LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

Similar documents
Solving the sign problem for a class of frustrated antiferromagnets

Quantum spin systems - models and computational methods

Thermal Critical Points and Quantum Critical End Point in the Frustrated Bilayer Heisenberg Antiferromagnet

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Simulations of Quantum Dimer Models

Ground State Projector QMC in the valence-bond basis

Linked-Cluster Expansions for Quantum Many-Body Systems

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

Stochastic series expansion (SSE) and ground-state projection

Quantum Monte Carlo Simulations in the Valence Bond Basis

Specific heat of the S= 1 2 expansion analysis

Classical Monte Carlo Simulations

Coupled Cluster Method for Quantum Spin Systems

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Spin-charge separation in doped 2D frustrated quantum magnets p.

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum Kagome Spin Liquids

quasi-particle pictures from continuous unitary transformations

Stacked Triangular XY Antiferromagnets: End of a Controversial Issue on the Phase Transition

News on tensor network algorithms

arxiv:cond-mat/ v1 12 Dec 2006

Second Lecture: Quantum Monte Carlo Techniques

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Finite-temperature properties of the two-dimensional Kondo lattice model

Topological states in quantum antiferromagnets

Quantum phase transitions in coupled dimer compounds

Magnetization and quadrupolar plateaus in the one-dimensional antiferromagnetic spin-3/2 and spin-2 Blume Capel model

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Magnetization process from Chern-Simons theory and its application to SrCu 2(BO 3) 2

Quantum Monte Carlo simulation of thin magnetic films

Renormalization of Tensor Network States. Partial order and finite temperature phase transition in the Potts model on irregular lattice

The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet on Square-Kagomé Lattice: Resonating Valence Bond Description

Coupled Cluster Theories of Quantum Magnetism

7 Frustrated Spin Systems

Mind the gap Solving optimization problems with a quantum computer

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

arxiv:cond-mat/ v2 [cond-mat.str-el] 17 Sep 2007

The ALPS Project. Open Source Software for Strongly Correlated Systems. for the ALPS co!aboration. Lode Pollet & Matthias Troyer, ETH Zürich

arxiv:cond-mat/ v1 1 Nov 2000

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

2. Spin liquids and valence bond solids

Introduction to Quantum Monte Carlo

7 Monte Carlo Simulations of Quantum Spin Models

Thermodynamics of the antiferromagnetic Heisenberg model on the checkerboard lattice

The Quantum Adiabatic Algorithm

Anisotropic frustrated Heisenberg model on the honeycomb lattice

Effects of geometrical frustration on ferromagnetism in the Hubbard model on the Shastry-Sutherland lattice

Equation of state from the Potts-percolation model of a solid

Quantum mechanics without particles

Mind the gap Solving optimization problems with a quantum computer

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

arxiv: v3 [cond-mat.stat-mech] 26 Jan 2013

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

MICROSCOPIC CALCULATIONS OF QUANTUM PHASE TRANSITIONS IN FRUSTRATED MAGNETIC LATTICES

Phase diagram of the Ising square lattice with competing interactions

THERMODYNAMIC PROPERTIES OF ONE-DIMENSIONAL HUBBARD MODEL AT FINITE TEMPERATURES

Degeneracy Breaking in Some Frustrated Magnets

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart

Dimerized & frustrated spin chains. Application to copper-germanate

Numerical diagonalization studies of quantum spin chains

Valence Bond Crystal Order in Kagome Lattice Antiferromagnets

Renormalization of Tensor Network States

Compressibility of BiCu 2 PO 6 : polymorphism against S=1/2 magnetic spin ladders

Matrix-Product states: Properties and Extensions

Exotic Antiferromagnets on the kagomé lattice: a quest for a Quantum Spin Liquid

Analytical and numerical studies of the one-dimensional sawtooth chain

Spin liquids on the triangular lattice

Numerical Studies of Adiabatic Quantum Computation applied to Optimization and Graph Isomorphism

Mind the gap Solving optimization problems with a quantum computer

Quantum Phase Transitions

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Thermodynamics of quantum Heisenberg spin chains

Numerical Studies of the Quantum Adiabatic Algorithm

Quantum Phase Transitions in Low Dimensional Magnets

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Mar 2005

Meron-Cluster and Nested Cluster Algorithms: Addressing the Sign Problem in Quantum Monte Carlo Simulations

