Applications of Light-Front Dynamics in Hadron Physics

Similar documents
Angular Momentum in Light-Front Dynamics

JSA Graduate Fellowship Final Report

Spin Densities and Chiral Odd Generalized Parton Distributions

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics

F O R SOCI AL WORK RESE ARCH

Structure of Generalized Parton Distributions

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Quantum Physics 2006/07

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

probability of k samples out of J fall in R.


Part I. Many-Body Systems and Classical Field Theory

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Observables in the GBF

Wigner Distributions and Orbital Angular Momentum of Quarks

7 Quantized Free Dirac Fields

A note on SU(6) spin-flavor symmetry.

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

PHY 396 K. Problem set #3. Due September 29, 2011.

Spontaneous Lorentz symmetry breaking by an antisymmetric tensor field. Citation Physical Review D. 64(2) P

Motivation: X.Ji, PRL 78, 61 (1997): DVCS, GPDs, ~J q,! GPDs are interesting physical observable! But do GPDs have a simple physical interpretation?

1.3 Translational Invariance

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

Introduction to chiral perturbation theory II Higher orders, loops, applications

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

A Note On The Chern-Simons And Kodama Wavefunctions

Newman-Penrose formalism in higher dimensions

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

SECOND QUANTIZATION. notes by Luca G. Molinari. (oct revised oct 2016)

arxiv:physics/ v1 [physics.class-ph] 3 Apr 2000

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lecture 7 SUSY breaking

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of

Green s function, wavefunction and Wigner function of the MIC-Kepler problem

arxiv: v2 [nucl-th] 22 Jul 2013

QCD on the lattice - an introduction

MP463 QUANTUM MECHANICS

Real and Virtual Compton Scattering in Perturbative QCD

Dr Victoria Martin, Spring Semester 2013

Lecture 11 Weak interactions, Cabbibo-angle. angle. SS2011: Introduction to Nuclear and Particle Physics, Part 2

Light Front (LF) Nuclear Structure Gerald A Miller, U. of Washington

(Bessel-)weighted asymmetries

Lorentz Invariance and Second Quantization

Particles and Deep Inelastic Scattering

arxiv: v2 [hep-th] 17 Jan 2008

L = e i `J` i `K` D (1/2,0) (, )=e z /2 (10.253)

The Feynman Propagator and Cauchy s Theorem

Applications of AdS/CFT correspondence to cold atom physics

1 Canonical quantization conformal gauge

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Relativistic Waves and Quantum Fields

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

Particle Physics I Lecture Exam Question Sheet

Loop Quantum Gravity a general-covariant lattice gauge theory. Francesca Vidotto UNIVERSITY OF THE BASQUE COUNTRY

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Singular Charge Density at the Center of the Pion?

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Warming Up to Finite-Temperature Field Theory

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

Quantum Mechanics I Physics 5701

SECOND QUANTIZATION. Lecture notes with course Quantum Theory

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Quantum Field Theory 2 nd Edition

Continuous symmetries and conserved currents

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Quark Orbital Angular Momentum in the Model

light-cone (LC) variables

Framework for functional tree simulation applied to 'golden delicious' apple trees

Inelastic scattering

On-shell Recursion Relations of Scattering Amplitudes at Tree-level

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday).

4. The Dirac Equation

Integrability in QCD and beyond

Lecture 10. September 28, 2017

Introduction to the Standard Model of particle physics

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Subrings and Ideals 2.1 INTRODUCTION 2.2 SUBRING

GLUON CONDENSATES AS SUSCEPTIBILITY RELATIONS

Yangian Symmetry of Planar N = 4 SYM

4 4 and perturbation theory

Coupled-Cluster Theory. Nuclear Structure

Quantum Gravity with Linear Action and Gravitational Singularities. George Savvidy. Testing Fundamental Physical Principles

Confined chirally symmetric dense matter

Light-Front Holography and Gauge/Gravity Correspondence: Applications to Hadronic Physics

Physics 772 Peskin and Schroeder Problem 3.4.! R R (!,! ) = 1 ı!!

