Can the shell model be truly ab initio? and other questions

Similar documents
Ab Initio Electromagnetic Transitions with the IMSRG

Ab Initio Theory for All Medium-Mass Nuclei

Ab initio effective interactions and operators from IM-SRG

The shell model as an ab initio tool: effective interactions and operators from IM-SRG

Neutrinoless Double Beta Decay with the Valence Space IMSRG

Coupled-cluster computations of weak decays in nuclei

Hybrid Ab Initio Methods. Robert Roth

Frontiers in Ab Initio Nuclear Structure Theory. Robert Roth

Part III: The Nuclear Many-Body Problem

Three-nucleon forces and shell structure of neutron-rich Ca isotopes

Advances in Ab Initio Nuclear Structure Theory. Robert Roth

Weak decays from coupled cluster computations

Ab Initio Nuclear Structure Theory with Chiral NN+3N Interactions. Robert Roth

Ab Initio Nuclear Structure Theory

(Todays) Progress in coupled cluster compuations of atomic nuclei

Coupled-cluster theory for nuclei

Similarity Renormalization Groups (SRG) for nuclear forces Nuclear structure and nuclear astrophysics

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

Coupled-cluster theory for medium-mass nuclei

Shell evolution and pairing in calcium isotopes with two- and three-body forces

New Horizons in Ab Initio Nuclear Structure Theory. Robert Roth

Current status and challenges of ab-initio computations of nuclei

Effective Nuclear Hamiltonians for ab initio Nuclear Structure Calculations

Microscopically Based Energy Functionals. S.K. Bogner (NSCL/MSU)

Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter

Coupled-cluster computations of neutron-rich nuclei

Applications of Renormalization Group Methods in Nuclear Physics 2

Coupled-Cluster Theory. Nuclear Structure

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

The Nuclear Many-Body Problem. Lecture 2

New Frontiers in Nuclear Structure Theory

Ab Initio Theory Outside the Box. Robert Roth

In-medium Similarity Renormalization Group for nuclear many-body systems

Renormalization group methods in nuclear few- and many-body problems

Towards chiral three-nucleon forces in heavy nuclei

Effective Field Theory for light nuclear systems

SciDAC project NUCLE lead PI: Joe Carlson (LA PetaApps award lead PI: Jerry Draayer (L. lead PI: James P Vary (I NERSC

Renormalization group methods in nuclear few- and many-body problems

Status report and plans from OSU and MSU

Non-empirical energy functionals from low-momentum interactions

Three-cluster dynamics within an ab initio framework

Shell evolution in neutron rich nuclei

Quantum Theory of Many-Particle Systems, Phys. 540

ab-initio alpha-alpha scattering

The No-Core Shell Model

Time dependent coupled-cluster method

Ultracold atoms and neutron-rich matter in nuclei and astrophysics

Multi-Reference In-medium Similarity Renormalization Group for the Nuclear Matrix Elements of Neutrinoless Double Beta Decay

Renormalization group methods in nuclear few- and many-body problems

Three-Nucleon Forces and the Structure of Exotic Nuclei Jason D. Holt

The Nuclear Many Body Problem Lecture 3

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Three-nucleon forces and neutron-rich nuclei

Beyond mean-field study on collective vibrations and beta-decay

Electromagnetic reactions from few to many-body systems Giuseppina Orlandini

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Nuclear few- and many-body systems in a discrete variable representation basis

Renormalization group methods in nuclear few- and many-body problems

FROM QCD TO NUCLEI: ASPECTS OF NUCLEAR THEORY IN FRANCE

PetaApps award lead PI: Jerry Draayer (L. lead PI: James P Vary (I NERSC

From EFTs to Nuclei. Thomas Papenbrock. and. CANHP 2015 Research partly funded by the US Department of Energy

Comparison of Nuclear Configuration Interaction Calculations and Coupled Cluster Calculations

Nuclear Observables at Low Resolution

Observables predicted by HF theory

Towards New Horizons in Ab Initio Nuclear Structure Theory

The Nuclear Many Body Problem Lecture 4. Coupled Cluster theory and its application to medium sized nuclei.