High-Temperature Criticality in Strongly Constrained Quantum Systems

Jung Hoon Kim & Jung Hoon Han

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS

Author(s) Kawashima, Maoki; Miyashita, Seiji;

Potts percolation Gauss model of a solid

Crossbreeding between Experiment and Theory on Orthogonal Dimer Spin System

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Nov 2001

Cluster Density Matrix Embedding Theory for Quantum Spin Systems

Quantum entanglement and the phases of matter

Spinons in Spatially Anisotropic Frustrated Antiferromagnets

Electron spin resonance of SrCu 2 BO 3 2 at high magnetic fields

Cluster Functional Renormalization Group

Magnetism and Superconductivity in Decorated Lattices

Spin liquids in frustrated magnets

Title. Author(s)Kumagai, Ken-ichi; Tsuji, Sigenori; Kato, Masatsune; CitationPHYSICAL REVIEW LETTERS, 78(10): Issue Date

Machine learning quantum phases of matter

Transcription:

Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets LPTM Laboratoire de Physique Théorique et Modélisation Andreas Honecker 1 Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, France Ido Niesen 2, Philippe Corboz 2, Bruce Normand 3, Frédéric Mila 4, Jonas Stapmanns 5, Stefan Wessel 5 2 3 4 5 July 12, 218

Take-home message Efficient Quantum Monte-Carlo simulations can be performed for certain highly frustrated quantum magnets using a suitable computational basis. References: 1. A.H., S. Wessel, R. Kerkdyk, T. Pruschke, F. Mila, B. Normand, Phys. Rev. B 93, 5448 (216) 2. S. Wessel, B. Normand, F. Mila, A.H., SciPost Phys. 3, 5 (217) 3. J. Stapmanns, P. Corboz, F. Mila, A.H., B. Normand, S. Wessel, arxiv:185.1117 4. S. Wessel, I. Niesen, J. Stapmanns, B. Normand, F. Mila, P. Corboz, A.H., arxiv:187.1???? See also: 5. F. Alet, K. Damle, S. Pujari, Phys. Rev. Lett. 117, 19723 (216) 6. K.-K. Ng, M.-F. Yang, Phys. Rev. B 95, 64431 (217)

Outline ❶ Motivation: thermodynamics of the spin-½ Shastry-Sutherland magnet SrCu2(BO3)2 ❷ Quantum-Monte Carlo: sign problem + dimer basis ❸ Application to fully frustrated bilayer ❹ Application to the 2D Shastry-Sutherland model ❺ Summary

Outline ❶ Motivation: thermodynamics of the spin-½ Shastry-Sutherland magnet SrCu2(BO3)2 ❷ Quantum-Monte Carlo: sign problem + dimer basis ❸ Application to fully frustrated bilayer ❹ Application to the 2D Shastry-Sutherland model ❺ Summary

Shastry-Sutherland model dimer product state J/J H = J S i S j + J S i S j square lattice dimers

Shastry-Sutherland model SrCu2(BO3)2 structure of a layer dimer product state J/J H = square lattice J S i S j + dimers J S i S j Cu, O, B, Sr

Shastry-Sutherland model SrCu2(BO3)2 structure of a layer dimer product state J/J S =1/2 Cu, O, B, Sr

Magnetic susceptibility Dimer expansions? High-temperature series? o experiment low-temperature region inaccessible Zheng Weihong, C. J. Hamer, J. Oitmaa. Phys. Rev. B 6, 668 (1999)

Exact diagonalization Magnetic susceptibility Specific heat.5.4 1 8 experiment J /J=.62,J=77K, N=16 J /J=.64,J=88K, N=16 J /J=.66,J=14K, N=16 J /J=.635,J=85K, N=16 J /J=.635,J=85K, N=2 χ(emu/cu mol).3.2 C/T(mJ/K 2 mol) 6 4.1 experiment J /J=.62,J=77K N=16 J /J=.64,J=88K, N=16 J /J=.66,J=14K, N=16 J /J=.635,J=85K, N=16 J /J=.635,J=85K, N=2 5 1 15 2 25 3 T(K) 2 5 1 15 2 25 3 T(K) S. Miyahara, K. Ueda, J. Phys. Soc. Jpn. Suppl. B 69, 72 (2) apparently good agreement for J /J.635, but are N=16,, 2 spins really sufficient?