Decay rates and Cross section. Ashfaq Ahmad National Centre for Physics

QCD Factorization and PDFs from Lattice QCD Calculation

NTNU Trondheim, Institutt for fysikk

Warped Brane-worlds in 6D Flux Compactification

Introduction to the Standard Model. 1. e+e- annihilation and QCD. M. E. Peskin PiTP Summer School July 2005

Cluster Properties and Relativistic Quantum Mechanics

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

1. Rotations in 3D, so(3), and su(2). * version 2.0 *

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

Introduction to string theory 2 - Quantization

Transcription:

Applications of Light-Front Dynamics in Hadron Physics Chueng-Ryong Ji North Carolina State University 1. What is light-front dynamics (LFD)? 2. Why is LFD useful in hadron physics? 3. Any first principle QCD predictions? 4. Any use of effective field theory? 5. Any treacherous points? 6. Any relevance to JLab experiments? June 5-7, 2013 Questions

Outline(tentative) Tutorials of LFD (5 th, 9-10am) Interpolating QFT (5 th, 1-2pm) Perturbative QCD Predictions (6 th,9-10am) Chiral Effective Field Theory (6 th, 1-2pm) Anomaly and Zero Modes(7 th, 10:15-11:15am) Application to DVCS and GPDs (7 th,1-2pm)

LFD Tutorial Simultaneity is broken in relativity.

Lorentz Transformation

Minkowski Space

The Boost Problem t z

LFD Tutorial t z

LFD Tutorial t z

LFD Tutorial t z

LFD Tutorial t z

The Boost Problem Number of quanta can change under boost. t t z z

LFD Tutorial Number of quanta can change under boost. t t z z

LFD Tutorial Number of quanta can change under boost. t t z z

LFD Tutorial Number of quanta can change under boost. t t z z

LFD Tutorial Number of quanta can change under boost. t t z z

The Boost Effect

Dirac s Proposition 1949

Poincaré Generators 3 boosts 3 rotations K = (K 1, K 2, K 3 ) 3 space translations 1 time translation J = (J 1, J 2, J 3 ) P = (P 1, P 2, P 3 ) E = P 0 Poincaré Algebra: 10x9/2=45

Poincaré Algebra: Covariant Form [p m, p n ] = 0 [p m,j rs ] = i(g mr p s - g ms p r ) [J mn,j rs ] = i(g ms J nr + g nr J ms - g mr J ns - g ns J mr ) p n = é ë p 0 p 1 p 2 p 3 ù û = ò d 3 x T 0n J mn = é 0 K 1 K 2 K 3 ù -K 1 0 J 3 -J 2 -K 2 -J 3 0 J 1 ë -K 3 J 2 -J 1 0 û = ò d 3 x M 0mn T mn = k L ( m f k ) n f k - g mn L å ; T mn = 0 m M mnl = T mn x l -T ml x n ; L = r p

6 How many generators leave the time surface invariant? Stability Group 7 6

6 Is the form change just formal? or Does it offer any physical consequences? 7 6

Physical Meaning of Stability Group Equal-time Wavefunction Time-ordered Scattering Amplitudes Invariant under Stability Group Elements Kinematic Transformations

Feynman Diagram: Invariant under all Poincaré generators Individual Time-Ordered Diagrams: Invariant under stability group Kinematic vs. Dynamic Generators

Return of Prodigal Son Longitudinal Boost from dynamic to kinematic

Interpolation between Instant and Front Forms K. Hornbostel, PRD45, 3781 (1992) C.Ji and C. Mitchell, PRD64,085013 (2001) C.Ji and A. Suzuki, PRD87,065015 (2013)

Interpolating Hadronic Wavefunction x 0 x ˆ+ x + Invariant under kinematic transformations (P, J) (P +, P^, J 3, E^, K 3 ) 0 d p / 4

d = 0 p 0 = p 0 -p 3 = p 3 0 < d < p /4 pˆ + = p 0 cosd - p 3 sind pˆ = - p0 sind + p 3 cosd d = p /4 p + = p - p - = p +

Σ(a)+Σ(b)=1/(s-m 2 ) ; s=2 GeV, m=1gev J-shape peak & valley : P z = - s(1- C) 2C ; C = cos(2d)

