The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

Similar documents
Antimatter from Supernova Remnants

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Charged Cosmic Rays and Neutrinos

Cosmic Rays, Photons and Neutrinos

Antimatter spectra from a time-dependent modeling of supernova remnants

TeV Cosmic Ray Anisotropies at Various Angular Scales

Propagation of TeV PeV Cosmic Rays in the Galactic Magnetic Field

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

Diffusive shock acceleration with regular electric fields

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

Multi-Messenger Astonomy with Cen A?

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

Seeing the moon shadow in CRs

News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

arxiv: v2 [astro-ph.he] 24 Jul 2012

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

Cosmic Ray Astronomy. Qingling Ni

Dark Matter in the Universe

Supernova Remnants and Cosmic. Rays

Subir Sarkar

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

Particle Acceleration at Supernova Remnants and Supernovae

The role of ionization in the shock acceleration theory

Lower bound on the extragalactic magnetic field

Difficulties of Star-forming Galaxies as the Source of IceCube Neutrinos. Takahiro Sudoh (UTokyo)

High energy radiation from molecular clouds (illuminated by a supernova remnant

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

UHECRs sources and the Auger data

a cosmic- ray propagation and gamma-ray code

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Gamma ray emission from supernova remnant/molecular cloud associations

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

Particle Acceleration in the Universe

Revue sur le rayonnement cosmique

Questions 1pc = 3 ly = km

Cosmic ray escape from supernova remnants

High and low energy puzzles in the AMS-02 positron fraction results

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Recent Results from the KASCADE-Grande Data Analysis

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017

COSMIC RAY ACCELERATION

Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

Ultra- high energy cosmic rays

Cosmic ray electrons from here and there (the Galactic scale)

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Ultrahigh Energy Cosmic Rays propagation II

Cosmic Pevatrons in the Galaxy

Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Ultra High Energy Cosmic Rays I

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

Recent Observations of Supernova Remnants

Neutrino Flavor Ratios as a Probe of Cosmic Ray Accelerators( 予定 ) Norita Kawanaka (UTokyo) Kunihito Ioka (KEK, Sokendai)

High-energy cosmic rays

MULTIMESSENGER APPROACH:Using the Different Messengers

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

High energy neutrino signals from NS-NS mergers

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

Remnants and Pulsar Wind

Production of Secondary Cosmic Rays in Supernova Remnants

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Constraining primordial magnetic fields with observations

arxiv: v2 [astro-ph.he] 3 Jan 2019

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

A few grams of matter in a bright world

On the GCR/EGCR transition and UHECR origin

Latest results and perspectives of the KASCADE-Grande EAS facility

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations

The air-shower experiment KASCADE-Grande

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Hadronic Interaction Studies with ARGO-YBJ

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

magnetic reconnection as the cause of cosmic ray excess from the heliospheric tail

Confinement of CR in Dark Matter relic clumps

Astroparticle Physics with IceCube

Cosmic rays and relativistic shock acceleration

Effect of the Regular Galactic Magnetic Field on the Propagation of Galactic Cosmic Rays in the Galaxy

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

W.R. Webber. New Mexico State University, Astronomy Department, Las Cruces, NM 88003, USA

Supernovae in stellar clusters as CR pevatrons. Collaborators: D.C.Ellison, P.E.Gladilin, S.M. Osipov

A Multimessenger Neutrino Point Source Search with IceCube

Extremely High Energy Neutrinos

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR

Magnetic Fields in Supernova Remnants and Pulsar Wind Nebulae: Deductions from X ray (and gamma ray) Observations

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

Secondary particles generated in propagation neutrinos gamma rays

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Transcription:

The 2 Icecube PeV events [A. Schuhkraft@NOW2012 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 1 / 23

The 2 Icecube PeV events [A. Schuhkraft@NOW2012 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 1 / 23

The 2 Icecube PeV events [A. Schuhkraft@NOW2012 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 1 / 23

The 2 Icecube PeV events [A. Schuhkraft@NOW2012 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 1 / 23

The 2 Icecube PeV events [A. Schuhkraft@NOW2012 ] Comments: event rate of cosmogenic neutrinos in PeV range is 0 event rate due to Glashow resonance is 0 energies 1.1 PeV and 1.3 PeV below Glashow resonance unlikely cosmogenic, rather diffuse extragalactic flux Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 1 / 23

