Chapter 4. Forces and Newton s Laws of Motion. continued

Similar documents
Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Chapter 4. Forces and Newton s Laws of Motion

Chapter 4 Newton s Laws

Chapter 4. Forces and Newton s Laws of Motion. continued

Forces. Brought to you by:

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Ch. 2 The Laws of Motion

Broughton High School of Wake County

Practice Test for Midterm Exam

Science 20 Physics Review

Physics Chapter 4 Newton s Laws of Motion

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

Version PREVIEW Semester 1 Review Slade (22222) 1

Forces & Newton s Laws. Honors Physics

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

3. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Dynamics: Forces and Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MOMENTUM! Momentum Impulse Conservation of Momentum in 1 Dimension

Physics B Newton s Laws AP Review Packet

Test Wed, Feb 8 th 7pm, G20 MING HSIEH Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Written Homework problems. Spring (taken from Giancoli, 4 th edition)

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Newton s 3 Laws of Motion

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

Practice Test Chapter 2 Forces and Motion

Newton s First Law of Motion. Newton s Second Law of Motion. Weight 9/30/2015

Dynamics Multiple Choice Homework

PS113 Chapter 4 Forces and Newton s laws of motion

Part I Review Unit Review Name Momentum and Impulse

Newton s Laws of Motion and Gravitation

Main Ideas in Class Today

Impulse/Momentum And Its Conservation

Summary of Chapters 1-3. Equations of motion for a uniformly acclerating object. Quiz to follow

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

3/17/2018. Interacting Objects. Interacting Objects

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

Chapter 4. Table of Contents. Section 1 Changes in Motion. Section 2 Newton's First Law. Section 3 Newton's Second and Third Laws

The Laws of Motion. Before You Read. Science Journal

A scalar quantity has just magnitude A vector quantity has both magnitude and direction

3. What type of force is the woman applying to cart in the illustration below?

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

PHYS 154 Practice Test 3 Spring 2018

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

Newton s Laws of Motion

Section 2: Newton s Laws of Motion (p. 145)

Impulse,Momentum, CM Practice Questions

A Question about free-body diagrams

Chapter 5 Force and Motion

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

An astronaut of mass 80 kg pushes away from a space Both!p x

Physics 221, January 24

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Momentum, Work and Energy Review

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

AP/Honors Physics Take-Home Exam 1

Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date

Dynamics: Forces and Newton s Laws of Motion

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

St. Joseph s Anglo-Chinese School

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Name: Class: Date: d. none of the above

Name Date Hour Table

*************************************************************************

CHAPTER 5. Chapter 5, Energy

Momentum & Energy Review Checklist

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e).

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

Lecture 5. Dynamics. Forces: Newton s First and Second

1 of 6 10/21/2009 6:33 PM

Physics 101 Lecture 5 Newton`s Laws

A force is a push or a pull.

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

Forces and motion. Announcements. Force: A push or pull between pairs of objects. Newton s First Law: Inertia

Newton s Laws of Motion

CHAPTER 2: FORCES AND MOTION

Go on to the next page.

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2.

Chapter 5 Force and Motion

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Chapter 6: Work and Kinetic Energy

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

Name: Class: Date: so sliding friction is better so sliding friction is better d. µ k

Chapter 4. Forces and Newton s Laws of Motion

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318

Physics 100. Today. Finish Chapter 4: Newton s Second Law. Start Chapter 5: Newton s Third Law

Solved Problems. 3.3 The object in Fig. 3-1(a) weighs 50 N and is supported by a cord. Find the tension in the cord.

PRACTICE TEST for Midterm Exam

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

Final Review. If a car has 3,000kg-m/s of momentum, and a mass of 1,000kg. How fast is it moving? A ball that has momentum must also have energy.

NAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.

Make sure you know the three laws inside and out! You must know the vocabulary too!

