Introduction... Theory Influence of Excitation Pulse Shape...

Similar documents
Contents. xiii. Preface v

Fluorescence (Notes 16)

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton

Single-Molecule Methods I - in vitro

ATOMIC AND LASER SPECTROSCOPY

CHEM Outline (Part 15) - Luminescence 2013

Fluorescence 2009 update

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

single-molecule fluorescence resonance energy transfer

Principles of Physical Biochemistry

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fluorescence Depolarization. Ben Berger and Ben Berger

Luminescence spectroscopy

PROTEIN NMR SPECTROSCOPY

Fluorescence Polarization Anisotropy FPA

Modern Optical Spectroscopy

LABORATORY OF ELEMENTARY BIOPHYSICS

BMB Class 17, November 30, Single Molecule Biophysics (II)

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

MOLECULAR SPECTROSCOPY

FLUORESCENCE STUDY ON TRYPTOPHAN POTASSIUM IODIDE INTERACTION

Linear and nonlinear spectroscopy

Spectroscopy of Polymers

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

1. Transition dipole moment

Medical Biophysics II. Final exam theoretical questions 2013.

Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller

Singlet. Fluorescence Spectroscopy * LUMO

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Direct, Reliable, and Correct Oxygen Measurement

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Experimental Physical Chemistry : A Laboratory Textbook. ix To the Student Part 1 Fundamentals: Data Collection and

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Fluorescence polarisation, anisotropy FRAP

4 Single molecule FRET

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Discussion Session prior to the Second Examination: Sunday evening April 13 6 to 8 pm. 161 Noyes Laboratory

Supplemental Materials and Methods

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Luminescence Spectroscopy Excitation is very rapid (10-15 s). Vibrational relaxation is a non-radiational process. It involves vibrational levels of

P. Lambrev October 10, 2018

Nanoscale confinement of photon and electron

Elements of Quantum Optics

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller

THE NUCLEAR OVERHAUSER EFFECT IN STRUCTURAL AND CONFORMATIONAL ANALYSIS

Sputtering by Particle Bombardment

Near-Field Nano/Atom Optics and Technology

Rotation and vibration of Molecules

Electronic and Optoelectronic Properties of Semiconductor Structures

What the Einstein Relations Tell Us

TIME-RESOLVED OPTICAL SPECTROSCOPY

Protein dynamics from NMR Relaxation data

Three-Dimensional Electron Microscopy of Macromolecular Assemblies

Survey on Laser Spectroscopic Techniques for Condensed Matter

Measurement Examples. Excitation and Emission Scans. Steady State Fluorescence Anisotropy. Kinetic Measurements

THEORY OF MAGNETIC RESONANCE

Chapter 15 Molecular Luminescence Spectrometry

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy

Chemistry Instrumental Analysis Lecture 3. Chem 4631

Self-Assembled Organic-Inorganic Nanostructures

Technology, Techniques and Applications. Ric Allott Business Development Manager

Circular Dichroism. Principles and Applications VCH. Koji Nakanishi, Nina Berova, and Robert W. Woody EDITED BY

Magnetic Resonance Spectroscopy

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY

Application of time resolved area normalized emission spectroscopy to multicomponent systems

Fluorescence Excitation and Emission Fundamentals

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

5 Recipient of Grant from the National Science Foundation. 11 Recipient of Grant PCM from the National Science

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

Protein-Ligand Interactions Are Responsible for Signal Transduction

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

Chapter 6 Photoluminescence Spectroscopy

ELECTRODYNAMICS OF CONTINUOUS MEDIA

Semiconductor quantum dots

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Some applications of photoluminescence for

1. Photoreduction of Benzophenone in 2-Propanol

The ph-responsive behaviour of aqueous solutions of poly(acrylic acid) is dependent on molar mass

Lecture 3: Light absorbance

[Supporting Information]

DEVELOPMENT OF NANO PARTICLE SIZING SYSTEM USING FLUORESCENCE POLARIZATION

Time Resoled Pulsed Laser Photolysis Study of Pyrene Fluorescence Quenching by I - Anion

