V t vs. N A at Various T ox

Similar documents
MOS Transistor I-V Characteristics and Parasitics

ECE-305: Fall 2017 MOS Capacitors and Transistors

Nanoscale CMOS Design Issues

EE5311- Digital IC Design

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

EECS130 Integrated Circuit Devices

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 305: Fall MOSFET Energy Bands

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

The Devices: MOS Transistors

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOS Transistor Theory

Lecture 11: MOSFET Modeling

ECE-305: Spring 2016 MOSFET IV

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

Lecture #27. The Short Channel Effect (SCE)

Practice 3: Semiconductors

ECE315 / ECE515 Lecture-2 Date:

Lecture 3: CMOS Transistor Theory

Lecture 5: CMOS Transistor Theory

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Virtual Device Simulation. Virtual Process Integration

MOSFET Physics: The Long Channel Approximation

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Previously. ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Variation Types. Fabrication

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

The Devices. Devices

CMOS Inverter (static view)

Homework Assignment No. 1 - Solutions

EE105 - Fall 2006 Microelectronic Devices and Circuits

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Device Models (PN Diode, MOSFET )

Chapter 4 Field-Effect Transistors

MOS Transistor Theory

Simple and accurate modeling of the 3D structural variations in FinFETs

VLSI Design The MOS Transistor

N Channel MOSFET level 3

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Modeling of the Substrate Current and Characterization of Traps in MOSFETs under Sub-Bandgap Photonic Excitation

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

P-MOS Device and CMOS Inverters

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

ELEC 3908, Physical Electronics, Lecture 27. MOSFET Scaling and Velocity Saturation

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Device Models (PN Diode, MOSFET )

Section 12: Intro to Devices

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 342 Electronic Circuits. 3. MOS Transistors

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

τ gd =Q/I=(CV)/I I d,sat =(µc OX /2)(W/L)(V gs -V TH ) 2 ESE534 Computer Organization Today At Issue Preclass 1 Energy and Delay Tradeoff

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Negative Bias Temperature Instability (NBTI) Physics, Materials, Process, and Circuit Issues. Dieter K. Schroder Arizona State University Tempe, AZ

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Microelectronics Part 1: Main CMOS circuits design rules

The K-Input Floating-Gate MOS (FGMOS) Transistor

Lecture 12: MOSFET Devices

Lecture 4: CMOS Transistor Theory

Lecture 04 Review of MOSFET

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

Fig The electron mobility for a-si and poly-si TFT.

JFET Operating Characteristics: V GS = 0 V 14. JFET Operating Characteristics: V GS = 0 V 15

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

N- & P-Channel Enhancement Mode Field Effect Transistor

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Philips Research apple PHILIPS

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

Modeling Total Ionizing Dose Effects in Deep Submicron Bulk CMOS Technologies. Michael McLain, Hugh Barnaby, Ivan Sanchez

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

CMOS Technology for Computer Architects

Extensive reading materials on reserve, including

1. The MOS Transistor. Electrical Conduction in Solids

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Scaling of MOS Circuits. 4. International Technology Roadmap for Semiconductors (ITRS) 6. Scaling factors for device parameters

ECE 546 Lecture 10 MOS Transistors

2N5545/46/47/JANTX/JANTXV

ECE 497 JS Lecture - 12 Device Technologies

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Hot-carrier reliability of 20V MOS transistors in 0.13 µm CMOS technology

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Transcription:

V t vs. N A at Various T ox Threshold Voltage, V t 0.9 0.8 0.7 0.6 0.5 0.4 T ox = 5.5 nm T ox = 5 nm T ox = 6 nm m = 4.35 ev, Q ox = 0; V sb = 0 V 0.3 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Body Doping, N A (10 17 cm 3 ) X. ZHOU 1 2015

V t vs. T ox at Various N A Threshold Voltage, V t 0.8 0.7 0.6 0.5 0.4 N A = 2x10 17 cm 3 N A = 1x10 17 cm 3 N A = 3x10 17 cm 3 m = 4.35 ev, Q ox = 0; V sb = 0 V 0.3 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Gate Oxide Thickness, T ox (nm) X. ZHOU 2 2015

V t vs. V sb at Various N A and T ox Threshold Voltage, V t 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 N A = 2x10 17 cm 3 ; T ox = 5.5 nm N A = 2x10 17 cm 3 ; T ox = 5 nm N A = 3x10 17 cm 3 ; T ox = 5.5 nm m = 4.35 ev, Q ox = 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Body Source Voltage, V sb X. ZHOU 3 2015