Laser spectroscopy studies of neutron-rich nuclei

The oxygen anomaly F O

Ab Initio Calculations of Charge Symmetry Breaking in Light Hypernuclei

Perspectives in Low-Energy Nuclear Physics. Robert Roth

Double-Beta Decay Matrix Elements in the Next Five Years

Towards first-principle description of electromagnetic reactions in medium-mass nuclei

Nuclear structure from chiral-perturbation-theory two- plus three-nucleon interactions

RG & EFT for nuclear forces

Continuum States in Drip-line Oxygen isotopes

Similarity renormalization group for nucleon-nucleon interactions

Effective Field Theory for Cold Atoms I

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Recent developments in the nuclear shell model and their interest for astrophysics

Nuclear Forces / DFT for Nuclei III

Similarity RG and Many-Body Operators

Merging IM-SRG and NCSM

The No Core Shell Model: Its Formulation, Application and Extensions. Bruce R. Barrett University of Arizona,

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Ab Initio Nuclear Structure Theory

Introduction to NUSHELLX and transitions

Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States

The nuclear shell-model: from single-particle motion to collective effects

Single Particle and Collective Modes in Nuclei. Lecture Series R. F. Casten WNSL, Yale Sept., 2008

Evolution of shell structure in neutron-rich calcium isotopes

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Pb, 120 Sn and 48 Ca from High-Resolution Proton Scattering MSU 2016

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions

Equation of state constraints from modern nuclear interactions and observation

Quantum Monte Carlo calculations of medium mass nuclei

A simple effective interaction for 9 He, and Gamow-SRG

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

The structure of neutron deficient Sn isotopes

Transcription:

Canada s national laboratory for particle and nuclear physics and accelerator-based science Can the shell model be truly ab initio? and other questions Ragnar Stroberg TRIUMF The tower of effective field theories and the emergence of nuclear phenemena CEA Saclay January 19, 2017 Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 1 / 28

Irreducible complexity? Strong vs weak emergence Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 2 / 28

Reductionism The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. Paul Dirac, 1929 i/ ψ = mψ V = e2 r +... Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 3 / 28

Can the shell model be ab initio? Outline 1. What is the shell model? 2. Is the shell model ab initio? 3. Can the shell model be derived from an underlying theory? 4. Can the shell model be formulated as an effective theory? 5. One magical chiral (-inspired) interaction, and hope for mankind Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 4 / 28

No core shell model Explicitly use harmonic oscillator basis HO forms complete basis Diagonalize with all nucleons active Extrapolate to infinite model space (variational principle) V(r) r Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 5 / 28

No core shell model NCSM isn t really a model. It is a quasi-exact method for finding eigenstates of a given Hamiltonian. I will be discussing the Yes-core shell model. V(r) Explicitly use harmonic oscillator basis HO forms complete basis Diagonalize with all nucleons active Extrapolate to infinite model space (variational principle) r Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 5 / 28

Analogy with atomic theory The nuclear shell model Ionization Energy (ev) 30 25 20 15 10 5 0 He Ne Ar Kr Xe HgRn 0 20 40 60 80 100 Atomic Number Z V(r) r Exp. Binding Energy - Liquid Drop Energy (MeV) 15 10 5 0-5 -10 0 20 40 60 80 100 120 140 160 Neutron number N V(r) r Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 6 / 28

The nuclear shell model V(r) Valence Inert core r

The nuclear shell model V(r) Valence Inert core r

The nuclear shell model Large gap suppresses core excitations Structure due to valence particles Core provides static mean field V(r) Valence Inert core Valence particles interact via V eff 19-body problem 3-body problem But what is V eff? p 1 p 1 r V eff p 2 p 2 Pauli blocked Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 7 / 28

The nuclear shell model USD interaction: global fit to data yields spectroscopy with rms deviation 126 kev for sd shell nuclei. V(r) r Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 8 / 28

The nuclear shell model Rotational band in 20 Ne V(r) r Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 8 / 28

The nuclear shell model How does collectivity emerge in the shell model? 1 1... 1 1 1... 1 H N N =...... 1 1... 1 mple example: a maximally coherent state Eigenvalues: { N, 0, 0,..., 0} Lowest eigenvector: 1 N (1, 1,..., 1) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 9 / 28

