Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads

Similar documents
Critical Gaps between Tokamak Physics and Nuclear Science. Clement P.C. Wong General Atomics

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices!

Steady State, Transient and Off-Normal Heat Loads in ARIES Power Plants

Plasma Wall Interactions in Tokamak

Issues for Neutron Calculations for ITER Fusion Reactor

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices

Status of the pre-series activities of the target elements for the W7-X divertor. - October

The New Sorgentina Fusion Source Project

Report A+M/PSI Data Centre NRC Kurchatov Institute

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

Mission Elements of the FNSP and FNSF

Helium effects on Tungsten surface morphology and Deuterium retention

Thermo-mechanical Analysis of Divertor test mock-up using Comsol Multiphysics

Technological and Engineering Challenges of Fusion

Thermographic measurements of power loads to plasma facing components at Wendelstein 7-X

Surface temperature measurement and heat load estimation for carbon targets with plasma contact and machine protection

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust

Magnetic Confinement Fusion-Status and Challenges

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling

Aiming at Fusion Power Tokamak

The Path to Fusion Energy creating a star on earth. S. Prager Princeton Plasma Physics Laboratory

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Experience with Moving from Dpa to Changes in Materials Properties

The role of PMI in MFE/IFE common research

Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H :

Fusion Nuclear Science - Pathway Assessment

Implementation of a long leg X-point target divertor in the ARC fusion pilot plant

Neutron Testing: What are the Options for MFE?

Spherical Torus Fusion Contributions and Game-Changing Issues

Toward the Realization of Fusion Energy

Plasma-beryllium interactions in ITER: research needs

PISCES W fuzz experiments: A summary of work up to now.

Nuclear Energy in the Future. The ITER Project. Brad Nelson. Chief Engineer, US ITER. Presentation for NE-50 Symposium on the Future of Nuclear Energy

Role and Challenges of Fusion Nuclear Science and Technology (FNST) toward DEMO

Experimental Facility to Study MHD effects at Very High Hartmann and Interaction parameters related to Indian Test Blanket Module for ITER

Diagnostics for Burning Plasma Physics Studies: A Status Report.

Prospects of Nuclear Fusion Energy Research in Lebanon and the Middle-East

ITER A/M/PMI Data Requirements and Management Strategy

PISCES Laser Transient Systems

Fusion Development Facility (FDF) Mission and Concept

AMS MEASUREMENTS OF DEUTERIUM CAPTURED IN TUNGSTEN LAYERS DEPOSITED BY MAGNETRON SPUTTERING

Basics of breeding blanket technology

The ITER machine, construction status and the plasma-wall interaction challenge

JET JET JET EFDA THE JOINT EUROPEAN TORUS A EUROPEAN SUCCESS STORY

Nuclear Fusion with Polarized Fuel

Applicability of Laser-Induced Desorption Quadruple Mass Spectrometry (LID-QMS) for the Determination of Local Deuterium Retention

Chemical Erosion and Critical Issues for ITER

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

Design concept of near term DEMO reactor with high temperature blanket

V.A. Gribkov, A.S. Demin, E.V. Demina, E.E. Kazilin, S.V. Latyshev, S.A. Maslyaev, E.V. Morozov, M. Paduch, V.N. Pimenov, E.

ADVANCES IN PREDICTIVE THERMO-MECHANICAL MODELLING FOR THE JET DIVERTOR EXPERIMENTAL INTERPRETATION, IMPROVED PROTECTION, AND RELIABLE OPERATION

Nuclear Fusion and ITER

Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source

Multiscale modelling of D trapping in W

Radiative type-iii ELMy H-mode in all-tungsten ASDEX Upgrade

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten

Carbon Deposition and Deuterium Inventory in ASDEX Upgrade

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

The Future of Boundary Plasma and Material Science

EU PPCS Models C & D Conceptual Design

and expectations for the future

Comparison of deuterium retention for ion-irradiated and neutronirradiated

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

High temperature superconductors for fusion magnets - influence of neutron irradiation

Possibilities for Long Pulse Ignited Tokamak Experiments Using Resistive Magnets

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Plasma shielding during ITER disruptions

