015

Neutrino Astronomy. Ph 135 Scott Wilbur

Measurement of the atmospheric νμ energy spectrum and improved limits on the νμ diffuse fluxes with ANTARES

Lessons from Neutrinos in the IceCube Deep Core Array

Multi-PMT Optical Module Designs for IceCube-Gen2

Neutrino Mass Hierarchy and other physics in H 2 0 (ORCA & PINGU) Aart Heijboer Nikhef, Amsterdam, KM3NeT collaboration

Results from the ANTARES Deep Sea Neutrino Telescope

IceCube: Dawn of Multi-Messenger Astronomy

KM3NET-PP-SSC Report. 18 February 2012

Astroparticle and neutrino oscillation research with KM3NeT. M. Circella (INFN Bari) on behalf of the KM3NeT Collaboration

Christian Spiering, DESY

neutrino astronomy francis halzen university of wisconsin

VERITAS Design. Vladimir Vassiliev Whipple Observatory Harvard-Smithsonian CfA

Muon track reconstruction and veto performance with D-Egg sensor for IceCube-Gen2

Cherenkov Telescope Arrays

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR)

Follow-up of high energy neutrinos detected by the ANTARES telescope

First results from the NEMO Phase 1 experiment

SURFACE ARRAY Détecteur de surface pour ANTARES JP Ernenwein CPPM

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

Status of the BAIKAL-GVD Project

NEUTRINO ASTRONOMY AT THE SOUTH POLE

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

FINAL WORKSHOP BULLETIN

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Recent highlights from VERITAS

CTA SKA Synergies. Stefan Wagner Landessternwarte (CTA Project Office) Heidelberg

Neutrinos and Beyond: New Windows on Nature

The Cherenkov Telescope Array

ISTITUTO NAZIONALE DI FISICA NUCLEARE. Sezione di Genova

The real voyage is not to travel to new landscapes, but to see with new eyes... Marcel Proust

ASTERICS Astronomy ESFRI & Research Infrastructure Cluster

The current status of the neutrino telescope experiments

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Muon track reconstruction and veto performance with D-Egg sensor for IceCube-Gen2

Neutrinos from the Milky Way. 18th Symposium on Astroparticle Physics in the Netherlands Erwin Visser

Particle Physics with Neutrino Telescope Aart Heijboer, Nikhef

The NESTOR underwater neutrino telescope project

Fermi: Highlights of GeV Gamma-ray Astronomy

Origin of Cosmic Rays

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Search for Point-like. Neutrino Telescope

A Multimessenger Neutrino Point Source Search with IceCube

Very-High-Energy Gamma-Ray Astronomy with VERITAS. Martin Schroedter Iowa State University

H.E.S.S. High Energy Stereoscopic System

neutrino astronomy francis halzen University of Wisconsin

Laboratori nazionali del Sud, INFN, via S. Sofia 62, Catania, Italy

VERITAS Observations of Supernova Remnants

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Transcription:

2nd Workshop on Very Large Volume Neutrino Telescopes (VLVνT2), Catania, Sicily, November 8-11, 2005 KM3NeT: Towards a km 3 Mediterranean Neutrino Telescope Uli Katz Univ. Erlangen 09.11.2005 Some Physics Arguments Aiming at a km 3 Detector in the Mediterranean Sea The KM3NeT Design Study and Beyond Conclusions and Outlook

The Neutrino Telescope World Map ANTARES + NEMO + NESTOR join their efforts to prepare a km 3 -scale neutrino telescope in the Mediterranean KM3NeT Design Study 09.11.2005 U. Katz: KM3NeT 2

Neutrinos from Astrophysical Point Sources Association of neutrinos to specific astrophysical objects. Energy spectrum, time structure, multi-messenger observations provide insight into physical processes inside source. Southern Sky Northern Sky Searches profit from very good angular resolution of water Čerenkov telescopes. km 3 detectors needed to exploit full potential of neutrino astronomy. 09.11.2005 U. Katz: KM3NeT 3

Sky Coverage of Neutrino Telescopes South Pole Mediterranean Region of sky seen in galactic coordinates assuming efficiency for downward hemisphere. Mkn 421 Mkn 501 Crab Not seen Mkn 501 Crab SS433 Not seen SS433 Galactic Center GX339-4 VELA We need ν telescopes in both hemispheres to see the whole sky 09.11.2005 U. Katz: KM3NeT 4

High-energy sources in the Galactic Center 5 sources could be/are associated with SNR, e.g. RX J1713.7; 3 could be pulsar wind nebulae, typically displaced from the pulsar; Some coincide with EGRET, ASCA, unidentified sources; 3 have no counterpart known to us. W. Hofmann, ICRC 2005 09.11.2005 U. Katz: KM3NeT 5