Outline ❶ Motivation: thermodynamics of the spin-½ Shastry-Sutherland magnet SrCu2(BO3)2 ❷ Quantum-Monte Carlo: sign problem + dimer basis ❸ Application to fully frustrated bilayer ❹ Application to the 2D Shastry-Sutherland model ❺ Summary

Stochastic Series Expansion A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B 43, 595 (1991); A.W. Sandvik, Phys. Rev. B 59, 14157(R) (1999); O.F. Syljuåsen, A.W. Sandvik, Phys. Rev. E 66, 4671 (22); F. Alet, S. Wessel, M. Troyer, Phys. Rev. E 71, 3676 (25) Hamiltonian: H = Partition function: H b = bond b (b,t) bond term ( = 1/T ) H (b,t) H b = H (b,d) diagonal + H (b,o) o diagonal Z = Tr e H = n= n n! Tr ( H)n = n= n n! n = 1 (b n,t n )...(b 1,t 1 ) n i=1 i+1 H (bi,t i ) i basis i Sample (Monte Carlo) weights i+1 H (bi,t i ) i

Stochastic Series Expansion A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B 43, 595 (1991); A.W. Sandvik, Phys. Rev. B 59, 14157(R) (1999); O.F. Syljuåsen, A.W. Sandvik, Phys. Rev. E 66, 4671 (22); F. Alet, S. Wessel, M. Troyer, Phys. Rev. E 71, 3676 (25) Hamiltonian: H = Partition function: H b = bond b (b,t) bond term ( = 1/T ) H (b,t) H b = H (b,d) diagonal + H (b,o) o diagonal Z = Tr e H = n= n n! Tr ( H)n = n= n n! n = 1 (b n,t n )...(b 1,t 1 ) n i=1 i+1 H (bi,t i ) i basis i Sample (Monte Carlo) weights i+1 H (bi,t i ) i sign problem

Sign problem off-diagonal terms may cause problems example: one triangle H (b,o) = J 2 S + b,1 S b,2 + S b,1 S+ b,2 h""# H (b3,o) H (b2,o) H (b1,o) ""#i sample with absolute values of weights ha signi P k W (C) A(C) sign(c) hai = = C P hsigni W (C) sign(c) k average sign can get exponentially small exponentially large error bars but this is basis-dependent C

Dimer basis eigenstates of a spin-½ dimer: (well-defined magnetization) Si = 1 p 2 ( "#i #"i) i = 1 p 2 ( "#i + #"i) +i = ""i i = ##i total spin operators ~T = ~ S 1 + ~ S 2 and spin-difference ~D = ~ S 1 ~ S2 ~T 2 T z T + T D z D + D Si i p 2 +i p 2 i i 2 p 2 +i p 2 i Si +i 2 1 p 2 i p 2 Si i 2 1 p 2 i p 2 Si

Outline ❶ Motivation: thermodynamics of the spin-½ Shastry-Sutherland magnet SrCu2(BO3)2 ❷ Quantum-Monte Carlo: sign problem + dimer basis ❸ Application to fully frustrated bilayer ❹ Application to the 2D Shastry-Sutherland model ❺ Summary

From the Shastry-Sutherland model to the fully frustrated bilayer J 2 J addition of J2 preserves the exact dimer ground state J2 = J : fully frustrated bilayer (materials: Ba2CoSi2O6Cl2 [H. Tanaka et al., J. Phys. Soc. Jpn. 83, 1371 (214)])

Ground-state phase diagram discontinuous level crossing transition E. Müller-Hartmann, R.R.P. Singh, C. Knetter, G.S. Uhrig, Phys. Rev. Lett. 84, 188 (2) J? J = J k dimer triplet antiferromagnet exact singlet product state 2.3279(1) J? /J k What are the thermodynamic properties?

