NIELSEN NUMBER OF A COVERING MAP

Similar documents
The coincidence Nielsen number for maps into real projective spaces

The semi-index product formula

Geometry and Topology, Lecture 4 The fundamental group and covering spaces

Part II. Algebraic Topology. Year

Homework 3 MTH 869 Algebraic Topology

arxiv: v1 [math.at] 15 Aug 2017

Algebraic Topology. Oscar Randal-Williams. or257/teaching/notes/at.pdf

MA441: Algebraic Structures I. Lecture 18

Algebraic Topology exam

Boolean Algebras, Boolean Rings and Stone s Representation Theorem

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Master Algèbre géométrie et théorie des nombres Final exam of differential geometry Lecture notes allowed

NIELSEN FIXED POINT THEORY ON MANIFOLDS

Applications of Homotopy

Fibre Bundles: Trivial or Not?

Direct Product of BF-Algebras

MAT 530: Topology&Geometry, I Fall 2005

Math 751 Week 6 Notes

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

Algebraic Topology Exam 2006: Solutions

AVERAGING FORMULA FOR NIELSEN NUMBERS

SOLUTIONS TO THE FINAL EXAM

ALGEBRAICALLY TRIVIAL, BUT TOPOLOGICALLY NON-TRIVIAL MAP. Contents 1. Introduction 1

We have the following immediate corollary. 1

Bredon, Introduction to compact transformation groups, Academic Press

X G X by the rule x x g

A Primer on Homological Algebra

Formulas for the Reidemeister, Lefschetz and Nielsen Coincidenc. Infra-nilmanifolds

MTH 428/528. Introduction to Topology II. Elements of Algebraic Topology. Bernard Badzioch

Homotopy and homology groups of the n-dimensional Hawaiian earring

Groups of Prime Power Order with Derived Subgroup of Prime Order

A complement to the theory of equivariant finiteness obstructions

Two subgroups and semi-direct products

Lecture 4: Stabilization

Solutions to Assignment 4

Math 637 Topology Paulo Lima-Filho. Problem List I. b. Show that a contractible space is path connected.

24 Artin reciprocity in the unramified case

BEN KNUDSEN. Conf k (f) Conf k (Y )

QUALIFYING EXAM, Fall Algebraic Topology and Differential Geometry

MATH8808: ALGEBRAIC TOPOLOGY

William G. Dwyer Clarence W. Wilkerson

Lecture 6: Etale Fundamental Group

Math 440 Problem Set 2

Exercises for Algebraic Topology

H-Transversals in H-Groups

Math 120 HW 9 Solutions

Mappings of the Direct Product of B-algebras

7. Homotopy and the Fundamental Group

Rational Hopf G-spaces with two nontrivial homotopy group systems

3-manifolds and their groups

ON NEARLY SEMIFREE CIRCLE ACTIONS

INERTIA GROUPS AND SMOOTH STRUCTURES OF (n - 1)- CONNECTED 2n-MANIFOLDS. Osaka Journal of Mathematics. 53(2) P.309-P.319

Winter School on Galois Theory Luxembourg, February INTRODUCTION TO PROFINITE GROUPS Luis Ribes Carleton University, Ottawa, Canada

Lemma 1.3. The element [X, X] is nonzero.

120A LECTURE OUTLINES

The Fundamental Group and The Van Kampen Theorem

A Crash Course in Topological Groups

1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M.

Fundamental group. Chapter The loop space Ω(X, x 0 ) and the fundamental group

THE EULER CHARACTERISTIC OF A LIE GROUP

FUNDAMENTAL GROUPS AND THE VAN KAMPEN S THEOREM. Contents

Notes 10: Consequences of Eli Cartan s theorem.