Transcription:

Chapter 4 Forces and Newton s Laws of Motion continued

Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity force pulling the mass down the ramp? ramp presses up against mass friction pulls mass up ramp Ramp As you slowly put the mass on the ramp, the ramp compresses & stretches along the ramp as gravity tries to slide the mass down the ramp. When you let go, the ramp has stretched enough to push on the mass with EXACTLY the right amount of force up the ramp. F G = 100 N At rest: Net force must be zero

Clicker Question 4.4 Mass sliding on a table. Gravity applies a force to a mass. It is sliding on a table with an initial velocity of +1 m/s. It slows while sliding to +0.5 m/s. The friction between them applies a force in what direction? a) Upward b) Downward c) To the right (+) d) To the left ( ) e) A table can't make a force. v 0 = 1 m/s Table. F G = 100 N

Clicker Question 4.4 Mass sliding on a table. Gravity applies a force to a mass. It is sliding on a table with an initial velocity of +1 m/s. It slows while sliding to +0.5 m/s. The friction between them applies a force in what direction? a) Upward b) Downward c) To the right (+) d) To the left ( ) e) A table can't make a force. v 0 = 1 m/s Table. Sliding friction pulls back on the mass Changing velocity means Net Force is NOT ZERO Slowing down v less than v 0 v < 1 m/s F G = 100 N

4.2 Newton s Laws of Motion (Second Law) Newton s Second Law When a net external force acts on an object of mass m, the acceleration that results is directly proportional to the net force and has a magnitude that is inversely proportional to the mass. The direction of the acceleration is the same as the direction of the net force. Sum of forces acting on 1 object

4.2 Newton s Laws of Motion (Second Law) SI Unit for Force Note: it has the same units as ma. This combination of units is called a newton (N). 1kg m/s 2 = 1N

4.2 Newton s Laws of Motion (Second Law) ~ 5N = 1lb

4.2 Newton s Laws of Motion (Second Law) A free-body-diagram is a diagram that represents the object and the forces that act on it.

4.2 Newton s Laws of Motion (Second Law) The net force in this case is: 275 N + 395 N 560 N = +110 N and is directed along the + x axis of the coordinate system.

4.2 Newton s Laws of Motion (Second Law) If the mass of the car is 1850 kg then, by Newton s second law, the acceleration is

Clicker Question 4.5 With the acceleration just calculated and starting at rest, how far has the car gone after 10 s of pushing? a = 0.059 m/s 2 a) 0.059 m b) 10 m c) 0.59 m d) 3.0 m e) 0.3 m

Clicker Question 4.5 With the acceleration just calculated and starting at rest, how far has the car gone after 10s of pushing? a = 0.059 m/s 2 a) 0.059 m b) 10 m c) 0.59 m d) 3.0 m e) 0.3 m x = v 0 t + 1 2 at 2 = 0 + 0.5(0.059 m/s 2 )(10 s) 2 = 3.0m

4.2 Newton s Laws of Motion (Second Law) The direction of force and acceleration vectors can be taken into account by using x and y components. is equivalent to & Net Force in x-direction = m times a in x-direction AND Net Force in y-direction = m times a in y-direction

4.2 Newton s Laws of Motion (Second Law) How to use Newton s 2 nd law, one object A) If mass of the object is known, and all forces acting on the object are known, then the acceleration vector can be calculated. B) If the acceleration vector and mass of an object are known, then the Net Force acting on the object can be calculated. It may surprise you! C) If the acceleration vector and mass of an object are known, but the calculated Net Force and the identified forces disagree, at least one additional force must act on the object. Find it!