Is the shell model ab initio? The answer ab initio: Exact solution of exact problem 1 Degrees of freedom must be fully specified (e.g. free nucleons) 2 Hamiltonian is fundamental, i.e. not tailored to patch over deficiencies of the method 3 Solution method is exact (within estimated error) Allen and Karo, Rev. Mod. Phys. (1960) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 10 / 28

The answer Is the shell model ab initio? ab initio: Exact solution of exact problem 1 Degrees of freedom must be fully specified (e.g. free nucleons) no core shell model: Solution is exact V eff can be fundamental 2 Hamiltonian is fundamental, i.e. not tailored to patch over deficiencies of the method 3 Solution method is exact (within estimated error) Allen and Karo, Rev. Mod. Phys. (1960) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 10 / 28

The answer Is the shell model ab initio? ab initio: Exact solution of exact problem 1 Degrees of freedom must be fully specified (e.g. free nucleons) 2 Hamiltonian is fundamental, i.e. not tailored to patch over deficiencies of the method 3 Solution method is exact (within estimated error) no core shell model: Solution is exact V eff can be fundamental shell model: If V eff comes from fundamental theory, then solution is not exact If V eff is (empirically) adjusted to account for missing configurations, then it s not fundamental If V eff is derived from fundamental theory and accounts for missing configurations and operators are treated consistently Allen and Karo, Rev. Mod. Phys. (1960) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 10 / 28

Making the shell model ab initio How? Postulate: there exists some basis (d.o.f.) with identical quantum numbers, in which solution in the valence space reproduces the full solution V( r ) A fundamental Hamiltonian will induce excitations out of the valence space Valence Inert core r Change of basis corresponds to a unitary transformation H = U HU particle Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? quasi-particle Jan 20, 2017 11 / 28

Making the shell model ab initio The methods on the market Okubo-Lee-Suzuki Solve the problem exactly Obtain a valence space interaction which reproduces exact solution Valence cluster expansion? Many-body perturbation theory Treat excitations out of valence space perturbatively Q-box, resum select diagrams Does the series converge? In-medium SRG Series of unitary transformations Renormalization group flow to desired form Induced many-body forces? Coupled cluster may join in soon. Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 12 / 28

Okubo-Lee-Suzuki U A ˆP Ũ A Not unitary (excluded-space information is lost) Small-space interaction guaranteed to reproduce eigenvalues of large space But we already know those! Calculate other nuclei w/ valence cluster expansion Hope higher-body terms are negligible, justification is a posteriori Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 13 / 28

Okubo-Lee-Suzuki U A ˆP Ũ A Not unitary (excluded-space information is lost) Small-space interaction guaranteed to reproduce eigenvalues of large space But we already know those! Calculate other nuclei w/ valence cluster expansion Hope higher-body terms are negligible, justification is a posteriori core core core Core energy single-particle energy V NN...... Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 13 / 28

In-medium SRG U 1 U 2... U Unitary (in principle): H = e Ω He Ω No need to solve the large-space problem first work directly with H Induced 3-,4-...,A-body forces No guarantee that neglected higher-body terms will be unimportant, but... Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 14 / 28

In-medium SRG U 1 U 2... U Unitary (in principle): H = e Ω He Ω No need to solve the large-space problem first work directly with H Induced 3-,4-...,A-body forces No guarantee that neglected higher-body terms will be unimportant, but... e Ω He Ω = H + [Ω, H] + 1 [Ω, [Ω, H]] +... 2 [Ω, H] 2 Ω H If Ω 1 2, then the largest source of error is likely [Ω 2b, H 2b ] 3b, and we can treat this perturbatively. Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 14 / 28

Ab initio shell model no core shell model + OLS coupled cluster + OLS in-medium SRG Dikmen et al. PRC (2015), Jansen et al. PRC(R) (2016), Stroberg et al. PRC(R) (2016) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 15 / 28

Ab initio shell model no 16 core shell model g.s. + band 8 14 coupled cluster + OLS + 24 OLS Mg 8 + 8 + 12 γ band 8 + 10 6 + 6 + 6 + 6 + 8 6 + 6 + 6 + 5 + 5 + 5 + 6 + 5 + 6 4 + 3 + 4 + 4 + 4 + 4 4 + 2 + 4 + 3 + 4 + 3 + 3 + 2 + 4 + 2 + 2 + 2 2 + 2 + 2 + 2 + 0 0 + 0 + 0 + 0 + Energy (MeV) Experiment STD Φ 0 = 16 O TNO Φ 0 = 24 Mg USDB (fit) 8 7 in-medium10 SRG + 6 5 4 3 2 1 0 Experiment 8 + 6 + 4 + 2 + 0 + IMSRG 48 Cr 10 + 8 + 6 + 4 + 2 + 0 + Dikmen et al. PRC (2015), Jansen et al. PRC(R) (2016), Stroberg et al. PRC(R) (2016) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 15 / 28