SELF-EQUIVALENCES OF DIHEDRAL SPHERES

Fixed points of abelian actions on S2

Covering Invariants and Cohopficity of 3-manifold Groups

but no smaller power is equal to one. polynomial is defined to be

1. Classifying Spaces. Classifying Spaces

Equivariant xed point theory and related topics

MATH RING ISOMORPHISM THEOREMS

Lecture 2. x if x X B n f(x) = α(x) if x S n 1 D n

The Homotopic Uniqueness of BS 3

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

Elements of solution for Homework 5

Nonabelian Poincare Duality (Lecture 8)

1 Moduli spaces of polarized Hodge structures.

HOMEWORK Graduate Abstract Algebra I May 2, 2004

φ(a + b) = φ(a) + φ(b) φ(a b) = φ(a) φ(b),

AN INTRODUCTION TO THE FUNDAMENTAL GROUP

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

Introduction to higher homotopy groups and obstruction theory

On the K-category of 3-manifolds for K a wedge of spheres or projective planes

Difference Cochains and Reidemeister Traces

FIRST ASSIGNMENT. (1) Let E X X be an equivalence relation on a set X. Construct the set of equivalence classes as colimit in the category Sets.

Groups and Symmetries

Hungry, Hungry Homology

Research Article Morita Equivalence of Brandt Semigroup Algebras

LECTURE 3: RELATIVE SINGULAR HOMOLOGY

Algebra-I, Fall Solutions to Midterm #1

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

Note: all spaces are assumed to be path connected and locally path connected.

GENERALIZED COVERING SPACES AND THE GALOIS FUNDAMENTAL GROUP

Solutions to Problem Set 1

A TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis

Homology lens spaces and Dehn surgery on homology spheres

L E C T U R E N O T E S O N H O M O T O P Y T H E O R Y A N D A P P L I C AT I O N S

Galois Theory, summary

Answers to Final Exam

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

Transcription:

NIELSEN NUMBER OF A COVERING MAP JERZY JEZIERSKI Received 23 November 2004; Revised 13 May 2005; Accepted 24 July 2005 We consider a finite regular covering p H : X H X over a compact polyhedron and a map f : X X admitting a lift f : X H X H. We show some formulae expressing the Nielsen number N f as a linear combination of the Nielsen numbers of its lifts. Copyright 2006 Jerzy Jezierski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction Let X be a finite polyhedron and let H be a normal subgroup of π 1 X. We fix a covering p H : X H X corresponding to the subgroup H, that is, p # π 1 X H = H. We assume moreover that the subgroup H has finite rank, that is, the covering p H is finite. Let f : X X be a map satisfying f H H.Then f admits a lift X H f X H p H 1.1 p H X f X Is it possible to find a formula expressing the Nielsen number N f bythenumbers N f where f runs the set of all lifts? Such a formula seems very desirable since the difficulty of computing the Nielsen number often depends on the size of the fundamental group. Since π 1 X π 1 X, the computation of N f may be simpler. We will translate this problem to algebra. The main result of the paper is Theorem 4.2 expressing N f asa linear combination of {N f i }, where the lifts are representing all the H-Reidemeister classes of f. The discussed problem is analogous to the question about the Nielsen number product formula raised by Brown in 1967 [1]. A locally trivial fibre bundle p : E B and a Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2006, Article ID 37807, Pages 1 11 DOI 10.1155/FPTA/2006/37807

2 Nielsen number of a covering map fibre map f : E E were given and the question was how to express N f byn f and N f b, where f : B B denoted the induced map of the base space and f b was the restriction to the fibre over a fixed point b Fix f. This problem was intensively investigated in 70ties and finallysolved in 1980 by You [4]. At first sufficient conditions for the product formula were formulated: N f = N f N f b assuming that N f b isthesamefor all fixed points b Fix f. Later it turned out that in general it is better to expect the formula N f = N f b1 + + N fbs, 1.2 where b 1,...,b s represent all the Nielsen classes of f. One may find an analogy between the last formula and the formulae of the present paper. There are also other analogies: in both cases the obstructions to the above equalities lie in the subgroups {α π 1 X; f # α = α} π 1 X. 2. Preliminaries We recall the basic definitions [2, 3]. Let f : X X be a self-map of a compact polyhedron. Let Fix f ={x X; f x = x} denote the fixed point set of f. We define the Nielsen relation on Fix f puttingx y if there is a path ω : [0,1] X such that ω0 = x, ω1 = y and the paths ω, fω are fixed end point homotopic. This relation splits the set Fix f into the finite number of classes Fix f = A 1 A s.aclassa Fix f is called essential if its fixed point index ind f ;A 0. The number of essential classes is called the Nielsen number and is denoted by N f. This number has two important properties. It is a homotopy invariant and is the lower bound of the number of fixed points: N f #Fixgforeverymapg homotopic to f. Similarly we define the Nielsen relation modulo a normal subgroup H π 1 X.Weassume that the map f preserves the subgroup H, that is, f # H H. We say that then x H y if ω = fωmodh for a path ω joining the fixed points x and y. This yields H-Nielsen classes and H-Nielsen number N H f. For the details see [4]. Let us notice that each Nielsen class modh splits into the finite sum of ordinary Nielsen classes i.e., classes modulo the trivial subgroup: A = A 1 A s. On the other hand N H f N f. We consider a regular finite covering p : X H X as described above. Let XH = { γ : X H X H ; p H γ = p H } 2.1 denote the group of natural transformations of this covering and let { } lift H f = f : X H X H ; p H f = fp H 2.2 denote the set of all lifts.