Acceleration in a Monte Carlo framework Bell s microscopic picture: random walk + advection flow x(t + t) = x(t) + l 0 + v 2 tϑ(r sh r)e r Bohm diffusion: step size l0 = R L energy gain, if shock is crossed ξ = 4 3c (v 2 v 1 ) = v sh /c stop, if t > tmax or r > r esc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 2 / 23

Acceleration in a Monte Carlo framework Bell s microscopic picture: random walk + advection flow x(t + t) = x(t) + l 0 + v 2 tϑ(r sh r)e r Bohm diffusion: step size l0 = R L energy gain, if shock is crossed ξ = 4 3c (v 2 v 1 ) = v sh /c stop, if t > tmax or r > r esc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 2 / 23

Acceleration in a Monte Carlo framework Bell s microscopic picture: random walk + advection flow x(t + t) = x(t) + l 0 + v 2 tϑ(r sh r)e r Bohm diffusion: step size l0 = R L energy gain, if shock is crossed ξ = 4 3c (v 2 v 1 ) = v sh /c stop, if t > tmax or r > r esc Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 2 / 23

Acceleration in a Monte Carlo framework Bell s microscopic picture: random walk + advection flow x(t + t) = x(t) + l 0 + v 2 tϑ(r sh r)e r Bohm diffusion: step size l0 = R L energy gain, if shock is crossed ξ = 4 3c (v 2 v 1 ) = v sh /c stop, if t > tmax or r > r esc easy to include: time-dependence of vsh,b,... interactions: production of multi-particle states using e.g. QGSJET Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 2 / 23

Time-dependent framework: Proton flux [MK, Ostapchenko, Tomàs 10, 11 ] 1 model 1 model 2 E 2 F p 10-1 up down total 10-2 10 10 10 11 10 12 10 13 10 14 10 15 E (ev) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 3 / 23

Time-dependent framework: Antiproton ratio F - p / F p+p - 10-4 10-5 10-6 A B A+B 10-7 10 10 10 11 10 12 10 13 10 14 E (ev) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 4 / 23

Time-dependent framework: Antiproton ratio F - p / F p+p - 10-4 10-5 10-6 A B A+B 10-7 10 10 10 11 10 12 10 13 10 14 E (ev) component A: p produced in acceleration zone; component B: p produced downstream Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 4 / 23

Time-dependent framework: Antiproton ratio F - p / F p+p - 10-4 10-5 10-6 A B A+B 10-7 10 10 10 11 10 12 10 13 10 14 E (ev) component A: p produced in acceleration zone; component B: p produced downstream A is flatter: dn/de(a) E 1 but dn/de(a + B) E 2 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 4 / 23

Antimatter ratios from SNRs [MK, Ostapchenko, Tomàs 10, 11 ] F x - / F x+x - 10-1 10-2 10-3 10-4 10-5 10-6 e + /(e + +e - ) model 1 model 2 p/(p+p) - - 10 10 10 11 10 12 10 13 10 14 E (ev) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 5 / 23

(Hadronic) Photons and neutrinos from Tycho: p 2 J(p) [TeV m -2 s -1 ] 6 5 4 3 2 gammas neutrinos 1 8 9 10 11 12 13 14 15 16 E [ev] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 6 / 23

(Hadronic) Photons and neutrinos from Tycho: p 2 J(p) [TeV m -2 s -1 ] 6 5 4 3 2 gammas neutrinos 1 8 9 10 11 12 13 14 15 16 E [ev] SNR produce neutrinos with energies up to PeV I γ (E) I ν (E) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 6 / 23

Tycho observations by VERITAS Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 7 / 23

CR diffusion close to source, E = 10PeV, t = 2000yr S 0 0.2 0.4 0.6 0.8 1 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 8 / 23

CR diffusion close to source, E = 10PeV, t = 7000yr S Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 8 / 23

CR diffusion close to source, E = 10PeV, t = 500yr S Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 8 / 23

Filamentary CR diffusion close to source: [Giacinti, MK, Semikoz 12 ] Explanation: CRs scatter on modes with kr L 1 fast modes with kr L 1: irrelevant slow modes with kr L 1: act as regular, uniform field B 0 propagation along B 0 is faster than perpendicular Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 9 / 23