Neutrinos from Supernova Remnants Example: SNR RX J1713.7 (shell-type supernova remnant) Acceleration beyond 100 TeV. Power-law energy spectrum, index ~2.1 2.2. Spectrum points to hadron acceleration ν flux ~ γ flux Detectable in current & future neutrino telescopes?! W. Hofmann, ICRC 2005 Typical ν energies: few TeV 09.11.2005 U. Katz: KM3NeT 6

Arguments for a km 3 Volume Solid theoretical arguments indicate that a cubic kilometer is the right volume for detection of neutrinos from specific astrophysical accelerators (point sources); neutrinos from the cosmic distribution of all neutrino sources (diffuse flux); neutrinos produced in interactions of cosmic rays with the cosmic microwave background (cosmogenic neutrinos). 09.11.2005 U. Katz: KM3NeT 7

Aiming at a km 3 -Detector in the Mediterranean HENAP Report to PaNAGIC, July 2002: The observation of cosmic neutrinos above 100 GeV is of great scientific importance....... a km 3 -scale detector in the Northern hemisphere should be built to complement the IceCube detector being constructed at the South Pole. The detector should be of km 3 -scale, the construction of which is considered technically feasible. 09.11.2005 U. Katz: KM3NeT 8

How to Design a km 3 Deep-Sea ν Telescope scale up Existing telescopes times 30? Too expensive Too complicated: production & deployment takes forever, maintenance impossible Not scalable (readout bandwidth, power,...) dilute new design Large volume with same number of PMs? PM distance: given by absorption length in water (~60 m) and PM properties Efficiency loss for larger spacing R&D needed: Cost-effective solutions to reduce price/volume by factor 2-5 Stability goal: maintenance-free detector Fast installation time for construction & deployment less than detector life time Improved components 09.11.2005 U. Katz: KM3NeT 9

KM3NeT Design Study: Participants Cyprus: France: Germany: Greece: Italy: Univ. Cyprus CEA/Saclay, CNRS/IN2P3 (CPP Marseille, IreS Strasbourg, APC Paris-7), Univ. Mulhouse/GRPHE, IFREMER Univ. Erlangen, Univ. Kiel HCMR, Hellenic Open Univ., NCSR Demokritos, NOA/Nestor, Univ. Athens CNR/ISMAR, INFN (Univs. Bari, Bologna, Catania, Genova, Napoli, Pisa, Roma-1, LNS Catania, LNF Frascati), INGV, Tecnomare SpA Netherlands: NIKHEF/FOM (incl. Univ. Amsterdam, Univ. Utrecht, KVI Groningen) Spain: UK: IFIC/CSIC Valencia, Univ. Valencia, UP Valencia Univ. Aberdeen, Univ. Leeds, Univ. Liverpool, Univ. Sheffield Particle/Astroparticle institutes (29) Sea science/technology institutes (7) Coordinator 09.11.2005 U. Katz: KM3NeT 10

KM3NeT Design Study: History... Design Study for a Deep-Sea Facility in the Mediterranean for Neutrino Astronomy and Associated Sciences Initial initiative Sept. 2002. VLVνT Workshop, Amsterdam, Oct. 2003. ApPEC review, Nov. 2003. Inclusion of marine science/technology institutes (Jan. 2004). Proposal submitted to EU 04.03.2004. Evaluation report received June 2004 (overall mark: 88%). Confirmation that Design Study will be funded (Sept. 2004). Invitation to negotiations with EU Commission (July 2005). Submission of negotiation documents 30.09.2005 2nd VLVνT Workshop, Catania, 08-11.11.2005 09.11.2005 U. Katz: KM3NeT 11

... and Presence Message received from Brussels yesterday noon: The KM3NeT contract will be produced now and should be sent to you within 2 weeks for signature Negotiations are successfully concluded. The EU will fund the KM3NeT Design Study with 9 million. Total volume ~20 million, ~370 person-years. Start date: February 1, 2006. Major objectives: Conceptual Design Report by summer 2007; Technical Design Report by February 2009. 09.11.2005 U. Katz: KM3NeT 12

Objectives and Scope of the Design Study Establish path from current projects to KM3NeT: Critical review of current technical solutions; New developments, thorough tests; Comparative study of candidate sites (figure of merit: physics sensitivity / ); Assessment of quality control and assurance; Exploration of links to industry; Investigation of funding and governance models. Envisaged time scale of design, construction and operation poses stringent conditions. 09.11.2005 U. Katz: KM3NeT 13