Plasma & Fusion on Earth: merging age-old natural phenomena into your present and future

E. Delchambre a, MH. Aumeunier a, T. Loarer a, D. Hernandez b, Y. Corre a, E. Gauthier a

Thomas Schwarz-Selinger Max-Planck-Institut für Plasmaphysik, Garching, Germany

Aspects of Advanced Fuel FRC Fusion Reactors

Provisional scenario of radioactive waste management for DEMO

Development of Long Pulse Neutral Beam Injector on JT-60U for JT-60SA

Estimation of the contribution of gaps to tritium retention in the divertor of ITER

for the French fusion programme

Development of fusion technology in Russia

Overview of IFMIF-DONES and testing of materials for DEMO

Depth profiles of helium and hydrogen in tungsten nano-tendril surface morphology using Elastic Recoil Detection

Neutral beam plasma heating

ITER. Power and Particle Exhaust in ITER ITER

Neutronic Activation Analysis for ITER Fusion Reactor

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

The Spherical Tokamak as a Compact Fusion Reactor Concept

Chapter IX: Nuclear fusion

1 FT/P2-21. Definition Of Workable Acceptance Criteria For The ITER Divertor Plasma Facing Components Through Systematic Experimental Analysis

Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN,

The GDT-based fusion neutron source as a driver of subcritical nuclear fuel systems

Temperature measurement and real-time validation

Progress Report on Chamber Dynamics and Clearing

A Project for High Fluence 14 MeV Neutron Source

Infrared Images Data Merging for Plasma Facing Component Inspection

Concept of Multi-function Fusion Reactor

Atomic physics in fusion development

DEMO diagnostics and impact on controllability

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

Compact, spheromak-based pilot plants for the demonstration of net-gain fusion power

Study of Dust Morphology, Composition and Surface Growth under ITER-relevant Energy Load in Plasma Gun QSPA-facility

Transcription:

Mitglied der Helmholtz-Gemeinschaft Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads J. Linke, J. Du, N. Lemahieu, Th. Loewenhoff, G. Pintsuk, B. Spilker, T. Weber, M. Wirtz Forschungszentrum Jülich, Institut für Energie- und Klimaforschung, 52425 Jülich HELSMAC Symposium - Downing College, Cambridge 7th-8th April 2016

Mysterious fusion

Mysterious fusion deuterium helium (3.5 MeV) tritium neutron (14.1 MeV)

Mitglied der Helmholtz-Gemeinschaft Outline: A Thermal loads on plasma facing components B Simulation of intense thermal loads C Hydrogen and helium effects D Material degradation by energetic neutrons HELSMAC Symposium - Downing College, Cambridge 7th-8th April 2016

A Thermal loads on plasma facing components

Energy conversion in a thermo-nuclear reactor

Steps towards the reactor JET ITER DEMO n-dose: 10-9 dpa 1 dpa 100 dpa inertially cooled wall

ITER and the plasma facing components first wall divertor

The ITER blanket design Be

The new ITER divertor cassette W 54 cassettes (six per vacuum vessel sector) weight approx. 9 tons / cassette W CFC # W CFC # # CFC replaced by W L max 100 mm source: M. Merola, ISFNT-9, Dalian, China, 2009

B Simulation of intense thermal loads on plasma-facing components

power density [MW/m 2 ] Expected heat loads on the ITER divertor 10 5 10 4 disruptions irreversible material degradation 10 3 VDEs 10 2 10 1 ELMs: 1 GW/m 2, 0.5 ms, n >> 10 6 divertor: 5-20 MW/m 2, 450 s, n ~ 10 4 off-normal normal 10 0 10-4 10-3 10-2 10-1 10 0 10 1 10 2 10 3 duration of event [s] R. A. Pitts, et al., Journal of Nuclear Materials 438 (2013) S48-S56 J. Linke, Transactions of fusion science and technology 49 (2006) 455-464 A. Loarte et al., Plasma Physics and Controlled Fusion 45 (2003) 1549-1569

