Solid State Dye Solar Cells: Development of Photoanode Architecture for Conversion Efficiency Improvement

Similar documents
Yixin Zhao and Kai Zhu*

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Novel Inorganic-Organic Perovskites for Solution Processed Photovoltaics. PIs: Mike McGehee and Hema Karunadasa

Adjustment of Conduction Band Edge of. Through TiCl 4 Treatment

The Current Status of Perovskite Solar Cell Research at UCLA

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

Mesoscopic Perovskite Solar Cells and Modules

Effect of Platinum loaded Multi Walled Carbon Nanotube Counter Electrode on Dye Sensitized Solar Cell

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

SUPPLEMENTARY INFORMATION

Mesoporous titanium dioxide electrolyte bulk heterojunction

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

Severe Morphological Deformation of Spiro- Temperature

Supporting Information

Mesoporous SnO 2 Single Crystals as an Effective Electron Collector for Perovskite Solar Cells

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

All-Inorganic Perovskite Solar Cells

Effect of TiO 2 graphene nanocomposite photoanode on dye-sensitized solar cell performance

Electronic Supplementary Information. Benjia Dou,, Vanessa L. Pool, Michael F. Toney *,, Maikel F.A.M. van Hest *,

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

Supporting Information

Towards a deeper understanding of polymer solar cells

Council for Innovative Research Peer Review Research Publishing System

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

Perovskite solar cells on metal substrate with high efficiency

GRAPHENE/CARBON BLACK COUNTER ELECTRODE FOR PEROVSKITE SOLAR CELL. Nutsuda Bunyoo, Nuttapol Pootrakulchote*

Supplementary Materials

Photocatalysis: semiconductor physics

IMPEDANCE SPECTROSCOPY AND TRANSPORT MECHANISMS OF TiO 2 - BASED DYE SENSITIZED SOLAR CELL

Supplementary Figures

SUPPORTING INFORMATION

Nanostructured materials for solar energy

Perovskite Solar Cells Powered Electrochromic Batteries for Smart. Windows

SUPPLEMENTARY INFORMATION

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

Synthesis and Characterizations of TiO 2 /In 2 S 3 Semiconductor Sensitized Solar Cell

Stability of Organic Materials. Anders Hagfeldt Dept. of Physical Chemistry Ångström Solar Center Uppsala University

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Perovskite solar cells

Investigation on the influences of layer structure and nanoporosity of light scattering TiO 2. layer in DSSC. Journal of Physics: Conference Series

Supplementary Figure S1. Hole collection layer photovoltaic performance in perovskite solar cells. Current voltage curves measured under AM1.

Chapter 7. Conclusion and Future Scope

Supporting Information

Boron-doped graphene as high-efficiency counter electrode for dye-sensitized solar cells

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100%

Q. Shen 1,2) and T. Toyoda 1,2)

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots

Supporting Information

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5.

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Supporting Information

Supporting information. Supramolecular Halogen Bond Passivation of Organometal-Halide Perovskite Solar Cells

Supporting Information. Femtosecond Time-Resolved Transient Absorption. Passivation Effect of PbI 2

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

u.cn,

Advances on the Synthesis of Small Molecules. as Hole Transport Materials for Lead Halide. Perovskite Solar Cells.

Supporting Information for: Iodine Migration and Degradation of Perovskite Solar Cells Enhanced by. Metallic Electrodes

Application of Hierarchical Titanate and Titania nanotubes in Dye Sensitized Solar Cells Dmitry V. Bavykin and Frank C. Walsh

Supplementary Figure 1. Film thickness measurement. (a) AFM images of the perovskite

Supporting Information. Zn 2 SnO 4 -based photoelectrodes for organolead halide perovskite solar cells

Challenges in to-electric Energy Conversion: an Introduction

Research Article Tin-Doped Indium Oxide-Titania Core-Shell Nanostructures for Dye-Sensitized Solar Cells

Origin and Whereabouts of Recombination in. Perovskite Solar Cells Supporting Information

