Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration

Similar documents
STUDY OF THE RESONANCES AT 417, 611, AND

Latest results from LUNA

at Gran Sasso Laboratories, Italy

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016

Nuclear Astrophysics II

Hydrogen & Helium Burning in Stars

Nuclear Astrophysics with DRAGON at ISAC:

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Cross section measurements of fusion reactions at astrophysically relevant energies: the LUNA experiment

arxiv: v1 [nucl-ex] 18 Nov 2016

High-precision (p,t) reactions to determine reaction rates of explosive stellar processes Matić, Andrija

Stars and their properties: (Chapters 11 and 12)

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances

Evolution from the Main-Sequence

(2) low-mass stars: ideal-gas law, Kramer s opacity law, i.e. T THE STRUCTURE OF MAIN-SEQUENCE STARS (ZG: 16.2; CO 10.6, 13.

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis

Nuclear Astrophysics

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

The Deaths of Stars 1

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Sunday, May 1, AGB Stars and Massive Star Evolution

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Evolution and nucleosynthesis prior to the AGB phase

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018

HR Diagram, Star Clusters, and Stellar Evolution

Perspectives on Nuclear Astrophysics

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Supernova events and neutron stars

Einführung in die Astronomie II

Stellar Structure and Evolution

PoS(ENAS 6)050. Resonances in 19 Ne with relevance to the astrophysically important 18 F(p,α) 15 O reaction

Principles of Astrophysics and Cosmology

PoS(FRAPWS2016)005. LUNA: hydrogen, helium and carbon burning under Gran Sasso. Carlo Broggini. INFN-Sezione di Padova

Advanced Stellar Astrophysics

Evolution of Intermediate-Mass Stars

Selected Topics in Nuclear Astrophysics

Protostars evolve into main-sequence stars

A Star Becomes a Star

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

20. Stellar Death. Interior of Old Low-Mass AGB Stars

Nuclear astrophysics studies with charged particles in hot plasma environments

Stars: Their Life and Afterlife

Lifespan on the main sequence. Lecture 9: Post-main sequence evolution of stars. Evolution on the main sequence. Evolution after the main sequence

AGB stars as laboratories for nuclear physics

MRC-1: Low Energy Nuclear Reactions and Stellar Evolution

Explosive Events in the Universe and H-Burning

Stellar Evolution of low and intermediate mass stars

The Later Evolution of Low Mass Stars (< 8 solar masses)

Pre Main-Sequence Evolution

Lecture 16: Evolution of Low-Mass Stars Readings: 21-1, 21-2, 22-1, 22-3 and 22-4

Alan Calder Department of Physics and Astronomy, Stony Brook University, New York, USA

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution

Classification of nova spectra

Reaction rates for nucleosynthesys of light and intermediate-mass isotopes

Nuclear astrophysics at Gran Sasso Laboratory: LUNA experiment

Recent results and status of the

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 16: The life of a low-mass star. Astronomy 111 Monday October 23, 2017

Nucleosynthesis in classical novae

Nuclear Waiting Points and Double Peaked X-Ray Bursts

The life of a low-mass star. Astronomy 111

Unstable Mass Transfer

The Evolution of Low Mass Stars

Chapter 12 Stellar Evolution

Lecture 9. Hydrogen Burning Nucleosynthesis, Classical Novae, and X-Ray Bursts. red = slow

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models

Chapter 15. Supernovae Classification of Supernovae

dp dr = GM c = κl 4πcr 2

Rob Izzard. February 21, University of Utrecht. Binary Star Nucleosynthesis. Nucleosynthesis. Single Star Evolution. Binary Star.

Excavation or Accretion from Classical Novae (or related objects) Sumner Starrfield

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Stars with Mⵙ go through two Red Giant Stages

Lecture 13: Binary evolution

Evolution and Final Fates of Accreting White Dwarfs. Ken Nomoto (Kavli IPMU / U. Tokyo)

Primer: Nuclear reactions in Stellar Burning

Stellar structure and evolution

Underground nuclear astrophysics and the Sun

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects. Catherine M. Deibel Louisiana State University

Progenitors of electron-capture supernovae

Nuclear Astrophysics Underground Status & Future

PHYS Further Stellar Evolution Prof. Maurizio Salaris

Life and Death of a Star. Chapters 20 and 21

Introduction to nucleosynthesis in asymptotic giant branch stars

Nuclear Astrophysics at the ISAC Radioactive Beams Facility: Prelude for RIA

new LUNA rate for 22 Ne(p,γ) 23 Na

Chapter 12 Stellar Evolution

The neon-sodium cycle: Study of the 22 Ne(p, γ) 23 Na reaction at astrophysical energies

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

The Later Evolution of Low Mass Stars (< 8 solar masses)

LECTURE 15 Jerome Fang -

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

Life and Evolution of a Massive Star. M ~ 25 M Sun

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Classical vs. primordial nova explosions