Hamiltonian in dimer basis in terms of dimer d: total ~T d = ~ S d,1 + ~ S d,2 and difference spin operators ~D d = ~ S d,1 ~ Sd,2 H = J? 2 X d + X hd,d i ~T 2 d 3 2 Jk + J 2 J? J J k ~T d ~T d + J k J 2 ~D d ~D d sign problem disappears for J = J k

Hamiltonian in dimer basis in terms of dimer d: total ~T d = ~ S d,1 + ~ S d,2 and difference spin operators ~D d = ~ S d,1 ~ Sd,2 H = J? 2 X d + X hd,d i ~T 2 d 3 2 Jk + J 2 J? J J k ~T d ~T d + J k J ~D d ~D d 2 sign problem disappears for J = J k

Magnetic susceptibility.12 L = 32.8 χ J.4 1 2 3 4 5 T/J transition from gapped to ordered S = 1 state between J /J = 2.26 and 2.34 J /J = J /J = 2.26 J /J = 2.34 J /J = 2.5 S=1 square lattice J = J k

Scanning the transition region E/J -1.4-1.5-1.6-1.7 Internal energy L = 32 T/J =.5 T/J =.54 T/J =.56 T/J =.6 2.2 2.25 2.3 2.35 2.4 2.45 2.5 J /J ρ s Singlet density discontinuous behavior extends up to T.54J continuous crossover at higher T enhanced singlet-triplet fluctuations upon approaching the first-order transition line 1.8.6.4.2 L = 32 T/J =.5 T/J =.54 T/J =.56 T/J =.6 T/J = 1 2.2 2.25 2.3 2.35 2.4 2.45 2.5 J /J J = J k

Finite-T phase diagram 1 J = J k.8 T/J.6.4.2 long-range ordererd S=1 AF.5 1 1.5 2 2.5 3 3.5 4 J /J SU(2) symmetry Mermin-Wagner theorem forbids first-order line finite-temperature ordering transition singlet-product state

Finite-T phase diagram 1 J = J k.8 T/J.6.4.2 triplet dominated long-range ordererd S=1 AF first-order line singlet dominated singlet-product state.5 1 1.5 2 2.5 3 3.5 4 J /J binary variable on each dimer: singlet versus triplet (SU(2) symmetry equivalence of 3 components)

Finite-T phase diagram 1 J = J k.8 T/J.6.4.2 triplet dominated long-range ordererd S=1 AF Ising critical point first-order line singlet dominated singlet-product state.5 1 1.5 2 2.5 3 3.5 4 J /J binary variable on each dimer: singlet versus triplet (SU(2) symmetry equivalence of 3 components) Ising critical point

Logarithmic specific heat scaling 1 12 J = J k C 8 6 4 2 L = 48 L = 36 L = 24 L = 16 L = 12 C max 8 4 J /J = 2.31 L = 8 2 3 4 ln L.5 1 1.5 T/J compatible with 2D Ising universality class

Outline ❶ Motivation: thermodynamics of the spin-½ Shastry-Sutherland magnet SrCu2(BO3)2 ❷ Quantum-Monte Carlo: sign problem + dimer basis ❸ Application to fully frustrated bilayer ❹ Application to the 2D Shastry-Sutherland model ❺ Summary

Ground-state phase diagram fully frustrated bilayer.8 1 ipeps J 2 J2/J.6 J J.4.2 Shastry- Sutherland.2.4.6.8 1 J /J SrCu2(BO3)2

Average sign J 2 = 1 mild sign problem.8 recovery at low T (exact ground state) <sign>.6.4.2 L = 1 J /J =.3 J /J =.4 J /J =.5 J /J =.525 J /J =.55 J /J =.6.5 1 1.5 2 T/J

Example: J /J =.5 J 2 = Magnetic susceptibility Specific heat.3.8.2.6 χ J C.4.1 ED, N = 2 QMC, N = 32 QMC, N = 2.2 ED, N = 2 QMC, N = 32 QMC, N = 2.2.4.6.8 1 T/J.2.4.6.8 1 T/J Quantum Monte Carlo (QMC) with N=2 spins Exact diagonalization (ED) for N=2 correct, except for persistent finite-size effects close to the maximum of C

Summary Thanks: 2D Shastry-Sutherland Model: progress with QMC, but SrCu2(BO3)2 remains open fully frustrated square lattice: detailed analysis of finite-t properties possible: first-order transition terminating in Ising critical point other possible applications: 3D bicubic dimer model planar pyrochlore (checkerboard) kagome, pyrochlore, J. Stapmanns, P. Corboz, F. Mila, A.H., B. Normand, S. Wessel, arxiv:185.1117 Efficient Quantum Monte-Carlo simulations can be performed for certain highly frustrated quantum magnets using a suitable computational basis.