J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/1 Code No.

Similar documents
J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/3 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/C H$moS> Z. 65/1

J{UV 65/1/C. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/3

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/2 Code No.

J{UV 65/2. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/1

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

CBSE Question Paper. Mathematics Class-XII (set-1)

J{UV 65/1/RU. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

CBSE QUESTION PAPER. MATHEMATICS,(1)1d

J{UV (Ho$db ZoÌhrZ narjm{w `m Ho$ {be) MATHEMATICS. g H${bV narjm II SUMMATIVE ASSESSMENT II. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90.

CBSE Examination Paper, Foreign-2014

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

EMT December - Examination 2017 BAP Examination Elementary Mathematics Paper - EMT

30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

30/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

BMT June - Examination 2017 BSCP Examination Mathematics J{UV. Paper - BMT. Time : 3 Hours ] [ Max. Marks :- 80

MT-03 June - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

MT-03 December - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry & Linear Programming Paper - MT-03

CBSE QUESTION PAPER CLASS-X

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

J{UV 65/2/1/F. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO/2

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

Set 1 30/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

PH-03 December - Examination 2016 B.Sc. Pt. I Examination Electromagnetism. Paper - PH-03. Time : 3 Hours ] [ Max. Marks :- 50

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

PH-02 June - Examination 2017 B.Sc. Pt. I Examination Oscillation and Waves. Paper - PH-02. Time : 3 Hours ] [ Max. Marks :- 50

Set 3 30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõmýv

MSCPH-03 June - Examination 2017 MSC (Previous) Physics Examination Solid State Physics. Paper - MSCPH-03. Time : 3 Hours ] [ Max.


MPH-03 June - Examination 2016 M.Sc. (Previous) Physics Examination Quantum Mechanics. Paper - MPH-03. Time : 3 Hours ] [ Max.

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõm V

Time allowed: 3 hours Maximum Marks: 90

MSCCH - 09 December - Examination 2015 M.Sc. Chemistry (Final) Examination Drugs and Pharmaceuticals Paper - MSCCH - 09

J{UV 65/1/MT. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

{ZX}e : h àíz-nì "A', "~' VWm "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm H$m CÎma Xr{OE&

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

àoau à^md {H$go H$hVo h?

PH-06 June - Examination 2016 BSc Pt. II Examination Optics. àh$m{eh$s. Paper - PH-06. Time : 3 Hours ] [ Max. Marks :- 50

J{UV MATHEMATICS. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90 IÊS> A SECTION A

J{UVr ^m {VH$s VWm {Magå V m {ÌH$s

This ques tion pa per con sists of 32 ques tions [Sec tion A (24) + Sec tion B (4+4)] and 12 printed pages. MATHEMATICS J{UV (311) 2...

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 55/2/1 Code No.

agm`z {dkmz (g ÕmpÝVH$) 56/1/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/C. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Downloaded From:

^m {VH$ {dkmz (g ÕmpÝVH$) 55/2/1. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM/2

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 42/3 (SPL) Code No.

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/3 Code No.

Mathematics. Guess Paper: 2014 Class: XII. Time Allowed: 3Hours Maximum Marks: 70. Section A

J{UV (311) (narjm H$m {XZ d {XZmßH$) Signature of Invigilators 1... ({ZarjH$m Ho$ hòvmja) Bg ÌZ-nà nwpòvh$m Ho$ A VJ V 23 _w{ V n apple> h ü&

II SUMMATIVE ASSESSMENT II

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

Series HRS/2 H$moS> Z. 31/2/2 Code No.

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/2 Code No.

agm`z {dkmz (g ÕmpÝVH$) 56/1/MT {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

Series HRS H$moS> Z. 31/3 Code No. g H${bV narjm II SUMMATIVE ASSESSMENT II {dkmz SCIENCE

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/C H$moS> Z. 56/1

PHYSICS. ^m {VH$ {dkmz (312) Time : 3 Hours ] [ Max i mum Marks : 80. Note : (i) This Question Paper consists of two Sections, viz., A and B.

