arxiv: v1 [math.ac] 3 Jan 2016

Similar documents
THE DEGREE OF THE INVERSE OF A POLYNOMIAL AUTOMORPHISM

Galois Correspondence Theorem for Picard-Vessiot Extensions

Complexity of the Inversion Algorithm of Polynomial Mappings

THE JACOBIAN CONJECTURE: SURVEY OF SOME RESULTS

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

A Simple Proof of Jung Theorem on Polynomial Automorphisms of C 2

A family of local rings with rational Poincaré Series

ON CERTAIN CLASSES OF CURVE SINGULARITIES WITH REDUCED TANGENT CONE

arxiv: v8 [math.ra] 13 Apr 2015

Analytic Conjugation, Global Attractor, and the Jacobian Conjecture

Examples and counterexamples for Markus-Yamabe and LaSalle global asymptotic stability problems Anna Cima, Armengol Gasull and Francesc Mañosas

Section III.6. Factorization in Polynomial Rings

The set of points at which a polynomial map is not proper

The automorphism theorem and additive group actions on the affine plane

arxiv: v1 [math.ag] 27 Oct 2007

On canonical number systems

Skew Cyclic Codes Of Arbitrary Length

Polynomial Maps of n-space Injectivity, Surjectivity, Inverse. The 1939 Jacobian Conjecture of Ott-Heinrich Keller

ON A FAMILY OF ELLIPTIC CURVES

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

A POLAR, THE CLASS AND PLANE JACOBIAN CONJECTURE

Local properties of plane algebraic curves

Roots and Coefficients Polynomials Preliminary Maths Extension 1

On a functional equation connected with bi-linear mappings and its Hyers-Ulam stability

A FINITE VERSION OF THE KAKEYA PROBLEM

Jacobian Conjecture: A Birational Geometry Approach

Arithmetic properties of lacunary sums of binomial coefficients

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

OCR Maths FP1. Topic Questions from Papers. Roots of Polynomial Equations

1. Definition of a Polynomial

8 Appendix: Polynomial Rings

10. Smooth Varieties. 82 Andreas Gathmann

Mathematical Olympiad Training Polynomials

(2) Dividing both sides of the equation in (1) by the divisor, 3, gives: =

(Inv) Computing Invariant Factors Math 683L (Summer 2003)

ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION

ON THE RING OF CONSTANTS FOR DERIVATIONS OF POWER SERIES RINGS IN TWO VARIABLES

Section Properties of Rational Expressions

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

P -adic root separation for quadratic and cubic polynomials

arxiv: v2 [math.ac] 25 Apr 2011

COUNTING SEPARABLE POLYNOMIALS IN Z/n[x]

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4

NEW CONSTRUCTION OF THE EAGON-NORTHCOTT COMPLEX. Oh-Jin Kang and Joohyung Kim

Factorization of integer-valued polynomials with square-free denominator

arxiv: v1 [math.ac] 24 Mar 2015

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

(for k n and p 1,p 2,...,p k 1) I.1. x p1. x p2. i 1. i k. i 2 x p k. m p [X n ] I.2

A note on Nil and Jacobson radicals in graded rings

STABLY FREE MODULES KEITH CONRAD

12. Hilbert Polynomials and Bézout s Theorem

CHAPTER 2 POLYNOMIALS KEY POINTS

arxiv: v1 [math.ag] 1 Apr 2013

WRONSKIANS AND LINEAR INDEPENDENCE... f (n 1)

MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA

An irreducibility criterion for integer polynomials

Section 0.2 & 0.3 Worksheet. Types of Functions

1. Vélu s formulae GENERALIZATION OF VÉLU S FORMULAE FOR ISOGENIES BETWEEN ELLIPTIC CURVES. Josep M. Miret, Ramiro Moreno and Anna Rio

A SURPRISING FACT ABOUT D-MODULES IN CHARACTERISTIC p > Introduction

10. Noether Normalization and Hilbert s Nullstellensatz

A note on Derivations of Commutative Rings

Application of Polynomial Interpolation in the Chinese Remainder Problem

Transformations Preserving the Hankel Transform

arxiv: v1 [math.nt] 3 Jun 2016

Solving Differential Equations Using Power Series

Solving Differential Equations Using Power Series

Math 547, Exam 2 Information.

arxiv: v1 [math.cv] 7 Mar 2019

A CONGRUENTIAL IDENTITY AND THE 2-ADIC ORDER OF LACUNARY SUMS OF BINOMIAL COEFFICIENTS

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Pacific Journal of Mathematics