g mn = é 1 0 0 0 ù 0-1 0 0 0 0-1 0 ë 0 0 0-1û é ò d 3 x T 0m = P m = ë P 0 P 1 P 2 P 3 ù û é ò d 3 x (T 0m x n -T 0m x n ) = J mn = ë T mn = L ( m f k ) n f k - g mn L å ; k é P ˆm = ë g ˆ m ˆ n = 0 K 1 K 2 K 3 -K 1 0 J 3 -J 2 -K 2 -J 3 0 J 1 -K 3 J 2 -J 1 0 é cos2d 0 0 sin2d ù 0-1 0 0 0 0-1 0 ë sin2d 0 0 -cos2d û P ˆ+ = cosd P 0 +sind P 3 P ˆ1 = P 1 P ˆ2 = P 2 P ˆ- = sind P 0 - cosd P 3 m T mn = 0 ù û J ˆ m ˆ n = ù = ò dx ˆ- d 2 x^t û ˆ+ ˆm é 0 E ˆ 1 E ˆ 2 -K 3 ù -E ˆ 1 0 J 3 -F ˆ 1 -E ˆ 2 -J 3 0 -F ˆ 2 ë K 3 F ˆ 1 F ˆ 2 0 û E ˆ 1 = J 2 sind + K 1 cosd E ˆ 2 = K 2 cosd - J 1 sind F ˆ 1 = K 1 sind - J 2 cosd F ˆ 2 = J 1 cosd + K 2 sind

Interpolating Poincaré Algebra [P ˆm, P ˆn ] = 0 [P ˆm, J ˆr ˆ s ] = i(g ˆm ˆr P ˆ s - g ˆm ˆ s P ˆr ) [J ˆm ˆn, J ˆr ˆ s ] = i(g ˆm ˆ s J ˆn ˆr + g ˆn ˆr J ˆm ˆ s - g ˆm ˆr J ˆn ˆ s - g ˆn ˆ s J ˆm ˆr ) e.g. [P ˆ+, J ˆ+ˆ- ]= i(g ˆ+ˆ+ P ˆ- - g ˆ+ˆ- P ˆ+ ) [P ˆ+,-K 3 ]= i(p ˆ- cos2d - P ˆ+ sin2d) Return of Prodigal Son [K 3, P + ] = -ip + Exp -iw K 3 ( ) x + > µ x + > One more kinematic generator appears only in the front form. Maximum number (7) of members in the stability group.

Kinematic Operators (Members of Stability Group) Exp( -iwà ˆ i ) x + ˆ > µ x + ˆ > [ ˆÀ i, P ˆ+ ] = 0 À ˆ i = F ˆ i cos2d - E ˆ i sin2d d = 0 -J 2 J 1 À ˆ 1 = -J 2 cosd - K 1 sind ˆ À 2 = J 1 cosd - K 2 sind (J 3, P 1, P 2, Pˆ-) d = p /4 -E 1 = -(J 2 + K 1 )/ 2 E 2 = (J 1 - K 2 )/ 2

particle at rest p 0 = M, p 1 = p 2 = p 3 = 0 (pˆ + = Mcosd, pˆ = Msind) - same p 0 Under ˆ p 0 + p 3 À i transformation same remain at rest P 0 = M; p 3 = 0 can move 2 P 0 = M + p ^ 2M ; p3 = - p ^ 2M 2 (p 0 ) 2 - (p 3 ) 2 = (M + p 2 ^ 2M )2 - (- p 2 ^ 2M )2 = M 2 + p 2 ^ = 2p + p - > 0 Rational Energy-Momentum Dispersion Relation Vacuum gets simpler in LFD.

Angular Momentum [J i,j j ] = ie ijk J k,[j i,m] = 0 { } T = Exp -i(b ˆ 1 À 1 + b ˆ 2 À 2 ) [ ˆ Á i, ˆ Á j ] = ie ijk ˆ Á k,[ ˆ Á i,m] = 0 T n >= p,n > ˆ Á i p,n >= TJ i n > Á ˆ i = TJ i T +

Á ˆ ì 3 = J 3 pˆ + ˆ - z (p ^ À ˆ ü í î ^) ý þ / M sind ì Á ˆ ï æ z ^ = J ^ + p ^ cosd J 3 + ˆ (p ^ À ˆ ö æ í ^) ç è pˆ + M sind - (ˆ z p ^)sind ç K 3 + î ï - ø è pˆ p ˆ ö ü ^ E ^ ï + M sind ý - ø þï ì Á ^ = í z ˆ (p - î Á 3 = J 3 + ˆ z (E ^ p ^)/ p + E ^ - p + F ^+ p ^K 3 ) - p ^ p + ü ( p + J 3 + z ˆ E ^ p ) ^ ý þ / M Á 3 = W + p + W ˆm = 1 2 e ˆm ˆnâ ˆb p ˆn Jâ ˆb [Á 3, Stability Group Members] = 0