Electric quadrupole transitions Effective charges for electric quadrupole operators + + + O(E2) = i e i r 2 i Y (2) (θ i ) e p 1.5, e n 0.5 Can we do without them? Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 16 / 28

Electric quadrupole transitions 2 + 7.012 0-6.902 3-0 + 6.728 6.589-1 6.094 0 + E2 0.000 14 C E(2 + 1 ) (MeV) 12 11 10 9 8 Exp NCSM ω=20mev Valence-space IM-SRG emax= 4 emax= 6 emax= 8 emax=10 emax=12 emax=14 EOM IM-SRG 7 core valence excluded decouple decouple B(E2; 2 + 1 0 + 1 ) (e 2 fm 4 ) 5 4 3 2 0 2 4 6 8 Nmax 12 16 20 24 28 ω (MeV) 14 C 12 16 20 24 ω (MeV) 28 NCSM results from Petr Navrátil, EOM results from Nathan Parzuchowski Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 17 / 28

Electric quadrupole transitions 5.800 0 + 4.909 + (3 ) 4.584 2 + 0 + core valence excluded E2 3.199 0.000 22 O decouple decouple E(2 + 1 ) (MeV) B(E2; 2 + 1 0 + 1 ) (e 2 fm 4 ) 7 6 5 4 3 2 1 0 5 4 3 2 1 0 Exp Valence-space IM-SRG 12 16 20 24 28 ω (MeV) 22 O EOM IM-SRG emax= 6 emax= 8 emax=10 emax=12 emax=14 12 16 20 24 28 ω (MeV) EOM results from Nathan Parzuchowski Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 18 / 28

Electric quadrupole transitions Why??? 14 C in psd shell, compare CC, IM-SRG w/ FCI: core valence excluded 2 + 7.012 0-6.902 3-0 + 6.728 6.589-1 6.094 E2 0 + 0.000 decouple decouple E(MeV) An/b 2 Ap/b 2 70 75 80 85 90 95 100 14 C FCI psdmwk 2 + 0 + 0 1 2 3 4 5 6 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0 1 2 3 4 5 6 1.720 1.715 1.710 1.705 1.700 1.695 1.690 π ν 0 1 2 3 4 5 6 neutron Nph 70 75 80 85 90 95 100 0.35 0.30 0.25 0.20 0.15 0.10 0.05 2.0 1.5 1.0 0.5 0.0 2 + 0 + 0 1 2 3 4 0 1 2 3 4 π ν 0 1 2 3 4 proton Nph 70 75 80 85 90 95 100 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 CCS CCSD CCSDT-1 2 + 0 + 2 4 6 8 10 CCSDT-1 CCSD CCS 2 4 6 8 10 CCS CCSD CCSDT-1 π ν 2 4 6 8 10 total Nph out of ref. 70 75 80 85 90 95 IMSRG(2) 0p 100 0 2 4 6 8 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.695 1.690 1.685 1.680 IMSRG(2) 0p 0 2 4 6 8 1.720 1.715 1.710 1.705 1.700 IMSRG(2) 0p π ν 0 2 4 6 8 total Nph p sd 2 + 0 + Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 19 / 28

How should we think about the shell model? The shell model, as typically understood, is a model (but it s a pretty successful model) Fermi liquid theory: quasiparticles retain characteristics of the bare particles Quantum chemistry: separation into static and dynamic correlations An ab initio many-body method can be mapped onto the shell model nonperturbative treatment of excitations near the Fermi surface. core valence excluded static dynamic Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 20 / 28

How should we think about the shell model? The shell model, as typically understood, is a model (but it s a pretty successful model) Fermi liquid theory: quasiparticles retain characteristics of the bare particles Quantum chemistry: separation into static and dynamic correlations An ab initio many-body method can be mapped onto the shell model nonperturbative treatment of excitations near the Fermi surface. Paradigm: If a model works well but isn t fundamental, and if the fundamental theory is hard to solve, then map the fundamental theory to the model through a unitary transformation (RG flow). Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 20 / 28 core valence excluded static dynamic