Finite Elements. Colin Cotter. January 18, Colin Cotter FEM

arxiv: v3 [math.ac] 3 Jul 2012

A SUBSPACE THEOREM FOR ORDINARY LINEAR DIFFERENTIAL EQUATIONS

RATIONAL LINEAR SPACES ON HYPERSURFACES OVER QUASI-ALGEBRAICALLY CLOSED FIELDS

Parity of the Number of Irreducible Factors for Composite Polynomials

Partial permutation decoding for binary linear Hadamard codes

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

arxiv: v1 [math.ac] 28 Dec 2007

MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1

SOLVING FERMAT-TYPE EQUATIONS x 5 + y 5 = dz p

LECTURE 5, FRIDAY

A FAMILY OF PIECEWISE EXPANDING MAPS HAVING SINGULAR MEASURE AS A LIMIT OF ACIM S

CONTRAVARIANTLY FINITE RESOLVING SUBCATEGORIES OVER A GORENSTEIN LOCAL RING

On the lifting of the Nagata automorphism

Sign of Permutation Induced by Nagata Automorphism over Finite Fields

On symmetric square values of quadratic polynomials

HAVE STABLE RANGE ONE

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

Decomposition of a recursive family of polynomials

ON THE GRAPH ATTACHED TO TRUNCATED BIG WITT VECTORS

Positivity of Turán determinants for orthogonal polynomials

Numerical Analysis: Interpolation Part 1

AVERAGING THEORY AT ANY ORDER FOR COMPUTING PERIODIC ORBITS

ISOCHRONICITY FOR TRIVIAL QUINTIC AND SEPTIC PLANAR POLYNOMIAL HAMILTONIAN SYSTEMS

ITERATED FUNCTION SYSTEMS WITH CONTINUOUS PLACE DEPENDENT PROBABILITIES

ON A PROBLEM OF GEVORKYAN FOR THE FRANKLIN SYSTEM. Zygmunt Wronicz

HILBERT FUNCTIONS. 1. Introduction

INVARIANTS OF UNIPOTENT TRANSFORMATIONS ACTING ON NOETHERIAN RELATIVELY FREE ALGEBRAS. Vesselin Drensky

Hecke Operators, Zeta Functions and the Satake map

Transcription:

A new characterization of the invertibility of polynomial maps arxiv:1601.00332v1 [math.ac] 3 Jan 2016 ELŻBIETA ADAMUS Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30-059 Kraków, Poland e-mail: esowa@agh.edu.pl PAWE L BOGDAN Faculty of Mathematics and Computer Science, Jagiellonian University ul. Lojasiewicza 6, 30-348 Kraków, Poland e-mail: pawel.bogdan@uj.edu.pl TERESA CRESPO Departament d Àlgebra i Geometria, Universitat de Barcelona Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain e-mail: teresa.crespo@ub.edu ZBIGNIEW HAJTO Faculty of Mathematics and Computer Science, Jagiellonian University ul. Lojasiewicza 6, 30-348 Kraków, Poland e-mail: zbigniew.hajto@uj.edu.pl Abstract In this paper we present an equivalent statement to the Jacobian conjecture. For a polynomial map F on an affine space of dimension n, we define recursively n finite sequences of polynomials. We give an equivalent condition to the invertibility of F as well as a formula for F 1 in terms of these finite sequences of polynomials. Some examples illustrate the effective aspects of our approach. 1

1 Introduction The Jacobian Conjecture originated in the question raised by Keller in [8] on the invertibility of polynomial maps with Jacobian determinant equal to 1. The question is still open in spite of the efforts of many mathematicians. We recall in the sequel the precise statement of the Jacobian Conjecture, some reduction theorems and other results we shall use. We refer to [5] for a detailed account of the research on the Jacobian Conjecture and related topics. Let K be a field and K[X] = K[X 1,...,X n ] the polynomial ring in the variables X 1,...,X n over K. A polynomial map is a map F = (F 1,...,F n ) : K n K n of the form (X 1,...,X n ) (F 1 (X 1,...,X n ),...,F n (X 1,...,X n )), where F i K[X],1 i n. The polynomial map F is invertible if there exists a polynomial map G = (G 1,...,G n ) : K n K n such that X i = G i (F 1,...,F n ),1 i n. We shall call F a Keller map if the Jacobian matrix ( ) Fi J = X j 1 i n 1 j n has determinant equal to 1. Clearly an invertible polynomial map F has a Jacobian matrix J with non zero determinant and may be transformed into a Keller map by composition with the linear automorphism with matrix J(0) 1. Jacobian Conjecture. Let K be a field of characteristic zero. A Keller map F : K n K n is invertible. In the sequel, K will always denote a field of characteristic 0. For F = (F 1,...,F n ) K[X] n, we define the degree of F as degf = max{degf i : 1 i n}. It is known that if F is a polynomial automorphism of K n, then degf 1 (degf) n 1 (see [1] or [9]). The Jacobian conjecture for quadratic maps was proved by Wang in [10]. We state now the reduction of the Jacobian conjecture to the case of maps of third degree (see [1], [11], [2] and [3]). 2

Proposition 1. a) (Bass-Connell-Wright-Yagzhev) Given a Keller map F : K n K n, there exists a Keller map F : K N K N, N n of the form F = Id + H, where H(X) is a cubic homogeneous map and having the following property: if F is invertible, then F is invertible too. b) (Drużkowski) The cubic part H may be chosen of the form ( ) N N ( a 1j X j ) 3,...,( a Nj X j ) 3 j=1 and with the matrix A = (a ij ) 1 i N 1 j N j=1 satisfying A 2 = 0. Polynomial maps in the Drużkowski form are easier to handle than general cubic homogeneous polynomial maps. However we note the following result. Proposition 2 ([6] Proposition 2.9). Let r N. If the Jacobian Conjecture holds for all cubic homogeneous polynomial maps in r variables, then for all n N the Jacobian Conjecture holds for all polynomial maps of the form with A M n (K) and ranka r. F = X +(AX) 3 In[4] Drużkowski and Rusek give the following inversion formula for cubic homogeneous polynomial maps. Theorem 3 ([4], Theorem 2.1). Let H : K n K n be a cubic homogeneous polynomial map, F = Id H and let G = j=0 G j, where G j : K n K n is a homogeneous polynomial map of degree j, be the formal inverse of F. Then G 1 = Id, G 2k+1 = p+q+r=k 1 ϕ H(G 2p+1,G 2q+1,G 2r+1 ), k 1, G 2k = 0, k 1, whereϕ H denotesthe unique symmetric trilinearmapsuch thatϕ H (X,X,X) = H(X). 3