Detection of Mercury(II) and Lead(II) with Graphene Oxide- Based Biosensors

PHOTOCHEMISTRY NOTES - 1 -

ECE280: Nano-Plasmonics and Its Applications. Week8

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

Molecular Luminescence Spectroscopy

CHAPTER 3 RESULTS AND DISCUSSION

General Considerations 1

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

Modern Techniques in Applied Molecular Spectroscopy

Electronic Spectra of Complexes

Measuring Colocalization within Fluorescence Microscopy Images


Transcription:

1. Fluorescence Anisotropy: Theory and Applications Robert F. Steiner 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. Introduction... Theory... 1.2.1. Meaning of Anisotropy... 1.2.2. Influence of Excitation Pulse Shape... 1.2.3. The Time Decay of Anisotropy... 1.2.4. The Rotational Diffusion of Ellipsoids of Revolution... 1.2.5. The Anisotropy Decay of Ellipsoidal Particles... 1.2.6. Partially Immobilized Systems... 1.2.7. The Influence of Internal Rotation... Experimental Analysis of Anisotropy Decay... 1.3.1. Analysis of Time-Domain Data... 1.3.2. Time-Domain Measurements of Anisotropy Decay... 1.3.3. Frequency-Domain Measurements of Anisotropy Decay... Anisotropy Decay of Heterogeneous Systems... 1.4.1. 1.4.2. Anisotropy-Resolved Emission Spectra... The Meaning of Correlation Times for Associative and Nonassociative Heterogeneity... Anisotropy Decay of Intrinsic Protein Fluorophores... 1.5.1. 1.5.2. Anisotropy Decay of a Rigid Protein: S. Nuclease... Rotational Dynamics of Flexible Polypeptides: Adrenocorticotropin and Melittin... 1.5.3. Anisotropy Decay of a Tightly Bound Fluorophore: Lumazine Protein... 1.5.4. Anisotropy Decay of a Transfer RNA... Anisotropy Decay of Biopolymers Labeled with an Extrinsic Fluorophore... 1.6.1. 1.6.2. 1.6.3. Anisotropy Decay and Internal Flexibility of Myosin... Anisotropy Decay of a Fibrous Protein: F-Actin... Anisotropy Decay for Proteins Displaying Internal Rotation Involving a Well-Defined Domain: The Immunoglobulins.. 1 2 2 5 6 8 10 14 18 22 22 25 26 28 28 31 32 32 33 37 39 41 41 43 44 ix

x Contents 1.6.4. Anisotropy Decay of Calmodulin Complexes with TNS... References... 48 51 2. Fluorescence Quenching: Theory and Applications Maurice R. Eftink 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. Introduction... Basic Concepts...... 2.2.1. The Stern Volmer Equation... 2.2.2. 2.2.3. 2.2.4. Quenching Mechanisms and Efficiency... Diffusional Nature of Quenching... Static Quenching... 2.2.5. Various Quenchers... Quenching Studies with Proteins... 2.3.1. Exposure of Fluorophores... 2.3.2. Effect of the Macromolecule s Size... 2.3.3. Electrostatic Effects... 2.3.4. Tryptophan Residues in Proteins... 2.3.5. 2.3.6. Ligand Binding and Conformational Changes... Mechanism of Quenching in Proteins Penetration versus Unfolding Mechanisms... 2.3.7. Interaction of Quenchers with Proteins... 2.3.8. Transient Effects... 2.3.9. Multiple Quenching Rate Constants and Fluorescence Lifetimes... Studies with Membranes and Nucleic Acids... 2.4.1. Partitioning of Quenchers into Membranes/Micelles... 2.4.2. Two-Dimensional Diffusion in Membranes... 2.4.3. Quencher Moieties Attached to Lipid Molecules... 2.4.4. Membrane Transport and Surface Potential... 2.4.5. Nucleic Acids... Uses to Resolve Other Fluorescence Properties... 2.5.1. Resolution of Steady-State Spectra... 2.5.2. Resolution of Fluorescence Lifetimes... 2.5.3. Resolution of Anisotropy Measurements... 2.5.4. Resolution of Energy Transfer Experiments... 2.5.5. Other Uses of Solute Quenching.... Recent Developments in Data Analysis... 2.6.1. 2.6.2. 2.6.3. 2.6.4. Simultaneous Analyses of Quenching Data... Nonlinear Least-Squares Fits... Distribution of Lifetimes or Rate Constants... Experimental Improvements... 53 55 55 58 60 64 67 68 68 68 71 72 75 78 85 87 91 92 92 96 97 99 100 101 102 103 105 108 109 112 112 113 114 116