Another question Can the shell model be formulated as an effective theory? Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 21 / 28

Another question Can the shell model be formulated as an effective theory? Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 21 / 28

Another question Can the shell model be formulated as an effective theory? All of these express chiral EFT in an oscillator basis and solve exactly. Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 21 / 28

Shell model as an EFT Can the shell model be formulated as an effective theory? Answer: I don t know. Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 22 / 28

Shell model as an EFT Can the shell model be formulated as an effective theory? Answer: I don t know. Why would we want to make it an effective theory? Shell model with uncertainty estimates No need to bother mapping chiral EFT to the shell model Systematic improvements, e.g. 3N interaction, 2-body operators Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 22 / 28

First steps Degrees of freedom: quasiparticles outside of core Breakdown scale: core excitation energy Symmetries: J,π,... Small scale: shell splitting? Shell model as an EFT V(r) Valence Inert core r Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 23 / 28

First steps Degrees of freedom: quasiparticles outside of core Breakdown scale: core excitation energy Symmetries: J,π,... Small scale: shell splitting? Shell model as an EFT Challenges Core shouldn t be a point-particle Is there any separation of scales? Which states to fit to? Origin of hierarchy of many-body forces? 10 10 10 V(r) Valence Inert core Energy (MeV) 8 6 4 2 0 3/2+ 5/2 1/2 3/2 +5/2+ + 9/2 7/2 5/2 3/2 1/2 3/2+ 3/2 3/2 + 5/2 1/2 Energy (MeV) 17 F 1/2 + 5/2 + 0 8 6 4 2 2 1 2 + 3 0 + Energy (MeV) 16 O 0 + 0 8 6 4 2 7/2 5/2 3/2 + 7/2 5/2 1/2 1/2 +5/2+ 3/2+ 9/2 3/2 3/2 3/2 + 5/2 1/2 17 O 1/2 + 5/2 + r Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 23 / 28

One magical chiral (or chiral-inspired) interaction NN 3N EM 500/400 EM 1.8/2.0 N 3 LO same Λ 2N = 500 MeV same non-local regulator same fit to NN scattering, 2 H same λ SRG = 1.88 fm 1 same N 2 LO same Λ 3N = 400 MeV same local regulator non-local regulator fit to 3 H BE, t 1/2 fit to 3 H BE, 4 He r ch consistently SRG evolved no SRG for 3N Empirical saturation point EM 1.8/2.0 Hebeler et al. PRC(R) (2011), Drischler et al. PRC (2016), monis et al. (in prep.) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 24 / 28

One magical chiral (or chiral-inspired) interaction NN 3N EM 500/400 EM 1.8/2.0 N 3 LO same Λ 2N = 500 MeV same non-local regulator same fit to NN scattering, 2 H same λ SRG = 1.88 fm 1 same N 2 LO same Λ 3N = 400 MeV same local regulator non-local regulator fit to 3 H BE, t 1/2 fit to 3 H BE, 4 He r ch consistently SRG evolved no SRG for 3N Empirical saturation point EM 1.8/2.0 EM 500/400 EM 1.8/2.0 Hebeler et al. PRC(R) (2011), Drischler et al. PRC (2016), monis et al. (in prep.) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 24 / 28

One magical chiral (or chiral-inspired) interaction NN 3N EM 500/400 EM 1.8/2.0 N 3 LO same Λ 2N = 500 MeV same non-local regulator same fit to NN scattering, 2 H same λ SRG = 1.88 fm 1 same N 2 LO same Λ 3N = 400 MeV same local regulator non-local regulator fit to 3 H BE, t 1/2 fit to 3 H BE, 4 He r ch consistently SRG evolved no SRG for 3N Empirical saturation point EM 1.8/2.0 EM 500/400 EM 1.8/2.0 Neither interaction is fully consistent however... Saturation properties appear important for finite nuclei Hebeler et al. PRC(R) (2011), Drischler et al. PRC (2016), monis et al. (in prep.) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 24 / 28