As a corollary, they obtain that, if for some natural number k, we have G 3 k +2 = = G 3 k+1 = 0, (1) then F is a polynomial automorphism and degf 1 3 k. However, in [7], Gorni and Zampieri present an example of a polynomial automorphism of C 4 for which condition (1) is not satisfied for any k (see example 7 below). In this paper we present an algorithm providing a new characterization of the invertibility of polynomial maps. Given a polynomial map F : K n K n of the form F = Id + H, where H(X) has lower degree 2, we define recursively, for1 i n, asequencepk i ofpolynomialsink[x]withpi 0 = X i such that F is invertible if and only if the alternating sum j=0 ( 1)j Pj(X) i satisfies a certain relation with Pm i for all i = 1,...,n, where m is an integer given explicitly and depending on the degrees of the components of H. When F is invertible, its inverse F 1 is given in terms of these alternating sums of polynomials. In the last section, we apply the algorithm to several examples of polynomial maps, including the one of Gorni and Zampieri. 2 A sufficient condition for invertibility Let us consider a polynomial map F : K n K n. Given a polynomial P(X 1,...,X n ) K[X] = K[X 1,...,X n ], we define the following sequence of polynomials in K[X], P 0 (X 1,...,X n ) = P(X 1,...,X n ), P 1 (X 1,...,X n ) = P 0 (F 1,...,F n ) P 0 (X 1,...,X n ), and, assuming P k 1 is defined, P k (X 1,...,X n ) = P k 1 (F 1,...,F n ) P k 1 (X 1,...,X n ). The following lemma is easy to prove. Lemma 4. For a positive integer m, we have P(X 1,...,X n ) = ( 1) l P l (F 1,...,F n )+( 1) m P m (X 1,...,X n ). l=0 4

In particular, if we assume that for some integer m, P m (X 1,...,X n ) = 0, then P(X 1,...,X n ) = ( 1) l P l (F 1,...,F n ). l=0 Corollary 5. Let F : K n K n be a polynomial map. Let us consider the polynomial sequence (P i k ) constructed with P = X i, i = 1,...,n. Let us assume that for all i = 1,...,n, there exists an integer m i such that P i m i = 0. Then the inverse map G of F is given by G i (Y 1,Y 2,...,Y n ) = m i 1 l=0 ( 1) l P i l(y 1,Y 2,...,Y n ), 1 i n. The condition Pm i i = 0, for some integer m i for all i = 1,...,n, is not necessary for the invertibility of F (see example 7). However we give in theorem 8 an equivalent condition to the invertibility of F using a finite number of terms of the polynomial sequences (Pk i ). The following lemma gives a precise description of the polynomials Pk i. Lemma 6. Let F : K n K n be a polynomial map of the form F 1 (X 1,...,X n ) = X 1 +H 1 (X 1,...,X n ). F n (X 1,...,X n ) = X n +H n (X 1,...,X n ), where H i (X 1,...,X n ) is a polynomial in X 1,...,X n of degree D i and lower degree d i, with d i 2, for i = 1,...,n. Let d = mind i,d = maxd i. Then for the polynomial sequence (P i k ) constructed with P = X i we have that P i k is a polynomial of degree D k 1 D i and lower degree (k 1)(d 1)+d i. In particular, if each H i is a homogeneous polynomial of degree d, we have (dk 1)/(d 1) k+1 Pk i = j=1 Q kj, where Q kj is a homogeneous polynomial in X 1,...,X n of degree (k + j 1)(d 1)+1. 5

Proof. Let us consider, for a fixed i, the polynomial sequence P i 0 (X 1,...,X n ) = X i, P i 1(X 1,...,X n ) = F i (X 1,...,X n ) X i = H i (X 1,...,X n ), P i 2 (X 1,...,X n ) = H i (F 1,...,F n ) H i (X 1,...,X n ),. We write the Taylor series for the polynomial H i (F 1,...,F n ) = H i (X 1 + H 1,...,X n +H n ) and obtain where P i 2 (X 1,...,X n ) = H i (F 1,...,F n ) H i (X 1,...,X n ) = Q i 21 +Qi 22 +...+Qi 2D i Q i 22 = 1 2! Q i 2D i = 1 D i! Q i 21 = n n j=1 1 j 1,j 2 n n j 1,j 2,...,j Di =1. H i X j H j 2 H i X j1 X j2 H j1 H j2 D i H i x j1... x jdi H j1...h jdi. The polynomial P2 i has lower degree equal to the lower degree of Qi 21, which is d+d i 1, and degree equal to the degree of Q i 2D i, which is D D i. Let us prove by induction that Pk i is a polynomial of degree Dk 1 D i and lower degree (k 1)(d 1) + d i. We have already seen it for k = 2. Let us assume Pk 1 i is a polynomial of degree Dk 2 D i and lower degree (k 2)(d 1)+d i. We want to prove the property for Pk i. We have P i k(x 1,...,X n ) = P i k 1(F 1,...,F n ) P i k 1(X 1,...,X n ) If Q(X 1,...,X n ) is a polynomial of degree S and lower degree s, Q(F 1,...,F n ) Q(X 1,...,X n ) = n Q j=1 H j +...+ 1 n S! j X 1,...,j S j 6 S Q x j1..., x js H j1...h js