4.2 Newton s Laws of Motion (Second Law) A) If mass of the object is known, and all forces acting on the object are known, then the acceleration vector can be calculated. Once the Net Force acting on an object and Newton s 2 nd law are used to calculate the object s acceleration vector, future changes of the position and velocity can be predicted. ax = Fx m ay = Fy m

one object B) If the acceleration vector and mass of an object are known, then the Net Force acting on the object can be calculated. A paddle ball travelling horizontally bounces off a wall. The speed of the ball was 30 m/s before and after hitting the wall. If contact with the wall was for 0.02 s, what was the ball s acceleration during the contact? v 0 = +30m/s wall v = 30m/s If the paddle ball has a mass of 0.2 kg, what is the force that the wall applied to the ball? wall F =?

one object B) If the acceleration vector and mass of an object are known, then the Net Force acting on the object can be calculated. A paddle ball travelling horizontally bounces off a wall. The speed of the ball was 30 m/s before and after hitting the wall. If contact with the wall was for 0.02 s, what was the ball s acceleration during the contact? v 0 = +30m/s wall v = 30m/s ( a = v v ) 0 t = 30 (+30) m/s.02 s = 3000 m/s 2 If the paddle ball has a mass of 0.2 kg, what is the force that the wall applied to the ball? wall F =?

one object B) If the acceleration vector and mass of an object are known, then the Net Force acting on the object can be calculated. A paddle ball travelling horizontally bounces off a wall. The speed of the ball was 30 m/s before and after hitting the wall. If contact with the wall was for 0.02 s, what was the ball s acceleration during the contact? v 0 = +30m/s wall v = 30m/s ( a = v v ) 0 t = 30 (+30) m/s.02 s = 3000 m/s 2 If the paddle ball has a mass of 0.2 kg, what is the force that the wall applied to the ball? F x = ma x wall F = 600N = (0.2 kg)( 3000 m/s 2 ) = 600 kg-m/s 2 or 600 N Force on ball is to the LEFT Magnitude of 600 N (~120 lbs)

C) If the acceleration vector and mass of an object are known, but the calculated Net Force and the identified forces disagree, at least one additional force must act on the object. Likely you will not know the origin of this force, but it must be there. A mass sliding on a table. v 0 = +1 m/s A 2 kg mass slides on a table with an initial velocity of +1 m/s. It slows while sliding to +0.5 m/s, in 2 seconds. Table. 1) Calculate the acceleration vector 2) Use Newton s 2 nd law, to calculate the frictional force that must act on the mass.

Clicker Question 4.6 A 2.0 kg mass sliding on a table with an initial velocity of +1.0 m/s, slows to +0.5 m/s, in 2.0 seconds. A force acting on the mass causes it to lose speed. What is the magnitude and direction of this force? v 0 = +1 m/s v = 0.5 m/s m = 2 kg m = 2 kg Table. a) F = 0.5N b) F = +0.5N c) F = 1.0N d) F = +1.0N e) F = 2.0N

Clicker Question 4.6 A 2.0 kg mass sliding on a table with an initial velocity of +1.0 m/s, slows to +0.5 m/s, in 2.0 seconds. Acting on the mass is what force (magnitude and direction) that causes it to lose speed? v 0 = +1 m/s v = 0.5 m/s m = 2 kg m = 2 kg F = 0.5N Table. F = 0.5N a) F = 0.5N b) F = +0.5N c) F = 1.0N d) F = +1.0N e) F = 2.0N ( a = v v ) 0 t = 0.50 1.0 m/s 2.0 s = 0.25 m/s 2 F = ma = (2.0 kg)( 0.25 m/s 2 ) = 0.5 kg-m/s 2 = 0.5 N

4.2 Newton s Laws of Motion (Weight) Definition of Weight The weight of an object on or above the earth is the gravitational force that the earth exerts on the object. The weight always acts downwards, toward the center of the earth. On or above another astronomical body, the weight is the gravitational force exerted on the object by that body. SI Unit of Weight: newton (N)

4.2 Newton s Laws of Motion (Weight) WEIGHT is a force vector Relation Between Mass and Weight W WEIGHT(magnitude) of the mass m W = mg W r distance to center of the earth Your WEIGHT WEIGHT DEFINITION Your weight is the force that gravity applies on your body.