Jerzy Jezierski 3 We start by recalling classical results giving the correspondence between the coverings and the fundamental groups of a space. Lemma 2.1. There is a bijection XH = p 1 H x 0 = π 1 X/H which can be described as follows: γ γ x 0 ph γ. 2.3 We fix a point x 0 p 1 H x 0. For a natural transformation γ XH, γ x 0 p 1 H x 0 is a point and γ is a path in X H joining the points x 0 and γ x 0. The bijection is not canonical. It depends on the choice of x 0 and x 0. Let us notice that for any two lifts f, f lift H f there exists a unique γ XH satisfying f = γ f. More precisely, for a fixed lift f, the correspondence XH α α f lift H f 2.4 is a bijection. This correspondence is not canonical. It depends on the choice of f. The group XH is acting on lift H f bytheformula α f = α f α 1 2.5 and the orbits of this action are called Reidemeister classes modh and their set is denoted H f. Then one can easily check [3] 1 p H Fix f Fix f iseitherexactlyoneh-nielsen class of the map f or is empty for any f lift H f 2 Fix f = f p HFix f where the summation runs the set lift H f 3 if p H Fix f p H Fix f then f, f represent the same Reidemeister class in H f 4 if f, f represent the same Reidemeister class then p H Fix f = p H Fix f. Thus Fix f = f p HFix f is the disjoint sum where the summation is over a subset containing exactly one lift f from each H-Reidemeister class. This gives the natural inclusion from the set of Nielsen classes modulo H into the set of H-Reidemeister classes H f H f. 2.6 The H-Nielsen class A is sent into the H-Reidemeister class represented by a lift f satisfying p H Fix f = A. By 1 and 2 such lift exists, by 3 the definition is correct and 4 implies that this map is injective.

4 Nielsen number of a covering map 3. Lemmas For a lift f lift H f, a fixed point x 0 Fix f and an element β π 1 X;x 0 wedefine the subgroups f { = γ XH ; fγ= γ f } C f #,x 0 ;β = { α π 1 X;x0 ; αβ = βf# α } 3.1 C H f#,x 0 ;β = { [α] H π 1 X;x0 /H x0 ; αβ = βf# αmoduloh }. If β = 1 we will write simply C f #,x 0 orc H f #,x 0. We notice that the canonical projection j : π 1 X;x 0 π 1 X;x 0 /Hx 0 induces the homomorphism j : C f #,x 0 ;β C H f #,x 0 ;β. Lemma 3.1. Let f be a lift of f and let à be a Nielsen class of f. Then p H à Fix f is anielsenclassof f. On the other hand if A Fix f is a Nielsen class of f then ph 1 A Fix f splits into the finite sum of Nielsen classes of f. Proof. It is evident that p H à is contained in a Nielsen class A Fix f. Now we show that A p H Ã. Let us fix a point x 0 à and let x 0 = p H x 0. Let x 1 A. Wehaveto show that x 1 p H Ã. Let ω : I X establish the Nielsen relation between the points ω0 = x 0 and ω1 = x 1 and let ht,s denote the homotopy between ω = h,0 and fω= h,1. Then the path ω lifts to a path ω : I X H, ω0 = x 0. Let us denote ω1 = x 1. It remains to show that x 1 Ã. The homotopy h lifts to h : I I X H, h0,s = x 0. Then the paths h,1 and f ω as the lifts of fωstarting from x 0 are equal. Now f x 1 = f ω1 = h1,1 = h1,0 = ω1 = x 1.Thus x 1 Fix f and the homotopy h gives the Nielsen relation between x 0 and x 1 hence x 1 Ã. Now the second part of the lemma is obvious. Lemma 3.2. Let à Fix f beanielsenclassof f.letusdenotea = p H Ã. Then 1 p H : à A isacoveringwherethefibreisinbijectionwiththeimagej # C f #,x π 1 X;x/Hx for x A, 2 the cardinality of the fibre i.e., #ph 1 x à does not depend on x A and we will denote it by J A, 3 if à is another Nielsen class of f satisfying p H à = p H à then the cardinalities of ph 1 x à and ph 1 x à are the same for each point x A. Proof. 1 Since p H is a local homeomorphism, the projection p H : à A is the covering. 2 We will show a bijection φ : jc f # ;x 0 ph 1 x 0 à for a fixed point x 0 A. Let α C f #. Let us fix a point x 0 ph 1 x 0. Let α : I X denote the lift of α starting from α0 = x 0.Wedefineφ[α] H = α1. We show that 2a The definition is correct. Let [α] H = [α ] H.Thenα α modh hence α1 = α 1. Now we show that α1 Ã. Sinceα C f #, there exists a homotopy h between the loops h,0 = α and h,1 = fα. The homotopy lifts to h : I I X H, h0,s = x 0. Then x 1 = h1,s isalsoafixedpointof f and moreover h is the homotopy between the paths ω and f ω.thus x 0, x 1 Fix f are Nielsen related hence x 1 Ã.