PHOTOVOLTAICS Fundamentals

Supplementary information

SUPPLEMENTARY INFORMATION

Supporting Information. Monolithic perovskite-homojunction silicon tandem solar cell with over 22% efficiency

Electronic Supporting Information

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea

Supplementary Information

Supporting Information

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

Electronic Supplementary Information

Supporting Information

Electronic Supplementary Information

PT/NI COUNTER-ELECTRODES WITH IMPROVED STABILITY FOR DYE SENSITIZED SOLAR CELLS

Research Article Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer

Supporting Information

Supporting Information. Enhanced Conversion Efficiency in Perovskite Solar Cells by

SnSe 2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors

Supporting Information

Supporting Information

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells

Photoelectrochemical characterization of Bi 2 S 3 thin films deposited by modified chemical bath deposition

Numerical simula,on of the performance of the dye sensi,zed solar cell

Supporting Information

Latest achievements in the field of dye sensitized and perovskite solar cells Anders Hagfeldt Laboratory of Photomolecular Sciences (LSPM)

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak

Supporting Information

Supporting Online Material for

Hole Conductor Free Perovskitebased

Supplementary Materials for

Deliverable D1.3 Demonstration of patterning processes allowing to

Transcription:

Università degli Studi di Ferrara Solid State Dye Solar Cells: Development of Photoanode Architecture for Conversion Efficiency Improvement Internal supervisor: Vincenzo Guidi External supervisor: Giampiero Ruani Tanja Ivanovska 1 st Year PhD Talk 6.11.013, Ferrara

glass FTO electrolyte dye Pt Vac. ev -4 V -5 V -6 V TiO Dye E(I - /I 3- ) Pt S + hν S * S * S + + e S + + e S I 3 + e 3I m-tio FTO glass c-tio -7 V O'Regan and Gratzel, Nature 353, 737 (1991) Low cost materials abundant low purification Low energy-consumption manufacturing process highest temperature 450 C Electron transport, light absorption and hole transport are each handled by different materials in the cell

Historic evolution of the Dye Sensitized Solar Cell Technology Snaith, J. Phys. Chem. Lett. 4, 363 (013) Limiting the electron-hole recombination - improve the photogenerated electron mean free path - improve the charge separation and reduce the charge recombination dynamics

Absorption (a.u.) Grain size (cm) Intensity (a.u.) Introduction of TiO colloidal solution 10 Surface treatment of photoanode 9 8 1300 100 1100 1000 900 800 700 600 500 400 300 Alternative method to TiCl 4 post-treatment 7 6 00 100 0-100 00 400 600 800 Raman shift, (cm -1 ) 5 Colloidal solution of 5 nm TiO nanoparticles Drop casted on to TiO photoanode surface Sintered at 150, 350 and 450 C for 0min SEM imaging of TiO photoanode surface 4 3 100 00 300 400 500 Annealing temperature ( C ) Micro-Raman size crystalline investigation 0,5 0,0 no post treatment @150 C @350 C @450 C 0,15 0,10 0,05 0,00 350 400 450 500 550 600 650 700 750 800 (nm) without with colloidal treatment UV-Vis Absorption measurements

Cell efficiency (%) 3,6 Cell Thickness (µm) J SC (ma/cm ) V OC (V) FF (%) η (%) Plain P5 14,5-7,45 0,66 6,99 3,10 150 14,4-7,36 0,69 60,1 3,06 350 14,0-7,6 0,68 58,01 3,01 450 14,0-8,3 0,69 60,9 3,46 3,3 3,0,7 IPCE=LHE x φ inj x φ coll Open Circuit Voltage Decay Technique (OCVD) 0 50 100 150 00 50 300 350 400 450 500 Annealing temperature C) large perturbation of the Fermi level a trapping/detrapping model different possibilities for interfacial charge transfer Bisquert et al., JACS 16, 13550 (004) n k b e T dv dt oc 1

10 c) Without TiO colloidal treatment With TiO colloidal treatment Changing electrolyte n (s) 1 0,1 b) a) 0,01 0,0 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 V OC (V) Introducing compact layer