Some Key Questions Which architecture to use? (strings vs. towers vs. new design) How to get the data to shore? (optical vs. electric, electronics off-shore or on-shore) How to calibrate the detector? (separate calibration and detection units?) Design of photo-detection units? (large vs. several small PMs, directionality,...) Deployment technology? (dry vs. wet by ROV/AUV vs. wet from surface) And finally: path to site decision All these questions are highly interconnected! 09.11.2005 U. Katz: KM3NeT 14

The KM3NeT Design Study Work Packages WP1: Management of the Design Study WP2: Physics analysis and simulation WP3: System and product engineering WP4: Information technology WP5: Shore and deep-sea infrstructure WP6: Sea surface infrastructure WP7: Risk assessment and quality assurance WP8: Resource exploration WP9: Associated sciences 09.11.2005 U. Katz: KM3NeT 15

Detector Architecture 50 16 x 20 40 m = 1000 640 m 20 x 60 m = 1200 m 20 m 20 x 60 m = 1200 m 40 m 200 m 250 m 50 floors 20 m step 16 floors, 4 PMs each 40 m step 250 20 mx 60 m Top = 1200 viewm (D. Zaborov at VLVνT) 200 m homogeneous lattice 25 towers, of 20 each x 20 x consists 20 downward-looking of 7 strings 10-inch PMs photomultiplier 64 are NEMO-like directed tubes downwards towers 09.11.2005 U. Katz: KM3NeT 16

Sea Operations Rigid towers or flexible strings? Connection in air (no ROVs) or wet mateable connectors? Deployment from platform or boat? 09.11.2005 U. Katz: KM3NeT 17

Photo Detection: Options Large photocathode area with arrays of small PMs packed into pressure housings - low cost! Determination of photon direction, e.g. via multi-anodic PMs plus a matrix of Winston cones. But: phase space for developments from scratch is too tight. 09.11.2005 U. Katz: KM3NeT 18

Photo Detection: Requirements Glass pressure vessel 17 inch Requirements for ν telescopes: - High quantum efficiency - Large photocathode areas - Wide angular coverage - Good single-photon resolution - High dynamic range Example of a device discussed: Hamamatsu HY0010 HPD Excellent p.e. resolution 09.11.2005 U. Katz: KM3NeT 19

Associated Sciences Node Observatories KM3NET 1 Array Data Cable to shore M. Priede, Sept. 2005 Control Signals Associated Sciences node 2 Observatory Data 3 Test Data Fixed Cable ROV Moveable tether Junction Box Test Site Junction Box 09.11.2005 U. Katz: KM3NeT 20

KM3NeT: Political Environment ESFRI (European Strategy Forum on Research Infrastructures) - Charge: Assess future research infrastructures in Europe. - KM3NeT is on the List of Opportunities (first step). - Now: Evaluation of projects by expert groups; KM3NeT belongs to Astrophysics and Astroparticles ( presentation on Nov. 24, 2005). - Further steps: Road Map and List of Priorities. EU - Views KM3NeT as a long-term project; the Design Study is only the first step towards preparation, construction and exploitation. - The necessary political steps are to be initiated by the proponents in the Design Study phase. National support reinforced in several countries. 09.11.2005 U. Katz: KM3NeT 21

KM3NeT: Towards a Site Decision Final site decision involves scientific and political arguments (funding, host country support, ). Objective of Design Study: Provide scientific input and stimulate political discussion. Possible scenario: Similar to Pierre Auger Observatory (two candidate sites, decision based on commitment of host country). Relation of funding options to site choice will be explored in Design Study. 09.11.2005 U. Katz: KM3NeT 22

KM3NeT: Path to Completion Time scale given by "community lifetime" and the objective to take data concurrently with IceCube Time schedule (partly speculative & optimistic): 01.02.2006 Start of Design Study Mid-2007 Conceptual Design Report February 2009 Technical Design Report 2009-2010 Preparation Phase (possibly in FP7) 2010-2012 Construction 2011-20xx Data taking 09.11.2005 U. Katz: KM3NeT 23

Conclusions and Outlook Compelling scientific arguments for complementing IceCube with a km 3 -scale detector in the Northern Hemisphere. The Mediterranean-Sea neutrino telescope groups NESTOR, ANTARES and NEMO comprise the leading expertise in this field. They have united their efforts to prepare together the future, km 3 -scale deep-sea detector. An EU-funded Design Study (KM3NeT) will provide substantial resources for an intense 3-year R&D phase; start on February 1, 2006. Major objective: Technical Design Report by Feb. 2009. 09.11.2005 U. Katz: KM3NeT 24