Jerzy Jezierski 5 2b φ is onto. Let x 1 p 1 H x 0 Ã. Now x 0, x 1 Fix f are Nielsen related. Let ω : I X H establish this relation f ω ω. Now f p H ω = p H f ω p H ω 3.2 hence p H ω C f # ;x 0. Moreover φ[p H ω] H = ω1 = x 1. 2c φ is injective. Let [α] H,[α ] H jc f # and let α, α : I X H be their lifts starting from α0 = α 0 = x 0. Suppose that φ[α] H = φ[α ] H. This means α1 = α 1 X H. Thus p H α α 1 = α α 1 H which implies [α] H = [α ] H. 3 Let x 0 p H à = p H Ã. Then by the above #p 1 x 0 à = j # C f # = #p 1 x 0 Ã. Lemma 3.3. The restriction of the covering map p H :Fix f p H Fix f is a covering. The fibre over each point is in a bijection with the set f = { γ XH ; fγ= γ f }. 3.3 Proof. Since the fibre of the covering p H is discrete, the restriction p H :Fix f p H Fix f is a locally trivial bundle. Let us fix points x 0 p H Fix f, x 0 ph 1 x 0 Fix f. We recall that α : ph 1 x0 XH, 3.4 where α x XH is characterized by α x x 0 = x, is a bijection. We will show that αph 1 x 0 Fix f = f. Let f x = x for an x ph 1 x 0. Then fα x x0 = f x = x = α x x0 = α x f x 0 3.5 which implies fα x = α x f hence α x f. Now we assume that fα x = α x f.theninparticular fα x x 0 = α x f x 0 which gives f x = α x x 0, f x = x hence x Fix f. We will denote by I AH the cardinality of the subgroup # f fortheh-nielsen class A H = p H Fix f. We will also write I Ai = I AH for any Nielsen class A i of f contained in A. Lemma 3.4. Let A 0 Fix f be a Nielsen class and let à 0 Fix f be a Nielsen class contained in ph 1 A 0.Then,byLemma 3.1 A 0 = p H à 0 and moreover ind f ; ph 1 A0 = IA0 ind f ;A 0 ind f ;à 0 = JA0 ind 3.6 f ;A 0.