Filamentary CR diffusion close to source: [Giacinti, MK, Semikoz 12 ] Explanation: CRs scatter on modes with kr L 1 fast modes with kr L 1: irrelevant slow modes with kr L 1: act as regular, uniform field B 0 propagation along B 0 is faster than perpendicular Why not seen earlier in simulations? too large scales, l l max, considered anisotropy vanishes averaging over field realizations anisotropy vanishes for random start positions Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 9 / 23

E = 100 TeV 1 PeV 10 PeV t = 500 yr 2000 yr 7000 yr S S S S S S S S S 0 Michael Kachelrieß (NTNU Trondheim) 0.2 0.4 0.6 Cosmic Rays 0.8 1 IPM School, Tehran 2012 10 / 23

Calculation of diffusion tensor: inject N particles at x = 0 in one single realization b Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 11 / 23

Calculation of diffusion tensor: inject N particles at x = 0 in one single realization b calculate D (b) ij = 1 N N a=1 x (a) i x (a) j 2t Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 11 / 23

Calculation of diffusion tensor: inject N particles at x = 0 in one single realization b calculate D (b) ij = 1 N N a=1 x (a) i x (a) j 2t diagonalizes D (b) ij, determine eigenvalues d(b) i Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 11 / 23

Calculation of diffusion tensor: inject N particles at x = 0 in one single realization b calculate D (b) ij = 1 N N a=1 x (a) i x (a) j 2t diagonalizes D (b) ij, determine eigenvalues d(b) i average the ordered eigenvalues, d (b) 1 < d (b) 2 < d (b) 3, over the M realizations, d i = 1 M d (b) i M b=1 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 11 / 23

Eigenvalues of D ij = x i x j /(2t) for E = 10 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D 0.1 1 10 100 Time (kyr) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 12 / 23

Eigenvalues of D ij = x i x j /(2t) for E = 10 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D 0.1 1 10 100 Time (kyr) asymptotic value is 4 smaller than Galprop value Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 13 / 23

Transition time to standard diffusion: 1e+30 1e+30 1e+30 D(10PeV) (cm 2 /s) 1e+29 1e+29 1e+28 (b) d 1e+28 3 (b) d 2 (b) d 1 1e+27 1e+27 D (b) 0.1 1 10 0.1 1 10 Time (kyr) Time (kyr) D(1PeV) (cm 2 /s) D(100TeV) (cm 2 /s) 1e+29 1e+28 1e+27 0.1 1 10 Time (kyr) t 10 4 yrs (l max /150 pc) β (E/1 PeV) γ with β 2 and γ = 0.25 0.5 for Kolmogorov turbulence and B rms = 4µG. Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 14 / 23

Comparison CR density vs. photon flux 10 10 5 5 0 0-5 -5-10 -10-5 0 5 10 0.01 0.1 1-10 -10-5 0 5 10 0.01 0.1 1 irregular gamma-ray halos as tracker of CR density Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 15 / 23

Average intensity I(E) of Galactic CRs precise measurements by PAMELA, soon AMS-02 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 16 / 23

Average intensity I(E) of Galactic CRs precise measurements by PAMELA, soon AMS-02 local measurements I(x, E) may deviate from average: solar wind local sources Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 16 / 23

Average intensity I(E) of Galactic CRs precise measurements by PAMELA, soon AMS-02 local measurements I(x, E) may deviate from average: solar wind local sources reconstruct I(E) using gamma-rays from molecular clouds, dn γ de γ Emax E γ de dn CR de dσ pp γ (E, E γ ) de γ Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 16 / 23

Average intensity I(E) of Galactic CRs precise measurements by PAMELA, soon AMS-02 local measurements I(x, E) may deviate from average: solar wind local sources reconstruct I(E) using gamma-rays from molecular clouds, dn γ de γ Emax E γ de dn CR de dσ pp γ (E, E γ ) de γ ill-posed problem, fit instead physically motivated trial functions (broken) power-laws Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 16 / 23

Neronov, Semikoz and Taylor 2012: single power-law I(T) T α does not reproduce 2 GeV break of I γ Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 17 / 23

Neronov, Semikoz and Taylor 2012: single power-law I(T) T α does not reproduce 2 GeV break of I γ best-fit: broken power-law in T, breaks at 10 and 200 GeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 17 / 23

Neronov, Semikoz and Taylor 2012: single power-law I(T) T α does not reproduce 2 GeV break of I γ best-fit: broken power-law in T, breaks at 10 and 200 GeV physical explanation? 200 GeV: end of solar modulation 10 GeV: change in D(E) [Blasi, Amato, Serpico 12 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 17 / 23