3D Plot: V t vs. N A and T ox V t (T ox, N A ) 3D Plot 0.9 Threshold Voltage, Vt 0.8 0.7 0.6 0.5 0.4 0.3 Body Doping, NA (10 16 cm 3 ) 6.0 5.5 1.5 5.0 1.0 4.5 2.0 2.5 3.0 3.5 4.0 Gate Oxide Thickness, T ox (nm) X. ZHOU 4 2015

Contour Plot: V t vs. N A and T ox X. ZHOU 5 2015

V t0 and V ts vs. L g at V sb = 0 and 2.5 V Threshold Voltage, V t 0.8 0.6 0.4 0.2 T ox = 5.5 nm, N A = 1.3x10 17 cm 3, X j = 80 nm s = 0.6, d = 0.4 V sb = 2.5 V s = 0.6, d = 0.7 V sb = 0 V V ds = 0.05 V V ds = 2.5 V 0.0 0.1 1 10 Gate Length, L g ( m) X. ZHOU 6 2015

V t0 and V ts vs. L g at T ox = 5.5 and 5 nm 0.5 N A = 1.3x10 17 cm 3, X j = 80 nm, V sb = 0 Threshold Voltage, V t 0.4 0.3 0.2 0.1 T ox = 5 nm T ox = 5.5 nm V ds = 0.05 V V ds = 2.5 V 0.0 0.1 1 10 Gate Length, L g ( m) X. ZHOU 7 2015

V t0 and V ts vs. L g at N A = 1.3x10 17 and 8x10 16 cm 3 0.5 T ox = 5.5 nm, X j = 80 nm, V sb = 0 Threshold Voltage, V t 0.4 0.3 0.2 0.1 N A = 1.3x10 17 cm 3 N A = 8x10 16 cm 3 V ds = 0.05 V V ds = 2.5 V 0.0 0.1 1 10 Gate Length, L g ( m) X. ZHOU 8 2015

V t0 and V ts vs. L g at Two Pairs of N A and T ox 0.5 X j = 80 nm, V sb = 0 Threshold Voltage, V t 0.4 0.3 0.2 0.1 T ox = 5 nm T ox = 5.5 nm N N A = 1.3x10 17 cm 3 A = 1.7x10 17 cm 3 V = 0.05 V ds 0.0 0.1 1 10 Gate Length, L g ( m) V ds = 2.5 V X. ZHOU 9 2015

V t0 vs. L g for Three X j 0.50 T ox = 5.5 nm, N A = 1.3x10 17 cm 3, V ds = 0.05 V, V sb = 0 Threshold Voltage, V t 0.45 0.40 0.35 0.30 0.25 X j = 80 nm X j = 60 nm X j = 100 nm 0.20 0.1 1 10 Gate Length, L g ( m) X. ZHOU 10 2015

V t0 and V ts vs. L g at With and Without Halo Threshold Voltage, V t 0.7 0.6 0.5 0.4 0.3 0.2 0.1 T ox = 5.5 nm, N A = 1.3x10 17 cm 3, X j = 80 nm, V sb = 0 Halo: = 1.3 = 0.4 m/v 0.25 No Halo V ds = 0.05 V V ds = 2.5 V 0.0 0.1 1 10 Gate Length, L g ( m) X. ZHOU 11 2015

I on and I off vs. L g for the Nominal (No Halo) Leakage Current, log(i off ) (A/ m) -8-9 -10-11 -12-13 -14-15 -16 X j = 80 nm; V dd = 2.5 V 1.5 T ox = 5.5 nm, N A = 1.3x10 17 cm 3 ; = 0, = 0 0.1 1 10 Gate Length, L g ( m) I off I on 1.0 0.5 0.0 Drive Current, I on (ma/ m) X. ZHOU 12 2015

I on and I off vs. L g at New T ox and N A Leakage Current, log(i off ) (A/ m) -9 1.5 T ox = 5 nm, N A = 1.7x10 17 cm 3 ; = 0, = 0-10 -11-12 -13-14 -15 X j = 80 nm; V dd = 2.5 V -16 0.1 1 10 Gate Length, L g ( m) I off I on 1.0 0.5 0.0 Drive Current, I on (ma/ m) X. ZHOU 13 2015