6 Nielsen number of a covering map Proof. Since the index is the homotopy invariant we may assume that Fix f isfinite.now for any fixed points x 0 Fix f, x 0 Fix f satisfying p H x 0 = x 0 we have ind f 0 ; x 0 = ind f 0 ;x 0 since the projection p H is a local homeomorphism. Thus ind f ; ph 1 A0 = ind f ; ph 1 x = I A0 ind f ;x x A 0 x A 0 = I A0 ind f ;x = I A0 ind 3.7 f ;A 0. x A 0 Similarly we prove the second equality: ind f ;à 0 = f ; ph 1 x à 0 = x A 0 ind = x A 0 J A0 ind f ;x = J A0 ind x A 0 x p H 1 x à 0 x A 0 ind f ;x f ; x = J A0 ind f ;A 0. 3.8 To get a formula expressing N f bythenumbersn f we will need the assumption that the numbers J A = J A for any two H-Nielsen related classes A,A Fix f. The next lemma gives a sufficient condition for such equality. Lemma 3.5. Let x 0 pfix f. If the subgroups Hx 0,C f,x 0 π 1 X,x 0 commute, that is, h α = α h, foranyh Hx 0, α C f,x 0, then J A = J A for all Nielsen classes A,A pfix f. Proof. Let x 1 pfix f be another point. The points x 0,x 1 pfix f are H-Nielsen related, that is, there is a path ω : [0,1] X satisfying ω0 = x 0, ω1 = x 1 such that ω f ω 1 Hx 0. We will show that the conjugation π 1 X,x0 α ω 1 α ω π 1 X,x1 3.9 sends C f,x 0 ontoc f,x 1. Let α C f,x 0. We will show that ω 1 α ω C f,x 1. In fact f ω 1 α ω = ω 1 α ω ω fω 1 α = α ω fω 1 butthelast equality holds since ω fω 1 Hx 0 andα C f,x 0. Remark 3.6. The assumption of the above lemma is satisfied if at least one of the groups Hx 0, C f,x 0 belongstothecenterofπ 1 X;x 0. Remark 3.7. Let us notice that if the subgroups Hx 0,C f,x 0 π 1 X,x 0 commutethen so do the corresponding subgroups at any other point x 1 p H Fix f. Proof. Let us fix a path ω : [0,1] X. We will show that the conjugation π 1 X,x0 α ω 1 α ω π 1 X,x1 3.10 sends C f,x 0 ontoc f,x 1. Let α C f,x 0. We will show that ω 1 α ω C f,x 1. But the last means f ω 1 α ω = ω 1 α ω hence f ω 1 fα fω= ω 1 α ω f ω 1 α fω= ω 1 α ω ω fω 1 α = α ω fω 1 and the last

Jerzy Jezierski 7 holds since ω fω 1 Hx 0 andα C f,x 0. Now it remains to notice that the elements of Hx 1, C f ;x 1 are of the form ω 1 γ ω and ω 1 α ω respectively for some γ Hx 0 andα C f,x 0. Now we will express the numbers I A, J A in terms of the homotopy group homomorphism f # : π 1 X,x 0 π 1 X,x 0 for a fixed point x 0 Fix f. Let f : X H X H be a lift satisfying x 0 p 1 H x 0 Fix f. We also fix the isomorphism π 1 X;x0 /H x0 α γα XH, 3.11 where γ α x 0 = α1 and α denotes the lift of α starting from α0 = x 0. We will describe the subgroup corresponding to C f by this isomorphism and then we will do the same for the other lifts f lift H f. Lemma 3.8. Proof. fγ α = γ fα f. 3.12 fγ α x0 = f α1 = γ fα x0 = γ fα f x 0, 3.13 where the middle equality holds since f α is a lift of the path fαfrom the point x 0. Corollary 3.9. There is a bijection between f { = γ XH ; fγ= γ f }, C H f = { α π 1 X;x0 /H x0 ; fh# α = α }. 3.14 Thus I A /J A = # f /#j C f = # C H f /j C f. 3.15 Let us emphasize that C f, C H f are the subgroups of π 1 X;x 0 orπ 1 X;x 0 /Hx 0 respectively where the base point is the chosen fixed point. Now will take another fixed point x 1 Fix f and we will denote C f ={α π 1 X;x 1 ; f # α = α} and similarly we define C H f. We will express the cardinality of these subgroups in terms of the group π 1 X;x 0. Lemma 3.10. Let η : [0,1] X be a path from x 0 to x 1. This path gives rise to the isomorphism P η : π 1 X;x 1 π 1 X;x 0 by the formula P η α = ηαη 1.Letδ = η fη 1. Then P η C f = { α π 1 X;x0 ; αδ = δf# α } P η C H f = { [α] π 1 X;x0 /H x0 ; αδ = δf# α modulo H }. 3.16