EM 1.8/2.0 interaction E(2 + 1 ) 7 6 5 4 3 2 1 A 0 20 25 30 35 40 45 50 A 2 + 2 Experiment EM1.8/2.0 SDPFMU E(2 + 1 ) 7 6 5 4 3 2 1 A Ca Experiment EM 500/400 EM1.8/2.0 SDPFMU 0 35 40 45 50 55 60 A Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 25 / 28

The neutron dripline 15 22 23 24 27 S 26 P 25 28 S 27 P 26 31 Ar 29 S 28 P 27 32 Ar 31 Cl 30 S 29 P 28 33 Ar 32 Cl 31 S 30 P 29 35 K 34 Ar 33 Cl 32 S 31 P 30 36 K 35 Ar 34 Cl 33 S 32 P 31 37 K 36 Ar 35 Cl 34 S 33 P 32 38 K 37 Ar 36 Cl 35 S 34 P 33 39 K 38 Ar 37 Cl 36 S 35 P 34 40 K 39 Ar 38 Cl 37 S 36 P 35 41 K 40 Ar 39 Cl 38 S 37 P 36 42 K 41 Ar 40 Cl 39 S 38 P 37 43 K 42 Ar 41 Cl 40 S 39 P 38 44 K 43 Ar 42 Cl 41 S 40 P 39 45 K 44 Ar 43 Cl 42 S 41 P 40 46 K 45 Ar 44 Cl 43 S 42 P 41 47 K 46 Ar 45 Cl 44 S 43 P 42 48 K 47 Ar 46 Cl 45 S 44 P 43 49 K 48 Ar 47 Cl 46 S 45 P 44 50 K 49 Ar 48 Cl 47 S 46 P 51 K 50 Ar 49 Cl 48 S 52 K 51 Ar 50 Cl 53 K 54 K 55 K 56 K 52 Ar 51 Cl 53 Ar Proton number Z 10 5 3 He 4 He 6 He 1 H 2 H 3 H PRELIMINARY 9 C 8 B 7 Be 10 C 13 O 12 N 11 C 10 B 9 Be 14 O 13 N 12 C 11 B 10 Be 6 Li 7 Li 8 Li 9 Li 8 He 17 Ne 15 O 14 N 13 C 12 B 11 Be 20 Mg 18 Ne 17 F 16 O 15 N 14 C 13 B 12 Be 11 Li 22 Al 21 Mg 20 Na 19 Ne 18 F 17 O 16 N 15 C 14 B 23 Al 22 Mg 21 Na 20 Ne 19 F 18 O 17 N 16 C 15 B 14 Be 24 Al 23 Mg 22 Na 21 Ne 20 F 19 O 18 N 17 C 25 Al 24 Mg 23 Na 22 Ne 21 F 20 O 19 N 18 C 17 B 26 Al 25 Mg 24 Na 23 Ne 22 F 21 O 20 N 27 Al 26 Mg 25 Na 24 Ne 23 F 22 O 21 N 20 C 28 Al 27 Mg 26 Na 25 Ne 24 F 23 O 22 N 29 Al 28 Mg 27 Na 26 Ne 25 F 24 O 23 N 22 C 30 Al 29 Mg 28 Na 27 Ne 26 F 31 Al 30 Mg 29 Na 28 Ne 27 F 32 Al 31 Mg 30 Na 29 Ne 33 Al 32 Mg 31 Na 30 Ne 29 F 0 10 20 30 40 Neutron number N 34 Al 33 Mg 32 Na 31 Ne 35 Al 34 Mg 33 Na 32 Ne 31 F 36 Al 35 Mg 34 Na 33 Ne 37 Al 36 Mg 35 Na 34 Ne 38 Al 37 Mg 36 Na 39 Al 38 Mg 37 Na 40 Al 39 Mg 41 Al 40 Mg 42 Al 43 Al Heaviest known neutron dripline FRDM 1995 HFB-8 EM1.8/2.0 Baumann et al. Nature (2007), Möller et al. (1995), Samyn et al. (2004), Holt et al. (in prep.) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 26 / 28