is a polynomial of degree S D and lower degree s 1 + d. Hence P i k 1 (F 1,...,F n ) P i k 1 (X 1,...,X n ) is a polynomial of degree D k 1 D i and lower degree (k 1)(d 1)+d i. The homogeneous case is proved analogously using induction. Example 7. We shall consider the polynomial automorphism of C 4 given in [7] to prove that the condition P i m i = 0, for some m i, for all i, is not a necessary condition to the invertibility of F. Let p := X 1 X 3 +X 2 X 4 and define F by F 1 = X 1 +px 4 F 2 = X 2 px 3 F 3 = X 3 +X 3 4 F 4 = X 4 Clearly P 4 1 = 0 and P 3 2 = 0. But P 1 j and P 2 j are not zero for any j. In order to prove that P 1 j 0, we shall prove by induction that the homogeneous summand of lowest degree Q 1 j1 of P 1 j has the following form depending on the parity of j, for all j 2. Q 1 2k,1 = X 1 X4 4k Q 1 2k+1,1 = X 1 X 3 X4 4k+1 +X 2 X4 4k+2 BycalculationweobtainQ 1 21 = X 1X4 4,Q1 31 = X 1X 3 X4 5+X 2X4 6. Now, Q1 2k,1 = X 1 X4 4k Q 1 2k+1,1 = X4k 4 H 1 + 4kX 1 X4 4k 1 H 4 = X4 4k (X 1 X 3 + X 2 X 4 )X 4 = X 1 X 3 X4 4k+1 +X 2 X4 4k+2 and Q 1 2k+1,1 = X 1X 3 X4 4k+1 +X 2 X4 4k+2 Q 1 2k+2,1 = X 3 X 4k+1 4 H 1 +X 4k+2 4 H 2 +X 1 X 4k+1 4 H 3 +((4k+1)X 1 X 3 X 4k 4 +(4k+2)X 2 X 4k+1 4 )H 4 = X 3 X4 4k+1 (X 1 X 3 + X 2 X 4 )X 4 X4 4k+2 (X 1 X 3 + X 2 X 4 )X 3 + X 1 X 4k+4 X 1 X 4(k+1) 4. 4 = Analogously, in order to prove that Pj 2 0, we shall prove by induction that the homogeneous summand of lowest degree Q 2 j1 of Pj 2 has the following form depending on the parity of j, for all j 2. Q 2 2k,1 = 2kX 1 X 3 X4 4k 1 (2k 1)X 2 X4 4k Q 2 2k+1,1 = X 1 X3 2X4k 4 X 2 X 3 X4 4k+1 2kX 1 X4 4k+2 By calculation we obtain Q 2 21 = 2X 1 X 3 X4 3 X 2 X4,Q 4 1 31 = X 1 X3X 2 4 4 X 2 X 3 X4 5 2X 1X4 6. Now Q2 2k,1 = 2kX 1X 3 X4 4k 1 (2k 1)X 2 X 4k 4 4 Q 2 2k+1,1 = 2kX 3X 4k 1 4 H 1 (2k 1)X 4k 4 H 2 2kX 1 X 4k 1 4 H 3 = X 1 X 2 3X 4k X 2 X 3 X4 4k+1 2kX 1 X4 4k+2 andq 2 2k+1,1 = X 1X3 2X4k 4 X 2X 3 X4 4k+1 2kX 1 X4 4k+2 7

Q 2 2k+2,1 = ( X2 3 X4k 4 2kX4k+2 4 )H 1 X 3 X4 4k+1 H 2 (2X 1 X 3 X4 4k+X 2X4 4k+1 )H 3 = (2k +2)X 1 X 3 X4 4k+3 (2k +1)X 2 X4 4k+4. 3 An equivalent condition to invertibility The following theorem gives an equivalent condition to the invertibility of F using a finite number of terms in the polynomial sequences (P i k ). Theorem 8. Let F : K n K n be a polynomial map of the form F 1 (X 1,...,X n ) = X 1 +H 1 (X 1,...,X n ). F n (X 1,...,X n ) = X n +H n (X 1,...,X n ), where H i (X 1,...,X n ) is a polynomial in X 1,...,X n of degree D i and lower degree d i, with d i 2, for i = 1,...,n. Let d = mind i,d = maxd i. The following conditions are equivalent: 1) F is invertible. 2) For i = 1,...,n and every m > Dn 1 d i d 1 +1, we have ( 1) j Pj(X) i = G i (X)+Rm(X). i j=0 where G i (X) is a polynomial of degree D n 1, independent of m, and Rm i (X) is a polynomial satisfying Ri m (F) = ( 1)m+1 Pm i (X) (with lower degree ()(d 1)+d i > D n 1 ). 3) For i = 1,...,n and m = Dn 1 d i d 1 +1 +1, we have ( 1) j Pj i (X) = G i(x)+rm i (X). j=0 where G i (X) is a polynomial of degree D n 1, and Rm i (X) is a polynomial satisfying Rm i (F) = ( 1)m+1 Pm i (X). 8