8 Nielsen number of a covering map Proof. We notice that δ is a loop based at x 0 representing the Reidemeister class of the point x 1 in f = π 1 X;x 0 /. We will denote the right-hand side of the above equalities by C f ;δ andc H f ;δ respectively. Let α π 1 X;x 1. We denote α = P η α = ηα η 1. We will show that α C f ;δ α C f. In fact α C f ;δ αδ = δ fα ηα η 1 η fη 1 = η fη 1 fη fα fη 1 ηα fη 1 = η fα fη 1 α = fα. Similarly we prove the second equality. Thus we get the following formulae for the numbers I A, J A. Corollary 3.11. Let δ π 1 X;x 0 represent the Reidemeister class A f. Then I A = #C H f ; jδ, J A = #jc f ;δ. 4. Main theorem Lemma 4.1. Let A p H Fix f beanielsenclassof f. Then p 1 H A contains exactly I A /J A fixed point classes of f. Proof. Since the projection of each Nielsen class à ph 1 A Fix f isontoa Lemma 3.1, it is enough to check how many Nielsen classes of f cut ph 1 a for a fixed point a A. ButbyLemma 3.3 ph 1 a Fix f contains I A points and by Lemma 3.2 each class in this set has exactly J A common points with ph 1 a. Thus exactly I A /J A Nielsen classes of f are cutting ph 1 a Fix f. Let f : X X beaself-mapofacompactpolyhedronadmittingalift f : X H X H.We will need the following auxiliary assumption: for any Nielsen classes A,A Fix f representing the same class modulo the subgroup H the numbers J A = J A. We fix lifts f 1,..., f s representing all H-Nielsen classes of f, that is, Fix f = p H Fix f 1 ph Fix f s 4.1 is the mutually disjoint sum. Let I i, J i denote the numbers corresponding to a Nielsen class of f A p H Fix f i. By the remark after Lemma 3.3 and by the above assumption these numbers do not depend on the choice of the class A p H Fix f i. We also notice thatlemmas3.3, 3.2 imply I i = # f i = # { γ XH ; γ f i = f i γ } J i = #j C f # ;x = #j { γ π 1 X,xi ; f# γ = γ } 4.2 for an x i A i.

Jerzy Jezierski 9 Theorem 4.2. Let X be a compact polyhedron, P H : X H X a finite regular covering and let f : X X be a self-map admitting a lift f : X H X H. We assume that for each two Nielsen classes A,A Fix f, which represent the same Nielsen class modulo the subgroup H, the numbers J A = J A. Then N f = s Ji /I i N f i, 4.3 i=1 where I i, J i denote the numbers defined above and the lifts f i represent all H-Reidemeister classes of f, corresponding to nonempty H-Nielsen classes. Proof. Let us denote A i = p H Fix f i. Then A i is the disjoint sum of Nielsen classes of f. Let us fix one of them A A i.bylemma 3.1 ph 1 A Fix f i splitsintoi A /J A Nielsen classes in Fix f i. By Lemma 3.4 A is essential iff one hence all Nielsen classes in ph 1 A Fix f i is essential. Summing over all essential classes of f in A i = p A Fix f i we get the number of essential Nielsen classes of f in A i = JA /I A number of essential Nielsen classes of f i in ph 1 A, A 4.4 where the summation runs the set of all essential Nielsen classes contained in A i. But J A = J i, I A = I i for all A A i hence the number of essential Nielsen classes of f in Ai = Ji /I i N f i. 4.5 Summing over all lifts { f i } representing non-empty H-Nielsen classes of f we get N f = i Ji /I i N f i 4.6 since N f equals the number of essential Nielsen classes in Fix f = s i=1 p H Fix f i. Corollary 4.3. If moreover, under the assumptions of Theorem 4.2, C = J i /I i does not depend on i then 5. Examples N f = C s N f i. 4.7 In all examples given below the auxiliary assumption J A = J A holds, since the assumptions of Lemma 3.5 are satisfied in 1, 2, 3 and 5 the fundamental groups are commutative and in 4 the subgroup C f,x 0 istrivial. i=1