The heavy-mass frontier The tin isotopes (Z = 50) 100 Sn: 50 protons, 50 neutrons core valence excluded decouple decouple Open shell valence space: full gds shell m-scheme dimension 10 12 Need importance truncation to diagonalize! Ground state energy (MeV) 720 740 760 780 800 820 840 emax = 10, E3max = 14 emax = 12, E3max = 14 emax = 14, E3max = 14 emax = 14, E3max = 16 emax = 14, E3max = 18 EM 1.8/2.0 100 Sn Experiment 12 16 20 22 24 28 ω (MeV) monis et al. (in prep.), Stumpf et al. PRC(R) (2016) Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 27 / 28

Ground state energy (MeV) 800 850 900 950 Isotopic chain with ω = 16, e max = 14, E3 max = 16 PRELIMINARY Tin isotopes Experiment EM 1.8/2.0 1000 (Z = 50) 1050 100 105 110 115 120 A S2n (MeV) 24 22 20 18 16 Experiment EM 1.8/2.0 102 104 106 108 110 112 114 116 A Sn (MeV) 3pt (MeV) Open shell tin isotopes 15 Experiment 14 EM 1.8/2.0 13 12 11 10 9 8 7 6 100 105 110 115 A 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Experiment EM 1.8/2.0 102 104 106 108 110 112 114 116 A Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 28 / 28

Collaborators The shell model can be derived ab initio The SM can be seen as an efficient separation of degrees of freedom Attempts at ab initio effective charges aren t yet successful Formulating the SM as an effective theory appears frought with difficulties EM 1.8/2.0 interaction suggests that once you get N N scattering and saturation, things fall into place Collaborators: A. Calci, J. Holt, J. Kozaczuk, D. Morrissey, P. Navrátil NSCL/MSU S. Bogner, H. Hergert, N. Parzuchowski TU Darmstadt R. Roth, A. Schwenk, J. monis ORNL/UT G. Hagen, T. Morris Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 29 / 28

Backup slides Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 30 / 28

Ψ Φ 0 2 0.82 0.94 1.00 0.06 0.26 0.90 0.43 0.95 0.95 1.00 E/A (MeV) 6 7 8 9 10 11 AME SM (C=R) ENO ngle Ref. 22 O 24 O 28 O 28 30 34 32 S 36 S 36 Ca 40 Ca Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 31 / 28

E E3 + (MeV) E E3 + (MeV) 0 1 3 + 1 + 2 10 3 B 1 0 1 2 1 + 3 + Λ 3N =400 MeV Λ 3N =500 MeV 10 B (a) 10 IT-NCSM B 8 He 4 He (full 3N) IM-SRG ref. Λ 3N =400 MeV 0.5 1+ 0.0 0.5 0.0 3 + 22 Na 0.5 1+ 3 + Λ 3N =500 MeV 22 Na (b) 22 Exp. Na 16 O IM-SRG ref. 0.2 1 + 0.1 0.0 0.1 0.1 0.0 0.1 3 + 46 V 0.2 1 + Λ 3N = 400 MeV Λ 3N = 500 MeV ( ) see 3 + text 46 V (c) 46 Exp. V 40 Ca IM-SRG ref. Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 32 / 28

Egs (MeV) Egs (MeV) 20 40 60 80 100 120 (a) 100 120 140 160 180 200 220 240 (d) 260 A C (Z=6) Experiment CCSD(T) IT-NCSM MR-IM-SRG IM-SRG(ENO) 10 15 20 25 A A Na (Z=11) Experiment IM-SRG(SM) IM-SRG(ENO) 20 25 30 35 40 A 20 40 60 80 100 120 140 160 250 300 350 400 450 500 A N (Z=7) Experiment SCGF GGF IT-NCSM IM-SRG(ENO) (b) 10 15 20 25 A A Ca (Z=20) CRCC MR-IM-SRG IM-SRG(SM) IM-SRG(ENO) (e) 35 40 45 50 55 60 A 60 80 100 120 140 160 (c) 180 350 400 450 500 550 600 650 700 750 A O (Z=8) Experiment SCGF GGF CCSD(T) IT-NCSM MR-IM-SRG IM-SRG(SM) IM-SRG(ENO) 15 20 25 30 A A Ni (Z=28) CRCC MR-IM-SRG IM-SRG(SM) IM-SRG(ENO) (f) 50 55 60 65 70 75 A Ragnar Stroberg (TRIUMF) Can the shell model be truly ab initio? Jan 20, 2017 33 / 28