Interpolating Spinors ˆÁ 3 û (1) (1) CR = (+1)û CR

Interpolating Spinors ˆÁ 3 û (2) (2) CR = (-1)û CR

Interpolating Helicity Amplitude ˆM(l 1,l 2,l 3, l 4 ) = û( ˆp 2, l 2 )g ˆmû( ˆp 1, l 1 )û( ˆp 3, l 3 )g ˆmû( ˆp 4, l 4 )

Jacob-Wick Helicity vs. Light-Front Helicity Invariant under kinematic transformations Related by a rotation

Canonical Quantization Simple 1+1 dim QFT: L = 1 2 mf m f - 1 2 m2 f 2 L = C é ë 2 ( ˆ+f) 2 -( ˆ-f) 2 ù û + S( ˆ+f)( ˆ-f)- 1 2 m2 f 2 C = cos(2d), S = sin(2d) p(x) = L ( 0 f) = 0 f p(x) = C ˆ+f + S ˆ-f [p(x),f(y)] x 0 =y 0 = -id(x 3 - y 3 ) [p(x),f(y)] x ˆ+ =y ˆ+ = -id(x ˆ- - y ˆ- )

T mn = å k Pˆ+ Energy = ò ˆ- dx (p ˆ+f - L) = 1 2 Periodic Boundary Condition: f(x ˆ+ = 0, x ˆ- ) = w n = L ( m f k ) n f k - g mn L é ë P 0 = ò dx 3 (p 0 f - L) ù û f(x ˆ+, x ˆ- - ) = f(x ˆ+, x ˆ- + ) ò dx ˆ- C{( ˆ+f) 2 + ( ˆ-f) 2 }+ m 2 f 2 å n=- 2 æ n 2 +C m ö ç è p ø Pˆ+ = æ p ö ç è ø å n 1 é a n e -i 4pw n ë æ np ö ç è ø æw n - S n ö ç a + n a n è C ø x ˆ- + a n + e i æ np ö ç è ø [a m, a n + ] = d mn x ˆ- ù û

Symmetry Breaking f f = f +n L L = L - m 2 n f - 1 2 m2 n 2 Pˆ+ Pˆ+ m3 = Pˆ+ + (a C 1/4 0 + a 0 ( ) 1/2 n + )

Nontrivial Vacuum State Translation in scalar field: 0 > W > f f = f +n æ + ö W > = expçi ò dx ˆ- n p(x ˆ- ) 0 > è ø p(x ˆ+ = 0, x ˆ- ) = -i - å n=- æp ö ç è ø w é n 4p a ne -i ë æ np ö ç è ø é W >= exp -(C 1/2 m ) n 2 ù expé-(c 1/2 m ) 1/2 + ë na 0 ù û ë 2 û 0 > Condensation of Zero-Modes x ˆ- - a n + e i æ np ö ç è ø x ˆ- ù û

Vacuum Energy Pˆ+ W>= E W W> a e aa+ 0 >=a e aa+ 0 > Pˆ+ é mn W > C a ( + 1/2 0a 0 + m3 ) 1/2 n (a C 1/4 0 + a 0 ë + ) = (-m 2 n 2 ) expé-(c 1/2 m ) 1/2 + ë na 0 ù û 0 > + ò - E W = -m 2 n 2 = (- 1 2 m2 n 2 )dx ˆ- Independent of interpolation angle! ù exp é -(C1/2 m ) 1/2 + na 0 ù ë û 0 > û

Recovery of Trivial Vacuum in LFD é W >= exp -(C 1/2 m ) n 2 ë 2 ù expé-(c 1/2 m ) 1/2 + ë na 0 û ù û 0 > W> 0 > as C 0 However, E W and < W f(x) W >= -n are still independent of interpolation angle!

What is going on? < W f(x) W > æ + =< 0 exp é ë(c 1/2 m ) 1/2 n(a + 0 - a 0 ) ù a 0 + a 0 ûç è 2(C 1/2 m ) 1/2 = -n ö expé ë-(c 1/2 m ) 1/2 n(a + 0 - a 0 ) ù û ø 0 > Complication is transferred from vacuum to operator.

Summary LFD is not just formal but consequential in the analysis of physical observables. Longitudinal boost joins stability group in LFD. LF helicity amplitudes are independent of all references frames that are related by front-form boosts. Energy-momentum dispersion relation becomes rational and vacuum gets simpler in LFD.