10 Nielsen number of a covering map 1 If π 1 X is finite and p : X X is the universal covering i.e., H = 0 then X is simply connected hence for any lift f : X X N f 1 forl f 0 = 0 forl f = 0. 5.1 But L f 0 if and only if the Nielsen class pfix f Fix f is essential Lemma 3.4. Thus N f = number of essential classes = N f 1 + + N f s, 5.2 where the lifts f 1,..., f s represent all Reidemeister classes of f. 2 Consider the commutative diagram S 1 p l S 1 p k 5.3 p k S 1 p l S 1 Where p k z = z k, p l z = z l, k,l 2. The map p k is regarded as k-fold regular covering map. Then each natural transformation map of this covering is of the form αz = exp2πp/k z for p = 0,...,k 1 hence is homotopic to the identity map. Now all the lifts of the map p l are maps of degree l hence their Nielsen numbers equal l 1. On the other hand the Reidemeister relation of the map p l : S 1 S 1 modulo the subgroup H = imp k# is given by α β β = α + pl 1 k Z for a p Z β = α + pl 1 + qk for some p,q Z α = β modulo g.c.d. l 1,k. 5.4 Thus # H p l = g.c.d.l 1,k. Now the sum N p l = g.c.d.l 1,k l 1, 5.5 p l where the summation runs the set having exactly one common element with each H- Reidemeister class equals Np l = l 1iff the numbers k, l 1 are relatively prime. Notice that in our notation I = g.c.d.l 1,k while J = 1. 3 Let us consider the action of the cyclic group Z 8 on S 3 ={z,z C C; z 2 + z 2 = 1} given by the cyclic homeomorphism S 3 z,z exp2πi/8 z,exp2πi/8 z S 3. 5.6 The quotient space is the lens space which we will denote L 8. We will also consider the quotient space of S 3 by the action of the subgroup 2Z 4 Z 8. Now the quotient group is

Jerzy Jezierski 11 also a lens space which we will denote by L 4. Let us notice that there is a natural 2-fold covering p H : L 4 L 8 L 4 = S 3 /Z 4 [z,z ] [z,z ] S 3 /Z 8 = L 8. 5.7 The group of natural transformations L of this covering contains two elements: the identity and the map A[z,z ] = [exp2πi/8 z,exp2πi/8 z ]. Now we define the map f : L 8 L 8 putting f [z,z ] = [z 7 / z 6,z 7 / z 6 ]. This map admits the lift f : L 4 L 4 given by the same formula and the lift A f. We notice that each of the maps f, f, A f is a map of a closed oriented manifold of degree 49. Since H 1 L;Q = H 2 L;Q = 0foralllensspaces, the Lefschetz number of each of these three maps equals; L f = 1 49 = 48 0. On the other hand since the lens spaces are Jiang [3], all involved Reidemeister classes are essential hence the Nielsen number equals the Reidemeister number in each case. Now f = cokerid 7 id = coker 6 id = coker2 id = Z 2. 5.8 Similarly f = Z 2 and A f = f = Z 2 since A is homotopic to the identity. Thus R f = 2 2+2= R f +RA f. 5.9 Since all the classes are essential, the same inequality holds for the Nielsen numbers. 4 If the group {α π 1 X;x/Hx; f # α = α} is trivial for each x Fix f lyinginan essential Nielsen class of f then all the numbers I i = J i = 1 and the sum formula holds. 5 If π 1 X/H is abelian then the rank of the groups C f H# = { α π1 X,x/Hx; f # α = α } = ker id f # : π1 X,x/Hx π 1 X,x/Hx 5.10 does not depend on x Fix f hencei is constant. If moreover π 1 X is abelian then also the group C f # = kerid f # does not depend on x Fix f. Then we get N f = J/I N f 1 + + N f s. 5.11 References [1] R.F.Brown, The Nielsen number of a fibre map, Annals of Mathematics. Second Series 85 1967, 483 493. [2], The Lefschetz Fixed Point Theorem, Scott, Foresman, Illinois, 1971. [3] B. J. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, vol. 14, American Mathematical Society, Rhode Island, 1983. [4] C. Y. You, Fixed point classes of a fiber map, Pacific Journal of Mathematics 100 1982, no. 1, 217 241. Jerzy Jezierski: Department of Mathematics, University of Agriculture, Nowoursynowska 159, 02 766 Warszawa, Poland E-mail address: jezierski acn@waw.pl