power density [MW/m 2 ] Expected heat loads on the ITER divertor 10 5 10 4 10 3 irreversible material degradation 10 2 10 1 10 0 ELMs: 1 GW/m 2, 0.5 ms, n >> 10 6 divertor: 5-20 MW/m 2, 450 s, n ~ 10 4 normal 10-4 10-3 10-2 10-1 10 0 10 1 10 2 10 3 duration of event [s] R. A. Pitts, et al., Journal of Nuclear Materials 438 (2013) S48-S56 J. Linke, Transactions of fusion science and technology 49 (2006) 455-464 A. Loarte et al., Plasma Physics and Controlled Fusion 45 (2003) 1549-1569

surface temp. Wall loading in a toroidally confined plasma (Tokamak) mitigated transient thermal loads < 1GWm -2, Δt 500 µs pulsed stationary thermal loads < 10 MWm -2, Δt = minutes - hours 0 time thermal shock cracking/melting of PFM-surface thermal fatigue joints between PFM and heat sink

Loads on plasma facing components very high thermal loads plasma exposure neutrons

Loads on plasma facing components Steady state heat loads: up to 20 MWm -2 in ITER (lower loads in DEMO) recrystallization failure of joints very high thermal loads Transient thermal loads: up to 60 MJm -2 (disrupt., ELMs, VDEs) crackings melting dust formation plasma exposure neutrons Plasma loads: sputtering hydrogen helium Neutrons: up to 14 MeV defects transmutation

High heat flux test facilities Electron beam facility JUDITH 1 Electron beam facility JUDITH 2 max. power 60 kw acceleration voltage < 150 kv EB diameter ~1 mm FWHM loaded area 10 x 10 cm 2 max. power 200 kw acceleration voltage 30 60 kv EB diameter 5 mm FWHM loaded area 40 x 40 cm 2

High heat flux test facilities Linear Plasma Device PSI-2 Electron beam facility JUDITH 2 plasma source target positions target exchange & analysis chamber linear manipulator plasma diameter 60 mm particle flux 10 23 m -2 s -1 incident ion energy (bias) 10 300 ev Nd:YAG laser 1064 nm laser energy 32 J max. power 200 kw acceleration voltage 30 60 kv EB diameter 5 mm FWHM loaded area 40 x 40 cm 2

High heat flux test facilities Linear Plasma Device PSI-2 Quasi Stationary Plasma Accelerator (QSPA) plasma source target positions target exchange & analysis chamber linear manipulator plasma diameter 60 mm particle flux 1023 m-2s-1 incident ion energy (bias) 10 300 ev Nd:YAG laser 1064 nm laser energy 32 J heat load 0.5 2 MJ/m 2 pulse duration 0.1 0.6 ms plasma diameter 5 cm magnetic field 0 T ion impact energy 0.1 kev electron temp. < 10 ev plasma density 10 22 m -3

Simulation of ELMs in QSPA 20 mm

Bridging of gaps due to melt motion 100 pulses @ E = 1.6 MJ/m 2, = 500 µs H HF = 71 MW/m 2 s 0.5 Source: A. Zhitlukhin et al., SRC RF TRINITI, Troitsk

Bridge formation between tungsten tiles W4,L3, 10 exposures W4,L3, 20 exposures W4,L3, 50 exposures w = 1.6 MJ/m 2 1mm 1mm 1mm H HF = 71 MW/m 2 s 0.5 W3,R3, 20 exposures W3,R3, 50 exposures W3,R3, 100 exposures w = 1.0 MJ/m 2 1mm Plasma stream direction 1mm 1mm H HF = 44.7 MW/m 2 s 0.5 t = 500 µs Source: A. Zhitlukhin et al., SRC RF TRINITI, Troitsk

Simulation of ELMs in QSPA H HF = 44.7 MW/m 2 s 0.5 W 3 plasma stream tungsten target E = 1.0 MJm -2 t = 500 µs 100 pulses T 0 = 500 C

W3 melt motion melt motion starts at vertical cracks plasma stream

cracking threshold Thermal shock tests on tungsten Experimental setting Sample size 12 12 5 mm³ Loaded area 4 4 mm² Base temperature: RT up to 1000 C Power densities: 0.19 to 1.51 GW/m² transversal recrystallized longitudinal damage threshold 100 pulses with a duration of 1 ms; absorption coefficient 0.55