Incorporating SWCNT in the of TiO mesoporous matrix x = 0.15 x = 0.07 x = 0.3 x = 0.8 x = 0.04 x = 0 Pros: Sufficient distribution in the mesoporous film Conductivity increase of several orders of magnitude Cons: Coverage of the nanotube wall Recombination centers glass FTO Pt electrolyte dye SWCNT m-tio FTO glass c-tio TiO colloidal treatment effect

J (ma/cm ) Cell efficiency (%) Solid State DSSC using Spiro-MeOtad as a HCM Ag Spiro-MeOtad dye m-tio FTO c-tio glass Cells employing SWCNTs in the photoanode 0,0 0,6 0,60-0,5-1,0-1,5 0,58 0,56 0,54 0,5 0,50 -,0 -,5 TiO TiO +0,04% CNT TiO +0,07% CNT 0,48 0,46 0,44 TiO +0,15% CNT -3,0 0,0 0,1 0, 0,3 0,4 0,5 0,6 U (V) 0,4 0,40 0,00 0,05 0,10 0,15 SWCNT loading (wt%)

Cell efficiency (%) J (ma/cm ) Colloidal TiO post treatment 0 Cells employing SWCNTs + TiO surface colloidal treatment in the photoanode -1-0,8-3 0,7 Without TiO colloidal treatment With TiO colloidal treatment -4 0,0 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 U (V) 0,6 0,5 0,4 Cell d (µm) Isc (ma/cm ) Voc (V) FF (%) n (%) 0,3 TiO 1,1-3,09 0,71 37,88 0,83 TiO +colloidal 1,0-3,5 0,70 46,50 1,15 0, 0,00 0,05 0,10 0,15 SWCNT loading (wt%) Observed shift in cell efficiency relative to the SWCNT loading in the photoanode

Abs (a.u.) Intensity (a.u.) Perovskite Solar Cells CH 3 NH +HI CH 3 NH 3 I+PbCl CH 3 NH 3 PbI 3-X Cl X Perovskite synthesis very sensitive to laboratory conditions Investigation of the spectroscopic properties of CH 3 NH 3 I color Absorption of CH 3 NH 3 I 3-x Cl x on glass substrate 1,8 1,6 1,4 1, 1,0 white yellow brown 1000 800 600 400 (110) (0) (310) PbI (0) (11) PbI (31) (4) (314) (11) PbI brown yellow 0,8 00 0,6 300 400 500 600 700 800 900 (nm) Direct band gap Eg 1,55eV 0,5 1,0 1,5,0,5 3,0 3,5 4,0 ) -1 إ) q Identification of perovskite crystals by XDR

J (ma/cm) Completely solution processable cell Difference in photocurrent with perovskite purity 0-5 -10 However there is an inevitable degradation in air -15 0,0 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 U (V) white yellow High J SC =1-15mA/cm, matching the J SC of cells with record efficiencies Michael M. Lee et al., Science 338, 643 (01) J.M. Ball et al., Energy and Environmental Science 6, 1739 (013)

J (ma/cm ) J (ma/cm ) Introducing Graphene in to the electrode architecture Incorporating graphene in to the photoanode Incorporating graphene in to the counterelectrode FTO substrate graphene Graphene photoanode with a compact layer Graphene counterelectrode, without compact layer 5 4 3 1 measured after 1 day 1 0-1 0-1 - -3-4 -5-6 -7-8 -0,1 0,0 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,9 U (V) - -3-4 -5 measured after 5 days measured after 5 days (dark curve) -6-0,1 0,0 0,1 0, 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 U (V)

Acknowledgements -CNR Bologna Chiara Dionigi DIMO Group Vinca Institute, Belgrade Zoran V. Saponjic Marija Radoicic IMM-CNR Bologna Vittorio Morandi Luca Ortolani Franco Corticelli Fabiola Liscio ICTP-TRIL Programme CNR-EFOR Project (Energie da Fonti Rinnovabili) Thank You for the Attention