High Resolution Spectroscopy in Nuclear Astrophysics. Joachim Görres University of Notre Dame & JINA

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Transcription:

22 Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS MARIE-LUISE MENZEL for the LUNA collaboration

1. INTRODUCTION 1.1 NEON-SODIUM-CYCLE 1.2 THE 22 Ne(p,γ) 23 Na REACTION

INTRODUCTION NEON-SODIUM CYCLE > hydrogen burning process > temperature range: 0.1-0.4 GK 19 20 Mg 21 Mg 22 23 Mg Mg Mg 24 Mg 25 Mg 26 Mg 20 Na 21 Na 22 Na 23 Na Thermonuclear Reaction Rate TNRR (cm 3 /mol/s) 10 2 10 0 10 2 10 4 10 6 10 8 (C. Illiadis et al., Nucl Phys A 841, 251 (2010) 21 Ne(p,γ) 22 Na 23 Na(p,α) 20 Ne 23 Na(p,γ) 24 Mg 22 Ne(p,γ) 23 Na 20 Ne(p,γ) 21 Na 0.1 0.2 0.3 0.4 0.5 Temperature T (10 9 K) Iliadis 20 Ne(p,g) Iliadis 21 Ne(p,g) Iliadis 22 Ne(p,g) Iliadis 23 Na(p,g) Iliadis 23 Na(p,a) 17 18 Ne 19 Ne 20 21 Ne Ne Ne 22 Ne 17 F 18 F 19 F from CNO-cycle (p,α) (p,ɣ) (p,α) (n,p)

INTRODUCTION THE 22 Ne(p,γ) 23 Na REACTION LUNA energy range E CM E Lab E x (kev) Jπ 377±3 353? 319±3 309±3 278±3 245±1 206? 178±3 152±3 394±3 369? 333±3 323±3 291±3 256±1 215? 186±3 159±3 9171±3 9147? 9113±3 9103±3 9072±3 9038.7±1.0 9000? 8972±2 8946±3 3/2, 5/2+ 5/2, 7/2- Thermonuclear Reaction Rate log(n A <σν>) [cm 3 mole 1 sec 1 ] 10 1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 E lab = 71 kev E lab =104 kev E lab =159 kev E lab =186 kev E lab =215 kev E lab =436 kev E lab =479 kev (S.E. Hale et al., Phys Rev C 65 (2001)) 0.1 0.2 0.3 0.4 Temperature log(t) [10 9 K] 100? 104? 8894? 1/2+ 68? 35.4±0.5 28±3 71? 37.0±0.5 29±3 8862? 8829.5±0.5 8822±3 1/2+ 1/2+ 8794.11 22 Ne+p 3±3 3±3 8797±3 2076.011±0.022 7/2+ 439.990±0.009 5/2+ 0 23 Na 3/2+

2. 22 Ne(p,γ) 23 Na MEASUREMENT AT LUNA II 2.1 LUNA II SETUP 2.2 SPECTRAL ANALYSIS 2.3 RESULTS

22 Ne(p,γ) 23 Na MEASUREMENT LUNA II SETUP > windowless gas target chamber > proton beam energy: 100-400 kev > HPGe detector (high resolution) beam target chamber > natural neon gas target 9.3% 22 Ne, 0.3% 21 Ne, 90.5% 20 Ne > lead and polyethylene-shielding indentation for HPGe detector back flange for calorimeter

22 Ne(p,γ) 23 Na MEASUREMENT SPECTRAL ANALYSIS 60 50 E γ (kev) 410 420 430 440 450 460 470 low energetic BG signal high energetic BG E x (kev) 8972±2 8945±2 3/2, 5/2 5/2, 7/2- Jπ counts per channel 40 30 20 10 2076.011±0.022 7/2+ 440 kev 1636 kev 439.990±0.009 5/2+ counts per channel 0 410 420 430 440 450 460 470 channel number E γ (kev) 1600 1610 1620 1630 1640 1650 1660 60 low energetic BG signal high energetic BG 50 40 30 20 0 23 Na 3/2+ 10 0 1610 1620 1630 1640 1650 1660 1670 channel number lab Eres = 186 kev

22 Ne(p,γ) 23 Na MEASUREMENT RESULTS: RESONANCE STRENGTHS - PRELIMINARY -0.87. (J. Görres et al., Nucl Phys A 408, 372 (1983) (S.E. Hale et al., Phys Rev C 65 (2001) (C. Illiadis et al., Nucl Phys A 841, 251 (2010)

22 Ne(p,γ) 23 Na MEASUREMENT RESULTS: THERMONUCLEAR REACTION RATE 1 Ratio log(tnrr new /TNRR NACRE ) 0.1 0.01 0.001 Hale with LUNA Iliadis with LUNA 0.1 1 Temperature log (T) [10 9 K]