2.7. 2.8. Phosphorescence Quenching... Conclusion... References... xi 117 120 120 3. Resonance Energy Transfer Herbert C. Cheung 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. Long-Range Dipole Dipole Interaction... Determination of Energy Transfer... Proximity Mapping of Molecular Assembly... Experimental Strategy... 3.4.1. Sample Preparation... 3.4.2. Measurement of Transfer Efficiency... 3.4.3. The Orientation Factor... Selected Applications... 3.5.1. Myosin and Actomyosin... 3.5.2. Troponin Subunits... 3.5.3. Ribosomal Proteins... Comparison of FRET Results with Results from Other Techniques... 3.6.1. Comparison with Crystallographic Data... 3.6.2. Comparison with Cross-Linking Data... Application of FRET to Enzyme Kinetics... Time-Resolved Energy Transfer Measurements... Distribution of Distances... 3.9.1. Theory... 3.9.2. Examples... 3.10. Summary and Prospects... References... 128 130 132 132 132 133 135 140 140 145 147 148 148 151 152 155 157 158 161 170 171 4. Least-Squares Analysis of Fluorescence Data Martin Straume, Susan G. Frasier-Cadoret, and Michael L. Johnson 4.1. 4.2. 4.3. 4.4. 4.5. Introduction... Basic Terminology... Assumptions of Least-Squares Analysis... Least-Squares Parameter Estimation Procedures... 4.4.1. Modified Gauss Newton Algorithm... 4.4.2. Nelder Mead Simplex Algorithm... An Example of the Least-Squares Procedures Collisional Quenching... 177 179 181 186 187 193 199

xii Contents 4.5.1.Example of the Gauss Newton Procedure... 4.5.2.Example of the Nelder Mead Simplex Procedure... 4.6. Joint Confidence Intervals Estimation and Propagation... 4.6.1. 4.6.2. 4.6.3. 4.6.4. 4.7. 4.8. 4.9. Asymptotic Standard Errors... Linear Joint Confidence Intervals... Support Plane Confidence Intervals... Approximate Nonlinear Support Plane Joint Confidence Intervals... 4.6.5. A Monte Carlo Method for the Evaluation of Confidence Intervals... 4.6.6. Propagation of Confidence Intervals... Analysis of Residuals... 4.7.1. 4.7.2. 4.7.3. 4.7.4. 4.7.5. 4.7.6. Plots... Distributions... Trends... Outliers... Influential Observations... Common Quantitative Tests... Implementation Notes... In Summary... References... 202 205 207 208 208 209 211 214 215 216 218 221 226 228 229 230 235 238 239 5. The Global Analysis of Fluorescence Intensity and Anisotropy Decay Data: Second-Generation Theory and Programs Joseph M. Beechem, Enrico Gratton, Marcel Ameloot, Jay R. Knutson, and Ludwig Brand 5.1. 5.2. 5.3. Introduction... 5.1.1. Multiexcitation/Multitemperature Studies of Anisotropic Rotation... 5.1.2. Multiexcitation/Emission Wavelength Studies of Total Intensity Data... 5.1.3. Double-Kinetic Studies... The Global Analysis Philosophy... 5.2.1. Evolution of the Global Analysis Approach... 5.2.2. Global Analysis Implementation Strategy... General Elements of the Global Analysis Program... 5.3.1. 5.3.2. 5.3.3. 5.3.4. Mapping to the Physical Observables... Empirical Description of the Fluorescence Decay... Compartmental Description of Photophysical Events... Overview of Nonlinear Minimization (The Basic Equations) 241 242 243 244 244 244 248 249 252 252 253 258