Moreover the inverse G of F is given by G i (Y 1,...,Y n ) = ( 1) l Pi l (Y 1,...,Y n ), i = 1,...,n, l=0 where P i l is the sum of homogeneous summands of P i l of degree D n 1 and m is an integer > Dn 1 d i d 1 +1. Proof. 1) 2): If F is invertible, then G = F 1 has degree D n 1. Applying lemma 4, we obtain, for any positive integer m, X i = ( 1) l P l (F 1,...,F n )+( 1) m P m (X 1,...,X n ). l=0 Since X i = G i (F 1,...,F n ), we obtain the following equality of polynomials in the variables Y 1,...,Y n. G i (Y 1,...,Y n ) = l=0 ( 1)l P l (Y 1,...,Y n ) which implies +( 1) m P m (G 1 (Y 1,...,Y n ),...,G n (Y 1,...,Y n )), l=0 ( 1)l P l (Y 1,...,Y n ) = G i (Y 1,...,Y n ) Hence, writing ( 1) m P m (G 1 (Y 1,...,Y n ),...,G n (Y 1,...,Y n )), R i m (Y 1,...,Y n ) := ( 1) m P m (G 1 (Y 1,...,Y n ),...,G n (Y 1,...,Y n )), we obtain 2). Now, G i is a polynomial of degree at most D n 1 in Y 1,...,Y n. For an integer m such that m > Dn 1 d i + 1, P d 1 m is a polynomial in the variablesx 1,...,X n oflowerdegreebiggerthand n 1, hencethelower degree ofp m (G 1 (Y 1,...,Y n ),...,G n (Y 1,...,Y n ))in thevariables Y 1,...,Y n is bigger than D n 1. Therefore, the sum of homogeneous summands of degrees not bigger than D n 1 in the righthand side of the equality above is precisely l=0 ( 1)l Pi l (Y 1,Y 2,...,Y n ). 9

2) 3) is obvious. 3) 1): Let us assume that for m = Dn 1 d i +1 +1, we have d 1 ( 1) j Pj(X) i = G i (X)+Rm(X), i j=0 where G i (X) is a polynomial of degree D n 1 and Rm i (X) is a polynomial satisfying Rm(F) i = ( 1) m+1 Pm(X). i By lemma 4, we have We obtain then X i = ( 1) l Pl(F i 1,...,F n )+( 1) m Pm(X i 1,...,X n ). l=0 X i = G i (F)+R i m (F)+( 1)m P i m (X) = G i (F)+( 1) m+1 P i m(x)+( 1) m P i m(x) = G i (F). Hence F is invertible with inverse G = (G 1,...,G n ). 4 Examples 4.1 We consider the following nonhomogeneous Keller map in dimension 2. { F1 = X 1 +(X 2 +X 3 1 )2 F 2 = X 2 +X 3 1 Let us write H 1 := (X 2 +X 3 1) 2,H 2 := X 3 1. With the notations in theorem 8, we have d 1 = 2,d 2 = 3,d = 2,D = 6 and we obtain 5 i=0 ( 1) i P 1 i (X) = X 1 X 2 2 +R1 6 (X), where R6(X) 1 is a polynomial of degree 6 5 and lower degree 9 satisfying R6 1(F) = P1 6 (X), and 10

4 ( 1) i Pi 2 (X) = X 2 X1 3 +3X2 1 X2 2 3X 1X2 4 +X6 2 +R2 5 (X), i=0 where R 2 5 (X) is a polynomial of degree 3 63 and lower degree 8 satisfying R 2 5(F) = P 2 5(X). Hence the inverse of F is given by { G1 = X 1 X 2 2 4.2 G 2 = X 2 X 3 1 +3X2 1 X2 2 3X 1X 4 2 +X6 2 We consider the following Keller map F in dimension 5. F 1 = X 1 +a 1 X 3 4 +a 2x 2 4 X 5 +a 3 X 4 X 2 5 +a 4x 3 5 + a 2c 5 X 2 X 2 4 + 2a 3c 5 X 2 X 4 X 5 + 3a 4c 5 X 2 X 2 5 a 2e 2 X 3 X 2 4 2a 3e 2 X 3 X 4 X 5 3a 4e 2 X 3 X 2 5 + a 3 5 X2 2 X 4 2 + a 3e 2 2 X2 3 X 4 2 + 3a 4 5 X2 2 X 5 2 + 3a 4e 2 2 X3 3 X 5 2 2a 3c 5 e 2 X 2 X 3 X 4 2 + a 4e 3 5 X3 2 c 3 2 3a 4 5 e 2X 2 2 X 3 c 3 2 6a 4c 5 e 2 X 2 X 3 X 5 2 + 3a 4c 5 e 2 2X 2 X 2 3 c 3 2 a 4e 3 2X 3 3 c 3 2 F 2 = X 2 +b 1 X 3 4 F 3 = X 3 +c 5 X 2 X 2 4 +c 1X 3 4 +X 4 4 X 5 e 2 X 3 X 2 4 F 4 = X 4 F 5 = X 5 +e 2 X 2 4 X 5 + c 5e 2 X 2 X 2 4 e2 2X 3 X 2 4 (b 1c 5 c 1 e 2 )X 3 4 with parameters a 1,a 2,a 3,a 4,b 1,c 1,,c 5,e 2. By applying the algorithm we obtain P i 2 = 0, for i = 1,...,5, hence F is a quasi-translation, i.e. F 1 = 2Id F. 11