Crack Formation loaded surface cross section Plansee pure tungsten according to ITER specifications ( IGP ) L abs = 0.38 GW/m 2 (F HF = 12 MW/m 2 s 1/2 ), T base = RT transversal longitudinal recrystallized

ELM simulation using e-beams with high repetition rates in JUDITH 2 power density [GW/m²] 0.82 0.68 0.55 0.41 damage threshold 0.27 0.14 Th. Loewenhoff et al., Physica Scripta T145 (2011) 014057

ELM simulation using e-beams with high repetition rates in JUDITH 2 power density [GW/m²] 0.82 0.68 0.55 0.41 damage threshold 0.27 0.14 Th. Loewenhoff et al., Physica Scripta T145 (2011) 014057

ELM simulation using e-beams with high repetition rates in JUDITH 2 recrystallization melting 50 µm recrystallization around crack edges original grain structure Th. Loewenhoff, et al., Fusion Engineering and Design 87 (2012) 1201-1205 100 µm

W CFC Threshold values for ELM loads damage threshold cracking of pitch fibres PSI 2010 PAN eros. >100 shots PAN erosion > 50 shots PAN erosion > 10 shots 0 0.5 1.0 1.5 energy density* E / MJm -2 heat flux factor P Δt / MWm -2 s 1/2 0 20 40 60 melting of tile edges melting of tile surface droplets bridging of tiles crack formation source: PSI 2006 / 2010 * Δt = 500 µs T 0 = 500 C CFC: NB31 W: forged rod material

Thermal shock testing of beryllium 5 ms Benjamin Spilker PFMC-15 Aix-en-Provence electron beam tests with 100 cycles

Repeated thermal shock testing of Be n = 100 n = 1000 n = 10000 2 mm 2 mm 2 mm power density P =1.0 MJ/m 2 pulse duration t = 5 ms P ( t) = 14 MW/m 2 s 1/2 base temperature T 0 = 250 C

C Hydrogen and helium effects

Thermal shock and He-loading Simultaneous 0.19 GWm -2 Simultaneous 0.38 GWm -2 1 µm 1 µm Only He-Plasma Simultaneous 0.76 GWm -2 1 µm 1 µm

Thermal shock and He-loading Simultaneous 0.19 GWm -2 Simultaneous 0.38 GWm -2 600 nm 600 nm Only He-Plasma Simultaneous 0.76 GWm -2 600 nm 200 nm

D Materials degradation by energetic neutrons

Neutron-induced material degradation High Flux Reactor (HFR) Petten, The Netherlands Neutron induced effects: activation of plasma facing and structural materials e.g. Co, Ag transmutation due to 14 MeV neutrons W Re Os Be He, T degradation of thermal and mechanical properties thermal conductivity, hardening, embrittlement

thermal conductivity (W m -1 K -1 ) thermal conductivity / W/m thermal th. conductivity conductivity / W/mK (W m -1 K -1 ) n-irradiation effect on thermal conductivity 350 300 250 200 un-irradiated 0.2 dpa 1 dpa 150 100 CFC (NB31) 50 0 0 200 400 600 800 1000 temperature temperature / C ( C) 350 300 250 200 tungsten un-irradiated 0.1 dpa 0.6 dpa 150 Laser-flash-apparatus (schematic) 100 50 0 0 250 500 750 1000 1250 1500 temperature / C temperature ( C)

t e m p e r a t u r e / C HHF performance of neutron irradiated divertor modules Dunlop Concept 1 (12 mm) / CuCrZr 3 0 0 0 2 5 0 0 IR - 551_11~1.IMG 2100,0 C 1500 1000 T irr = 350 C / 0.3 dpa 2000 b e s t r a h l t u n b e s t r a h l t 2 0 0 0 1 5 0 0 25:09:97 09:59:34 500 400,0 1 0 0 0 IR - DZ150SS.IMD 2100,0 C 2000 5 0 0 0 0 1 0 2 0 3 0 t h e r m a l l o a d / M W m - 2 1500 1000 500 400,0 Zykliertests an CFC-Modulen vom Type N07.08.96

Future fusion materials research in HML very high thermal loads hot cell JUDITH 1 1 plasma exposure neutrons JULE-PSI hot cell 1