I on and I off vs. L g for the Nominal (With Halo) Leakage Current, log(i off ) (A/ m) -10 1.5 T ox = 5.5 nm, N A = 1.3x10 17 cm 3 ; = 1.3, = 0.4 m/v 0.25-11 -12-13 -14-15 X j = 80 nm; V dd = 2.5 V -16 0.1 1 10 Gate Length, L g ( m) I off I on 1.0 0.5 0.0 Drive Current, I on (ma/ m) X. ZHOU 14 2015

I on and I off vs. L g at New T ox and N A with Halo Leakage Current, log(i off ) (A/ m) -9 1.5 T ox = 5 nm, N A = 8x10 16 cm 3 ; = 1.3, = 0.4 m/v 0.25-10 -11-12 -13-14 -15 X j = 80 nm; V dd = 2.5 V -16 0.1 1 10 Gate Length, L g ( m) I off I on 1.0 0.5 0.0 Drive Current, I on (ma/ m) X. ZHOU 15 2015

I off vs. I on at Various L g for Nominal and New T ox and N A Leakage Current, log(i off ) (A/ m) -6-7 -8-9 -10-11 -12-13 -14-15 -16-17 t gox = 30 min, vt = 1.5x10 12 cm 2 T ox = 5.5 nm, N A = 1.3x10 17 cm 3 T ox = 5 nm, N A = 1.7x10 17 cm 3 X j = 80 nm; V dd = 2.5 V L g = 0.25 m 0.0 0.5 1.0 1.5 Drive Current, I on (ma/ m) Solid: TCAD Open: CM X. ZHOU 16 2015

I ds vs. V gs at L g = 10 m for Parameter Extraction Linear Drain Current, I dlin ( A/ m) 2.0 1.5 1.0 0.5 T ox = 5.5 nm, N A = 1.3x10 17 cm 3, X j = 80 nm v sat = 10 7 V/cm, E crit = 0.65 MV/cm 0 = 750 cm 2 /Vs, = 1.2; = 0.7 TCAD CM I dlin I dsat Gate Source Voltage, V gs L g = 10 m 0.0 0 0.0 0.5 1.0 1.5 2.0 2.5 50 40 30 20 10 Saturation Drain Current, I dsat ( A/ m) X. ZHOU 17 2015

Parameter Variation Effect on I dlin vs. V gs at L g = 10 m Linear Drain Current, I dlin ( A/ m) 2.5 2.0 1.5 1.0 0.5 L g = 10 m, T ox = 5.5 nm, N A = 1.3x10 17 cm 3, X j = 80 nm 0 = 750 cm 2 /Vs +/ 20% E crit = 0.65 MV/cm +/ 50% = 1.2 +/ 50% Dotted Line: + Dashed Line: 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs X. ZHOU 18 2015

Parameter Variation Effect on I dsat vs. V gs at L g = 10 m Saturation Drain Current, I dsat ( A/ m) 50 40 30 20 10 L g = 10 m, T ox = 5.5 nm, N A = 1.3x10 17 cm 3, X j = 80 nm v sat = 10 7 V/cm, = 0.7 0 = 750 cm 2 /Vs +/ 20% E crit = 0.65 MV/cm +/ 50% = 1.2 +/ 50% Dotted Line: + Dashed Line: 0 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs X. ZHOU 19 2015

TCAD/CM: I ds vs. V ds at L g = 10 m 40 L g = 10 m Drain Current, I ds ( A/ m) 30 20 10 TCAD CM: I dsat CM: I dlin 0 0.0 0.5 1.0 1.5 2.0 2.5 Drain Source Voltage, V ds X. ZHOU 20 2015

TCAD/CM: log(i ds ) vs. V gs at L g = 10 m 10-4 10-5 L g = 10 m Drain Current, I ds (A/ m) 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs TCAD: I ds (V dd ) TCAD: I ds (V d0 ) CM: I dsat CM: I dlin CM: I dsubs CM: I dsub0 X. ZHOU 21 2015

TCAD/CM: I ds vs. V ds at L g = 0.25 m (Nominal) 1.2 L g = 0.25 m (Old: Nominal) Drain Current, I ds (ma/ m) 1.0 0.8 0.6 0.4 0.2 TCAD CM: I dsat 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Drain Source Voltage, V ds CM: I dlin X. ZHOU 22 2015

TCAD/CM: log(i ds ) vs. V gs at L g = 0.25 m (Nominal) 10-2 10-3 L g = 0.25 m (Old: Nominal) Drain Current, I ds (A/ m) 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs TCAD: I ds (V dd ) TCAD: I ds (V d0 ) CM: I dsat CM: I dlin CM: I dsubs CM: I dsub0 X. ZHOU 23 2015