4.2 Newton s Laws of Motion (Weight) g = G M E R E 2 Near the earth s surface ( ( ) 5.97 1024 kg) ( 6.37 10 6 m) 2 = 6.67 10 11 N m 2 kg 2 r = R E = 6.38 10 6 m Radius of the earth = 9.81 m s 2 This is why acceleration due to gravity is this value on the earth. Your WEIGHT on the earth W = mg Newton s 2 nd Law of Motion F = ma Free Fall acceleration : for example: m = 80.0 kg, W = mg = 784 N a = F m = W m = mg m = g

4.2 Newton s Laws of Motion (Third Law) Newton s Third Law of Motion Whenever one body exerts a force on a second body, the second body exerts an oppositely directed force of equal magnitude on the first body. There are 2 and ONLY 2 objects involved in applying Newton s 3 rd law.

4.2 Newton s Laws of Motion (Third Law) P = Suppose that the magnitude of the force, 36 N. If the mass of the spacecraft is 11,000 kg and the mass of the astronaut is 92 kg, what are the accelerations?

4.2 Newton s Laws of Motion (Third Law) On the spacecraft F = P. ( one object) On the astronaut F = P. (another object) a = S P = m S +36 N 11,000 kg = +0.0033m s2 Really tiny, and would not be noticed except over a very long time

4.2 Newton s Laws of Motion (Third Law) How long will these forces be able to act? Not very long! As soon as the astronaut s arms are fully extended, the contact with the space craft is lost and NO MORE FORCES. Suppose contact is maintained for 1 second. How fast will each object be moving? Both start at rest. a S = +0.0033m s 2 a A = 0.39m s 2 v = a S t = +0.0033 m/s ( = 3.3 mm/s) v = a A t = 0.39 m/s ( = 390 mm/s) Really tiny About 1 ft/s!

4.2 Newton s Laws of Motion (Third Law) These two forces do not have a Net Force = 0! +P acts on the spacecraft P acts on the astronaut To use the Net force and Newton s 2 nd law, all the forces being summed must act on the same object.

4.2 Newton s Laws of Motion (Third Law) These two forces do not have a Net Force = 0! +P acts on the spacecraft P acts on the astronaut To use the Net force and Newton s 2 nd law, all the forces being summed must act on the same object. Astronaut s push Acting on spacecraft

4.2 Newton s Laws of Motion (Third Law) These two forces do not have a Net Force = 0! +P acts on the spacecraft P acts on the astronaut To use the Net force and Newton s 2 nd law, all the forces being summed must act on the same object. Spacecraft s push acting on the astronaut.

4.2 Newton s Laws of Motion (Third Law) Warning: Newton s 3 st law can appear to be violated if you can t see the resulting movement (too small) of one of the two objects. Examples (clicker questions): Ball bouncing off a wall. Mass sliding on a table w/friction. Bat hitting a baseball Gun firing a bullet

Newton s Third Law of Motion Whenever one body exerts a force on a second body, the second body exerts an oppositely directed force of equal magnitude on the first body.

Clicker Question 4.7 A ball heads horizontally toward a wall. While in contact with the wall, the wall applies a force, F = 3000 N on the ball, as shown. At the same time, the ball must apply what force on the wall? point of contact with the wall. v 0 ball F = 3000 N on the ball. a) F = 3000 N b) F = +3000N c) F = 0N d) F = 60N e) A ball cannot make a force.

Clicker Question 4.7 A ball heads horizontally toward a wall. While in contact with the wall, the wall applies a force, F = 3000 N on the ball, as shown. At the same time, the ball must apply what force on the wall? point of contact with the wall. v 0 ball F = 3000 N on the ball. a) F = 3000 N b) F = +3000N c) F = 0N d) F = 60N e) A ball cannot make a force. F = +3000 N on the wall. wall

Clicker Question 4.7 Simultaneously showing both forces that act the objects at the point of contact wall F = +3000 N on the wall. F = 3000 N on the ball. These two forces do not result in a Net Force = 0. There is one force on the wall and one force on the ball. wall F = 3000 N on the ball. F = +3000 N on the wall.