4.3 We consider the following Keller map F in dimension 6 F 1 = X 1 +a 5 e 1 (X 1 +X 2 ) 3 /a 4 +a 4 X 2 X 4 X 6 +a 5 X 4 X 5 X 6 F 2 = X 2 a 5 e 1 (X 1 +X 2 ) 3 /a 4 F 3 = X 3 +c 1 X 3 1 +(X 1 +X 5 ) 3 +c 3 (X 1 +X 2 ) 3 +c 4 (X 1 +X 4 ) 3 +c 5 X 3 6 F 4 = X 4 +d 4 X 2 X 2 6 +a 5d 4 X 5 X 2 6 /a 4 F 5 = X 5 +e 1 (X 1 +X 2 ) 3 F 6 = X 6 with parameters a 4,a 5,c 1,,c 3,c 4,c 5,d 4,e 1. Denoting G = F 1 and taking variables (Y 1,...,Y 6 ) for G, we obtain P 1 8 = 0, P 2 9 = 0 and G 1 = (20a 4 5 e 1Y 9 6 d3 4 Y 3 2 Y 3 5 a3 4 6a4 5 e 1Y 4 6 Y 4Y 3 5 d 4Y 2 a 2 4 +a 5e 1 a 6 4 Y 9 6 Y 6 2 d3 4 +3Y 3 6 a 5e 1 Y 4 2 d 4a 4 4 +3a 5 e 1 a 5 4Y6 6 Y2 5 d 2 4 a 5 e 1 a 6 4Y2 3 Y4 3 Y6 3 +a 5 4Y 2 Y 4 Y 6 Y6 3 a 5 4d 4 Y2 2 +a 7 5e 1 Y6 9 d 3 4Y5 6 +a 5 e 1 a 3 4 Y 3 1 +a 5e 1 a 3 4 Y 3 2 Y 1a 4 4 3a2 5 e 1a 5 2 Y 3 4 Y 3 6 Y 5 6a 5 e 1 Y 1 Y 2 2 Y 4Y 6 a 4 4 +3a 5 5 e 1Y6 6Y 1d 2 4 Y 5 4a 4 +12a 4 5 e 1Y6 6Y 2 2d2 4 Y 5 3a2 4 6a4 5 e 1Y6 4Y 1Y 4 d 4 Y5 3a2 4 +3a 5e 1 a 3 4 Y 1Y2 2 6a 5 e 1 a 5 4Y 4 6 Y 1 Y 3 2 Y 4 d 4 +3Y 3 6 a 5 e 1 Y 2 1 Y 2 2 d 4 a 4 4 +3a 5 e 1 a 5 4Y 1 Y 2 6 30a 3 5e 1 Y 7 6 Y 4 d 2 4Y 3 5 a 4 4 +6Y 3 6 a 5e 1 Y 1 Y 3 2 d 4a 4 4 +15a3 5 e 1Y 9 6 d3 4 Y 4 5 a4 4 +6a2 5 e 1a 5 4 Y 9 6 Y 5 2 d3 4 Y 5 18a 2 5 e 1Y 4 6 Y 3 2 Y 4d 4 Y 5 a 4 4 +12a 2 5 e 1a 5 4 Y 5 6 Y 3 4 d 4Y 5 15a 2 5 e 1a 5 4 Y 7 6 Y 4 2 Y 4d 2 4 Y 5 +12a 2 5 e 1Y 6 6 Y 1Y 3 2 d2 4 Y 5a 4 4 18a2 5 e 1Y 4 6 Y 1Y 2 2 Y 4d 4 Y 5 a 4 4 3a 5 e 1 a 6 4Y 7 6 Y 5 2 Y 4 d 2 4 +3a 5 e 1 a 3 4Y 2 1 Y 2 +18a 3 5e 1 Y 5 4 d 5 a 4 4 +12a 2 5e 1 Y 6 6 Y 4 2 d 2 4Y 5 a 4 4 +3a 5 e 1 a 5 4 Y 6 6 Y 1Y 4 2 d2 4 +3a 5e 1 a 6 4 Y 5 6 Y 4 4 d 4 6a 5 e 1 Y 4 6 a5 4 Y 4 2 Y 4d 4 +a 5 Y 4 Y 5 Y 6 a 4 4 +15a 5 5e 1 Y 9 6 d 3 4Y 2 2 Y 4 5 a 2 4 +6a 6 5e 1 Y 9 d 3 4Y 5 5 a 4 18a 3 5e 1 Y 4 2 Y 4 d 5 a 3 4 +18a 3 5e 1 Y 6 6 Y 1 d 2 4Y 2 5 a 3 4 3a 6 5 e 1Y 7 6 Y 4Y 5 5 d2 4 a 4 18a 3 5 e 1Y 4 6 Y 1Y 4 d 4 Y 5 a3 4 +6a3 5 e 1Y 3 6 Y 1d 5 Y 2a 2 4 30a4 5 e 1Y 7 6 Y 4d 2 2 Y 3 5 a3 4 +12a 4 5 e 1Y 5 Y 2 4 d 4Y 3 5 a3 4 +12a4 5 e 1Y 6 6 Y 1d 2 Y 3 5 a2 4 +3a5 5 e 1Y 6 6 d2 4 Y 4 5 Y 2a 4 +3a 3 5 e 1Y 3 1 d 4Y 2 5 a2 4 +18a 3 5e 1 Y 6 6 Y 3 2 d 2 4Y 2 5 a 3 4 +6a 2 5e 1 Y 1 Y 6 Y 5 a 4 4 3a 5 e 1 Y 3 2 Y 4 Y 6 a 4 4 2Y 3 a 5 d 4 Y 5 a 4 4 +3a 5 5 e 1Y6 5Y 4 2Y 5 4d 4a 2 4 3a3 5 e 1Y 2 Y4 3Y 6 3Y 5 2a4 4 3a 5e 1 Y1 2Y 2Y 4 Y 6 a 4 4 +3a 5e 1 a 5 3Y 4 2Y 6 2 +6a 2 5 e 1Y 2 6 Y 5a 4 4 3a2 5 e 1Y 4 Y 5 Y 2 a3 4 a2 5 Y 3 6 d 4Y 2 5 a3 4 3a2 5 e 1Y 2 1 Y 4Y 5 Y 6 a 3 4 +3a 3 5e 1 Y 2 5 Y 2 a 3 4 +6Y 3 6 a 2 5e 1 Y 2 1 Y 2 d 4 Y 5 a 3 4 15a 5 5e 1 Y 7 Y 4 d 2 4Y 4 5 a 2 4 +12Y 3 6 a 2 5e 1 Y 1 Y 2 2 d 4 Y 5 a 3 4 +6Y6 3a2 5 e 1Y2 3d 4Y 5 a 3 4 +3a3 5 e 1Y6 3d 4Y5 2Y 2 2a2 4 +3a3 5 e 1Y 1 Y4 2Y 5 2Y 6 2a3 4 6a2 5 e 1Y 1 Y 4 Y 5 Y a 3 4 a 4 5e 1 Y4 3 Y5 3 Y6 3 a 3 4)/a 4 4; 12