TCAD/CM: I ds vs. V ds at L g = 0.25 m (Split3) 1.2 L g = 0.25 m (New: Split3) Drain Current, I ds (ma/ m) 1.0 0.8 0.6 0.4 0.2 TCAD CM: I dsat 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Drain Source Voltage, V ds CM: I dlin X. ZHOU 24 2015

TCAD/CM: log(i ds ) vs. V gs at L g = 0.25 m (Split3) 10-2 10-3 L g = 0.25 m (New: Split3) Drain Current, I ds (A/ m) 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs TCAD: I ds (V dd ) TCAD: I ds (V d0 ) CM: I dsat CM: I dlin CM: I dsubs CM: I dsub0 X. ZHOU 25 2015

V t0 and V ts vs. L g for Old (Nominal) & New (Split3) Wafers 0.6 New: T ox = 5 nm, N A = 8x10 16 cm 3 ; = 1.2, = 0.4 m/v 0.25 Threshold Voltage, V t 0.5 0.4 0.3 0.2 0.1 Old: T ox = 5.5 nm, N A = 1.3x10 17 cm 3 ; = 0, = 0 Symbols: TCAD Lines: CM New (X j = 80 nm, V sb = 0) V ds = 0.05 V 0.0 0.1 1 10 Old V ds = 2.5 V Gate Length, L g ( m) X. ZHOU 26 2015

I off vs. I on at Various L g for Old and New Wafers Leakage Current, log(i off ) (A/ m) -6-7 -8-9 -10-11 -12-13 -14-15 -16-17 t gox = 30 ', vt = 1.5, halo = 0 (x10 12 cm 2 ) t gox = 20 ', vt = 0.15, halo = 2 (x10 12 cm 2 ) X j = 80 nm; V dd = 2.5 V L g = 0.25 m T ox = 5.5 nm, N A = 1.3x10 17 cm 3 ; = 0, = 0 T ox = 5 nm, N A = 8x10 16 cm 3 ; = 1.3, = 0.4 m/v 0.25 0.0 0.5 1.0 1.5 Drive Current, I on (ma/ m) Solid: TCAD Open: CM X. ZHOU 27 2015

I ds vs. V ds at L g = 0.25 m for Old and New Wafers 1.2 L g = 0.25 m (old: nominal; new: split3) Drain Current, I ds (ma/ m) 1.0 0.8 0.6 0.4 0.2 Old New TCAD CM (new) CM (old) 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Drain Source Voltage, V ds I dsat I dlin X. ZHOU 28 2015

log(i ds ) vs. V gs at L g = 0.25 m for Old and New Wafers 10-2 10-3 L g = 0.25 m (old: nominal; new: split3) Drain Current, I ds (A/ m) 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 Symbols: TCAD Lines: Model New 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs Old I dsat I dlin I dsat I dlin I dsubs I dsub0 X. ZHOU 29 2015

I dlin vs. V gs at L g = 0.25 m for Old and New Wafers Linear Drain Current, I dlin (ma/ m) 0.14 0.12 0.10 0.08 0.06 0.04 0.02 L g = 0.25 m (V ds = 0.05 V) New: T ox = 5 nm, N A = 8x10 16 cm 3 ; = 1.2, = 0.4 m/v 0.25 Old: T ox = 5.5 nm, N A = 1.3x10 17 cm 3 ; = 0, = 0 (X j = 80 nm, V sb = 0) Symbols: TCAD Lines: CM Solid: Old Open/Dashed: New 0.00 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs X. ZHOU 30 2015

I dsat vs. V gs at L g = 0.25 m for Old and New Wafers Saturation Drain Current, I dsat (ma/ m) 1.2 1.0 0.8 0.6 0.4 0.2 L g = 0.25 m (V ds = 0.05 V) Vgs vs idout Vgs vs tcad-iout Vgs vs ids Vgs vs id0 New: T ox = 5 nm, N A = 8x10 16 cm 3 ; = 1.2, = 0.4 m/v 0.25 Old: T ox = 5.5 nm, N A = 1.3x10 17 cm 3 ; = 0, = 0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 Gate Source Voltage, V gs (X j = 80 nm, V sb = 0) Symbols: TCAD Lines: CM Solid: Old Open/Dashed: New X. ZHOU 31 2015

Contour Plot (Nominal): I on and I off vs. N A and T ox X. ZHOU 32 2015

Contour Plot (Nominal): I on, I off, and V ts vs. N A and T ox X. ZHOU 33 2015