3. EXPLOSIVE HYDROGEN BURNING IN NOVAE 3.1 ASTROPHYSICAL INTRODUCTION 3.2 NUCLEAR NETWORK CALCULATION FOR NOVAE 3.3 NEON-SODIUM-CYCLE

EXPLOSIVE HYDROGEN BURNING IN NOVAE ASTROPHYSICAL INTRODUCTION > compression of hydrogen matter on white dwarf surface > ignition of hydrogen in degenerated matter > thermonuclear runaway and ejection of outer envelope > 0.1 GK < T < 0.5 GK (120 kev < Ecm < 350 kev) Roche lobe of companion star Roche lobe of white dwarf radiation pressure gravitational pressure matter transfer Lagrange point white dwarf with accretion disk companion star

EXPLOSIVE HYDROGEN BURNING IN NOVAE NUCLEAR NETWORK CALCULATION > public domain libnucnet code (B. S. Meyer, Clemson University) (sourceforge.net/u/mbrandle/nlog/) > Requirements for network calculation: - initial mass composition for 50:50 white dwarf and giant star - temperature-density-profile - thermo-nuclear reaction rates (JINA database) (C. Ritossa et al., ApJ 460, 489 (1996)) (K. Lodders et al., ApJ 591, 1220 (2003) Temperature T (10 9 K) 10 0 10 1 T max = 0.43 GK T max = 0.35 GK T max = 0.30 GK T max = 0.25 GK T max = 0.20 GK 10 5 80 90 100 110 120 130 140 150 160 Density ρ (g/cm 3 ) 10 4 10 3 10 2 10 1 (Starrfield et al., APJSS 127, 458 (2000)) 10 0 80 90 100 110 120 130 140 150 160 Time t (sec)

EXPLOSIVE HYDROGEN BURNING IN NOVAE NEON-SODIUM CYCLE c.) Temperature T (GK) a.) b.) d.) e.) f.) Time t (sec) a.) b.) c.)

EXPLOSIVE HYDROGEN BURNING IN NOVAE NEON-SODIUM CYCLE c.) Temperature T (GK) a.) b.) d.) e.) f.) Time t (sec) d.) c.) e.)

EXPLOSIVE HYDROGEN BURNING IN NOVAE NEON-SODIUM-CYCLE IN CO-TYPE NOVAE > strong influence of the 22 Ne(p,γ) 23 Na TNRR on abundance C. Iliadis et al. AJSS, 142 (2002) TNRR x 100 TNRR x 0.1 (credits to R. Depalo)

4. HYDROSTATIC HYDROGEN BURNING 4.1 RED GIANT BRANCH STARS 4.2. ASYMPTOTIC GIANT BRANCH STARS

HYDROSTATIC HYDROGEN BURNING RGB STARS > inactive He core, H-burning shell (0.015 GK < T < 0.06 GK) E. Carretta et al. A&A, 505 (2009) > CNO and NaNa cycle cause anti-correlation of Na and O abundance of RGB > transport of products to the envelope e.g. meridional circulation in radiative zone (dependent of TNRR)

HYDROSTATIC HYDROGEN BURNING AGB STARS (0.8 < Msolar < 8) > CO core, inactive He inter-shell and thin H-burning shell > hot bottom burning (0.06 GK < T < 0.1 GK) at layer of H-burning shell and convective envelope > thermal pulsing every 10.000-100.000 years: He-shell flash (T > 0.2 GK), H-shell extinction > convective envelope contains H- and He-burning products

5. SUMMARY

SUMMARY 22 Ne(p,γ) 23 Na MEASUREMENT AT LUNA II > analysis of 5 resonances > determination of new resonance strengths for Eres = 186 kev > determination of large TNRR uncertainty in 0.03 GK < T < 0.3 GK ASTROPHYSICAL IMPACT E CM E Lab E x (kev) Jπ > explosive hydrogen burning in novae > hydrostatic hydrogen burning in AGB and RGB stars LUNA energy range 377±3 353? 319±3 309±3 278±3 245±1 206? 178±3 152±3 394±3 369? 333±3 323±3 291±3 256±1 215? 186±3 159±3 9171±3 9147? 9113±3 9103±3 9072±3 9038.7±1.0 9000? 8972±2 8946±3 3/2, 5/2+ 5/2, 7/2-100? 104? 8894? 1/2+ 68? 35.4±0.5 28±3 71? 37.0±0.5 29±3 8862? 8829.5±0.5 8822±3 1/2+ 1/2+ 8794.11 22 Ne+p 3±3 3±3 8797±3 2076.011±0.022 7/2+ 439.990±0.009 5/2+ 0 23 Na 3/2+

MARIE-LUISE MENZEL THANKS FOR YOUR ATTENTION! credits to D. Bemmerer (HZDR) R. Depalo (Università di Padova) F. Cavanna (Università di Genova) Prof. G. Matinez-Pinedo (Universität Darmstadt)