How good are photon FF? QGSJET vs. SIBYLL [MK, Ostapchenko 12 ] π -1 x E dσ/dx F (mb) 10 2 10 1 p + p π 0 at 400 GeV/c π -1 x E dσ/dx F (mb) 10 1 p + p η at 400 GeV/c 10-1 10-1 10-2 10-2 10-3 0 0.2 0.4 0.6 0.8 1 x F 0 0.2 0.4 0.6 0.8 1 x F Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 18 / 23

How good are photon FF? QGSJET, SIBYLL, Kamae E γ dσ/de γ (mb) 10 2 p + p γ at 50 GeV p + p γ at 5 TeV p + p γ at 500 TeV 10 1 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 x E x E x E Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 19 / 23

How good are Fragmentation Functions? there are differences: we recommend http://sourceforge.net/projects/ppfrag Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 20 / 23

How good are Fragmentation Functions? there are differences: we recommend http://sourceforge.net/projects/ppfrag Kamae FF used by NST works well up 50 GeV Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 20 / 23

How good are Fragmentation Functions? there are differences: we recommend http://sourceforge.net/projects/ppfrag Kamae FF used by NST works well up 50 GeV in integrated results spectral differences washed out E γ 2 dn γ /de γ (rel. units) 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1 10 10 2 10 3 10 4 E γ (GeV) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 20 / 23

How good are Fragmentation Functions? there are differences: we recommend http://sourceforge.net/projects/ppfrag Kamae FF used by NST works well up 50 GeV in integrated results spectral differences washed out E γ 2 dn γ /de γ (rel. units) 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1 10 10 2 10 3 10 4 E γ (GeV) Kamae FF not reason for bump Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 20 / 23

Gammas from CR power-laws in T vs. p 1 0.1 E_kin-spectrum p_lab-spectrum E_lab-spectrum 0.01 0.001 0.0001 1e-05 1e-06 0.1 1 10 100 1000 10000 Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 21 / 23

Gammas from CR power-laws in T vs. p 1 0.1 E_kin-spectrum p_lab-spectrum E_lab-spectrum 0.01 0.001 0.0001 1e-05 1e-06 0.1 1 10 100 1000 10000 most of the bump comes from power-law in T DSA predicts power-law in p [Bell 77 ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 21 / 23

Gammas from CR power-laws in T vs. p 0.0001 E 2 Flux [GeV/cm 2 s] 1e-05 0.1 1 10 100 E [GeV] red: I p 2.85 (our FF) blue: I p 2.85, break to I p 1 at 3 GeV (our FF) Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 22 / 23

Gammas from CR power-laws in T vs. p 0.0001 E 2 Flux [GeV/cm 2 s] 1e-05 0.1 1 10 100 E [GeV] red: I p 2.85 (our FF) blue: I p 2.85, break to I p 1 at 3 GeV (our FF) explanation: break in D(E) around 3 GeV as suggested by radio data caused by CR damping standard solar modulation Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 22 / 23

Summary Intensity I(p) of sea CRs important for CR physics, DM searches. determination via GMC requires additional input controversial solutions minimal: power-law in I(p) supports DSA, consistent with standard solar modulations, break 3 GeV Anisotropic diffusion on scales l < l max leads to irregular CR and gamma halos Icecube events: consistency between diffuse νµ and cosmogenic analysis unlikely cosmogenic, rather diffuse extragalactic flux; galactic possible? Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 23 / 23

Summary Intensity I(p) of sea CRs important for CR physics, DM searches. determination via GMC requires additional input controversial solutions minimal: power-law in I(p) supports DSA, consistent with standard solar modulations, break 3 GeV Anisotropic diffusion on scales l < l max leads to irregular CR and gamma halos Icecube events: consistency between diffuse νµ and cosmogenic analysis unlikely cosmogenic, rather diffuse extragalactic flux; galactic possible? Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 23 / 23

Summary Intensity I(p) of sea CRs important for CR physics, DM searches. determination via GMC requires additional input controversial solutions minimal: power-law in I(p) supports DSA, consistent with standard solar modulations, break 3 GeV Anisotropic diffusion on scales l < l max leads to irregular CR and gamma halos Icecube events: consistency between diffuse νµ and cosmogenic analysis unlikely cosmogenic, rather diffuse extragalactic flux; galactic possible? Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran 2012 23 / 23