xiii 5.4. In-Depth Flow Chart of a General-Purpose Global Analysis Program... 5.4.1. Overview of the Global Analysis Procedure... 5.4.2. Flow Chart for the LFD Global Analysis Program Global... 5.5. Case Studies of the Application of Global Analysis to Experimental Data... 5.5.1. Case Study of a Two-State Excited State Reaction... 5.5.2. Distributions of Distances and Energy Transfer Analysis... 5.6. Anisotropy Decay Data Analysis... 5.6.1. 5.6.2. 5.6.3. 5.6.4. 5.6.5. 5.6.6. 5.7. 5.8. General Equations and Experimental Linkages... Changes in Anisotropy Data Collection Schemes... Associative versus Nonassociative Modeling of Anisotropy Anisotropy Decay-Associated Spectra (ADAS)... Multidye Global Anisotropy Decay Analysis... Distributed Lifetimes and Distributed Rotational Correlation Times... 5.6.7. Multiexcitation Anisotropy Experiments... 5.6.8. Example of Distributed Rotations: Fluorophore Rotations Gated by Packing Fluctuations in Lipid Bilayers... Error Analysis and the Identifiability Problem... 5.7.1. 5.7.2. 5.7.3. The Identifiability Problem... Identifiability Study Using Laplace Identifiability Analysis.. Error Analysis... Conclusions... References... 259 259 260 272 272 277 280 280 283 283 284 285 285 286 287 288 288 291 294 298 301 6. Fluorescence Polarization from Oriented Systems Thomas P. Burghardt and Katalin Ajtai 6.1. 6.2. 6.3. Overview... Theory and Application... 6.2.1. 6.2.2. 6.2.3. 6.2.4. The Angular Probability Density N... Fluorescence Polarization in Homogeneous Space... Time-Resolved Fluorescence Depolarization Determination of the High-Resolution Angular Probability Density... Relation of Electron Spin Resonance Spectra to Fluorescence Polarization... Biochemical Techniques of Specific Labeling... 6.2.5. Discussion... References... 307 308 309 311 320 331 332 338 340

xiv Contents 7. Fluorescence-Based Fiber-Optic Sensors Richard B. Thompson 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. 7.7. 7.8. 7.9. 7.10. 7.11. Introduction... Fiber-Optic Fundamentals... Sensor Design... Sensing Tip Configurations... Fiber Characteristics... Separating Excitation and Emission... Launching Optics... Light Sources... Time-Resolved Fluorescence in Fibers... Polarization... Conclusion... References... 345 346 349 350 353 357 359 359 361 362 362 363 8. Inhomogeneous Broadening of Electronic Spectra of Dye Molecules in Solutions Nicolai A. Nemkovich, Anatolyi N. Rubinov, and Vladimir I. Tomin 8.1. 8.2. 8.3. 8.4. Introduction... Theoretical Considerations of Inhomogeneous Broadening... 8.2.1. 8.2.2. Solvate Configurational Energy... Field Diagram of a Polar Solution... 8.2.3. Solvate Distribution in Configurational Sublevels... 8.2.4. Nonpolar Solutions... 8.2.5. Selective Excitation with Vibrational Spectral Broadening.. 8.2.6. Absorption and Fluorescence Spectra: Dependence on Exciting Light Frequency... Stationary Inhomogeneous Broadening... 8.3.1. Universal Relationship between Fluorescence and Absorption Spectra of Polar Solutions... 8.3.2. Luminescence Spectra at Red-Edge Excitation... 8.3.3. Directed Nonradiative Energy Transfer in Organic Solutions Dynamic Inhomogeneous Broadening in Liquid Solutions... 8.4.1. 8.4.2. 8.4.3. 8.4.4. Analysis of Configurational Relaxation in Liquid Solutions Experimental Study of the Luminescence Kinetics of Liquid Solutions... The Solution Spectrochronogram... The Effect of Light-Induced Molecular Rotation in Solution.... 367 369 369 371 374 376 378 383 387 387 388 390 395 395 401 404 406

xv 8.5. 8.6. Selective Kinetic Spectroscopy of Fluorescent Molecules in Phospholipid Membranes... 8.5.1. 8.5.2. Energy Levels of an Electric Dipole Probe in a Membrane Inhomogeneous Broadening in Steady-State Fluorescence Spectra of Probes... Kinetics of Probe Fluorescence... Rotational Dynamics of the Probe in the Membrane... 8.5.3. 8.5.4. Conclusions... References.... 413 413 416 419 422 423 425 Index... 429