Clicker Question 4.8 v 0 on the mass F = 0.5N m Table. While the mass is sliding, a friction force, F = 0.5N, acts on the mass. What friction force acts on the table? a) F = +0.5N b) F = 0.5N c) F = 0N d) F = 60N e) A mass cannot make a force.

Clicker Question 4.8 v 0 on the mass F = 0.5N m F = +0.5N Table. on the table While the mass is sliding, a friction force, F = 0.5N, acts on the mass. What friction force acts on the table? a) F = +0.5N b) F = 0.5N c) F = 0N d) F = 60N e) A mass cannot make a force.

Bat hitting a baseball Newton s 3 rd law: Whatever magnitude of force the bat applies to the ball, the ball applies the same magnitude of force back (opposite direction) onto the bat. The bat is slowed by the force of the ball on the bat, and the ball is accelerated by the force of the bat A gun firing a bullet Newton s 3 rd law: Whatever force the explosion applies to the bullet, it applies an equal magnitude force back (opposite direction) onto the gun. The bullet is accelerated by the force of the explosion, and the gun is accelerated in the opposite direction by the same magnitude of force.

4.2 Newton s Laws of Motion (Summary) Newton s laws of force and motion 1. An object continues in a state of rest or in a state of motion at a constant speed along a straight line, unless compelled to change that state by a net force. (One object) 2. When a net external force acts on an object of mass m, the acceleration that results is directly proportional to the net force and has a magnitude that is inversely proportional to the mass. The direction of the acceleration is the same as the direction of the net force. (One object) 3. Whenever one body exerts a force on a second body, the second body exerts an oppositely directed force of equal magnitude on the first body. (Two objects in contact or attracted by gravity)

Clicker Question 4.9 A car with a mass of 2000 kg and its driver with a mass of 100 kg, are accelerated by a force of 20,000 N. What force accelerates the driver? a) 200 N b) 2000 N c) 9.5N d) 100 N e) 950 N Hint: Acceleration is the same for car and driver 1) Determine the acceleration 2) then force on driver (using driver mass)

Clicker Question 4.9 A car with a mass of 2000 kg and its driver with a mass of 100 kg, are accelerated by a force of 20,000 N. What force accelerates the driver? a) 200 N b) 2000 N c) 9.5N d) 100 N Hint: Acceleration is the same for car and driver 1) Determine the acceleration 2) then force on driver (using driver mass) e) 950N m Car + m Driver = 2100 kg a = F C&D m C&D = 20,000 N 2100 kg = 9.5 m/s2 ; for car, and for driver. F D = m D a = ( 100 kg) ( 9.5 m/s 2 ) = 950 N

Clicker Question 4.10 A 10,000 kg garbage truck and a 1000 kg Chevy Volt collide. At the point of collision, consider the magnitude of the forces acting, and decide which statement below is true. a) The force acting on the smaller mass is always the largest. b) The force acting on the larger mass is always the largest. c) The force acting on the vehicle with the highest speed is the largest. d) The force acting on the vehicle with the smallest speed is the largest. e) The force acting on the two vehicles is always exactly the same.

Clicker Question 4.10 A 10,000 kg garbage truck and a 1000 kg Chevy Volt collide. At the point of collision, consider the magnitude of the forces acting, and decide which statement below is true. a) The force acting on the smaller mass is always the largest. b) The force acting on the larger mass is always the largest. c) The force acting on the vehicle with the highest speed is the largest. d) The force acting on the vehicle with the smallest speed is the largest. e) The force acting on the two vehicles is always exactly the same. Newton's 3 rd law!