G 2 = (20a 4 5 e 1Y 9 6 d3 4 Y 3 2 Y 3 5 a3 4 6a4 5 e 1Y 4 6 Y 4Y 3 5 d 4Y 2 a 2 4 +a 5e 1 a 6 4 Y 9 6 Y 6 2 d3 4 +3Y 3 6 a 5e 1 Y 4 2 d 4a 4 4 +3a 5 e 1 a 5 4Y6 6 Y2 5 d 2 4 a 5 e 1 a 6 4Y2 3 Y4 3 Y6 3 +a 7 5e 1 Y6 9 d 3 4Y5 6 +a 5 e 1 a 3 4Y1 3 +a 5 e 1 a 3 4 Y 3 2 3a2 5 e 1a 5 2 Y 3 4 Y 3 6 Y 5 6a 5 e 1 Y 1 Y 2 2 Y 4Y 6 a 4 4 +3a5 5 e 1Y 6 6 Y 1d 2 4 Y 4 5 a 4 +12a 4 5e 1 Y 6 2 d 2 4Y 3 5 a 2 4 6a 4 5e 1 Y 4 6 Y 1 Y 4 d 4 Y 3 5 a 2 4 +3a 5 e 1 a 3 4Y 1 Y 2 2 6a 5 e 1 a 5 4Y 4 6 Y 1 Y 3 2 Y 4 d 4 +3Y 3 6 a 5 e 1 Y 2 1 Y 2 2 d 4 a 4 4 +3a 5 e 1 a 5 4Y 1 Y 2 6 30a 3 5e 1 Y 7 6 Y 4 d 2 4Y 3 5 a 4 4 +6Y 3 6 a 5 e 1 Y 1 Y 3 2 d 4 a 4 4 +15a 3 5 e 1Y 9 6 d3 4 Y 4 5 a4 4 +6a2 5 e 1a 5 4 Y 9 6 Y 5 2 d3 4 Y 5 18a 2 5 e 1Y 4 6 Y 3 2 Y 4d 4 Y 5 a 4 4 +12a2 5 e 1a 5 4 Y 5 6 Y 3 4 d 4Y 5 15a 2 5e 1 a 5 4Y 7 6 Y 4 2 Y 4 d 2 4Y 5 +12a 2 5e 1 Y 6 6 Y 1 Y 3 2 d 2 4Y 5 a 4 4 18a 2 5e 1 Y 4 6 Y 1 Y 2 2 Y 4 d 4 Y 5 a 4 4 3a 5 e 1 a 6 4Y 7 6 Y 5 2 Y 4 d 2 4 +3a 5 e 1 a 3 1 Y 2 +18a 3 5 e 1Y 5 4 d 4Y 2 5 a4 4 +12a2 5 e 1Y 6 6 Y 4 2 d2 4 Y 5a 4 4 +3a 5e 1 a 5 4 Y 6 6 Y 1Y 4 2 d2 4 +3a 5 e 1 a 6 4 Y 5 6 Y 4 4 d 4 6a 5 e 1 Y 4 6 a5 4 Y 4 2 Y 4d 4 +15a 5 5 e 1Y 9 6 d3 2 Y 4 5 a2 4 +6a6 5 e 1Y 9 d 3 4 Y 5 5 a 4 18a 3 5e 1 Y 4 2 Y 4 d 5 a 3 4 +18a 3 5e 1 Y 6 6 Y 1 d 2 4Y 2 5 a 3 4 3a 6 5e 1 Y 7 6 Y 4 Y 5 5 d 2 4a 4 18a 3 5e 1 Y 4 6 Y 1 Y 4 d 4 Y 5 a 3 4 +6a 3 5 e 1Y 3 6 Y 1d 5 Y 2a 2 4 30a4 5 e 1Y 7 6 Y 4d 2 2 Y 3 5 a3 4 +12a4 5 e 1Y 5 Y 2 4 d 4Y 3 5 a3 4 +12a4 5 e 1Y 6 6 Y 1d 2 Y 3 5 a2 4 +3a 5 5 e 1Y 6 6 d2 4 Y 4 5 Y 2a 4 +3a 3 5 e 1Y 3 1 d 4Y 2 5 a2 4 +18a3 5 e 1Y 6 6 Y 3 2 d2 5 a3 4 +6a2 5 e 1Y 1 Y 6 Y 5a 4 4 3a 5 e 1 Y 3 2 Y 4 Y 6 a 4 4 +3a 5 5e 1 Y 5 4 Y 4 5 d 4 a 2 4 3a 3 5e 1 Y 2 Y 3 4 Y 3 5 a 4 4 3a 5 e 1 Y 2 1 Y 2 Y 4 Y 6 a 4 4 +3a 5 e 1 a 5 4 Y 3 6 +6a2 5 e 1Y 2 6 Y 5a 4 4 3a2 5 e 1Y 4 Y 5 Y 2 a3 4 3a2 5 e 1Y 2 1 Y 4Y 5 Y 6 a 3 4 +3a 3 5e 1 Y 2 5 Y 2 a 3 4 +6Y 3 6 a 2 5e 1 Y 2 1 Y 2 d 4 Y 5 a 3 4 15a 5 5e 1 Y 7 Y 4 d 2 4Y 4 5 a 2 4 +12Y 3 6 a 2 5e 1 Y 1 Y 2 2 d 4 Y 5 a 3 4 +6Y6 3a2 5 e 1Y2 3d 4Y 5 a 3 4 +3a3 5 e 1Y6 3d 4Y5 2Y 2 2a2 4 +3a3 5 e 1Y 1 Y4 2Y 5 2Y 6 2a3 4 6a2 5 e 1Y 1 Y 4 Y 5 Y a 3 4 a 4 5 e 1Y4 3Y 5 3Y 6 3a3 4 +Y 2a 4 4 )/a4 4. Now, G 6 = Y 6 G 5 = Y 5 e 1 (G 1 +G 2 ) 3 G 4 = Y 4 d 4 G 2 G 2 6 a 5 d 4 G 5 G 2 6/a 4 G 3 = Y 3 c 1 G 3 1 (G 1 +G 5 ) 3 c 3 (G 1 +G 2 ) 3 c 4 (G 1 +G 4 ) 3 +c 5 G 3 6. 4.4 Let us consider again the polynomial automorphism of C 4 given in example 7. We have p := X 1 X 3 +X 2 X 4 and F defined by We obtain F 1 = X 1 +px 4 F 2 = X 2 px 3 F 3 = X 3 +X 3 4 F 4 = X 4 13 j=0 ( 1) j P 1 j (X) = X 1 X 1 X 3 X 4 X 2 X 2 4 +X 1X 4 4 +R1 14 (X), 13

where R14(X) 1 = 35X 1 X 3 X4 33 10X 1 X 3 X4 45 X 1 X 3 X4 49 36X 1 X 3 X4 41 6X 1 X 3 X4 29 56X 1 X 3 X4 37 X 1X4 28 6X 2X4 30 15X 1X4 32 35X 2X4 34 35X 1 X4 36 56X 2X4 38 28X 1X4 40 36X 2X4 42 9X 1X4 44 10X 2 X4 46 X 1 X4 48 X 2 X4 50 satisfies R 1 14(F)+P 1 14(X) = 0. And 13 j=0 where ( 1) j P 2 j (X) = X 2 2X 1 X 3 X 3 4 +X 2X 3 X 4 X 2 X 4 4 +X 1X 6 4 +X 1X 2 3 +R2 14 (X), R14 2 (X) = 14X 1X 3 X4 27 +6X 2X 3 X4 29 +282X 1X 3 X4 31 +6X 1X3 2X28 4 +35X 2X 3 X4 33 +910X 1 X 3 X4 35 +35X 1 X3X 2 4 32 +56X 2 X 3 X4 37 +1064X 1 X 3 X4 39 +56X 1 X3X 2 4 36 +36X 2 X 3 X4 41 +558X 1X 3 X4 43 +36X 1X3 2X40 4 +12X 1X 3 X4 51 +13X 2X4 28 +77X 1 X4 30 +267X 2X4 32 +440X 1X4 34 +875X 2X4 36 +693X 1X4 38 +1036X 2 X4 40 +440X 1 X4 42 +549X 2 X4 44 +121X 1 X4 46 +133X 2 X4 48 +12X 1 X4 50 +12X 2X4 52 +10X 1X3 2X44 4 +134X 1X 3 X4 47 +10X 2X 3 X4 45 +X 1 X3 2X48 4 +X 2X 3 X4 49 satisfies R 2 14 (F)+P2 14 (X) = 0. Hence G = F 1 is given by G 1 = X 1 X 1 X 3 X 4 X 2 X 2 4 +X 1X 4 4 G 2 = X 2 2X 1 X 3 X 3 4 +X 2X 3 X 4 X 2 X 4 4 +X 1X 6 4 +X 1X 2 3 G 3 = X 3 X 3 4 G 4 = X 4 Acknowledgments. E. Adamus acknowledges support of the Polish Ministry of Science and Higher Education. T. Crespo and Z. Hajto acknowledge support of grant MTM2012-33830, Spanish Science Ministry. 14

References [1] H. Bass, E. Connell and D. Wright, The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330. [2] L. Drużkowski, An effective approach to Keller s Jacobian conjecture, Math. Ann. 264 (1983), 303-313. [3] L. Drużkowski, New reduction in the Jacobian conjecture, Univ. Iagel. Acta Math. No. 39 (2001), 203-206. [4] L. Drużkowski, K. Rusek, The formal inverse and the Jacobian conjecture, Ann. Polon. Math. 46 (1985), 85-90. [5] A. van der Essen, Polynomial automorphisms and the Jacobian Conjecture, Progress in Mathematics 190, Birkhäuser Verlag, 2000. [6] A. van der Essen, Seven lectures on polynomial automorphisms, Automorphisms of affine spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, 3-39. [7] G. Gorni, G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse, Ann. Polon. Math. 64 (1996), 285-290. [8] O. H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306. [9] K. Rusek and T. Winiarski, Polynomial automorphisms of C n, Univ. Iagell. Acta Math. 24 (1984), 143-149. [10] S. Wang, A Jacobian criterion for separability, J. Algebra 65 (1980), 453-494. [11] A.V.Yagzhev, On a problemof O.H. Keller,Sibirsk.Mat.Zh.21(1980), 747-754. 15