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM

gm_mý` {ZX}e : àízm Ho$ CÎma {bizo h & (ii) g^r àíz A{Zdm` h & (iii) AmnH$mo ^mj A Am a ^mj ~ Ho$ g^r àízm Ho$ CÎma n WH²$-n WH²$ ^mj Ho$ AmYma na

SECTION A 1. Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is 2iˆ

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

Bg narjm _ {ZåZ{b{IV àíznì hm Jo

{dîm Am a à~ YZ na {díbofumë_h$

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/1

31/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

A H$ 1. VH $epšv H $ß`yQ>a kmz gm_mý` gmovvm A J«oOr ^mfm Am {H$H$ j_vm Hw$b

II SUMMATIVE ASSESSMENT II

31/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

agm`z {dkmz (g ÕmpÝVH$) 56/3/RU {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

II SUMMATIVE ASSESSMENT II

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/G. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

MATHEMATICS Paper & Solutions

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/MT. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

(ï) yvœ< Èœ W g -W g Æ Ê {[R [ ˆ[Û * à.3. `{X {ZåZ{b{IV du _mbm Ho$ Aja AnZm ñwmz Bg àh$ma ~Xb {H$ A, Z Ho$ ñwmz na Am OmE Am a Z, A Ho$ ñwmz na,

MATHEMATICS. Time allowed : 3 hours Maximum Marks : 100

agm`z {dkmz (g ÕmpÝVH$) 56/1/B {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

31/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

Transcription:

Series OSR/ H$moS> Z. 65//1 Code No. amob Z. Roll No. narjmwu H$moS >H$mo CÎma-nwpñVH$m Ho$ _wi-n ð >na Adí` {bio & Candidates must write the Code on the title page of the answer-book. H $n`m Om±M H$a b {H$ Bg àíz-nì _o _w{ðv n ð> 1 h & àíz-nì _ Xm{hZo hmw H$s Amoa {XE JE H$moS >Zå~a H$mo N>mÌ CÎma-nwpñVH$m Ho$ _wi-n ð> na {bi & H $n`m Om±M H$a b {H$ Bg àíz-nì _ >9 àíz h & H $n`m àíz H$m CÎma {bizm ewê$ H$aZo go nhbo, àíz H$m H«$_m H$ Adí` {bi & Bg àíz-nì H$mo n T>Zo Ho$ {be 15 {_ZQ >H$m g_` {X`m J`m h & àíz-nì H$m {dvau ndm _ 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>mÌ Ho$db àíz-nì H$mo n T> Jo Am a Bg Ad{Y Ho$ Xm amz do CÎma-nwpñVH$m na H$moB CÎma Zht {bi Jo & Please check that this question paper contains 1 printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book b the candidate. Please check that this question paper contains 9 questions. Please write down the Serial Number of the question before attempting it. 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper onl and will not write an answer on the answer-book during this period. J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100 Time allowed : 3 hours Maimum Marks : 100 65//1 1 P.T.O.

gm_mý` {ZX}e : (i) (ii) (iii) (iv) (v) g^r àíz A{Zdm` h & Bg àíz nì _ 9 àíz h Omo VrZ IÊS>m _ {d^m{ov h : A, ~ VWm g & IÊS> A _ 10 àíz h {OZ_ go àë`oh$ EH$ A H$ H$m h & IÊS> ~ _ 1 àíz h {OZ_ go àë`oh$ Mma A H$ H$m h & IÊS> g _ 7 àíz h {OZ_ go àë`oh$ N> A H$ H$m h & IÊS> A _ g^r àízm Ho$ CÎma EH$ eãx, EH$ dmš` AWdm àíz H$s Amdí`H$Vm AZwgma {XE Om gh$vo h & nu àíz nì _ {dh$ën Zht h & {\$a ^r Mma A H$m dmbo 4 àízm _ VWm N> A H$m dmbo àízm _ AmÝV[aH$ {dh$ën h & Eogo g^r àízm _ go AmnH$mo EH$ hr {dh$ën hb H$aZm h & H $bhw$boq>a Ho$ à`moj H$s AZw_{V Zht h & `{X Amdí`H$ hmo Vmo Amn bkwjuh$s` gma{u`m± _m±j gh$vo h & General Instructions : (i) All questions are compulsor. (ii) The question paper consists of 9 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 1 questions of four marks each and Section C comprises of 7 questions of si marks each. (iii) (iv) (v) All questions in Section A are to be answered in one word, one sentence or as per the eact requirement of the question. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and questions of si marks each. You have to attempt onl one of the alternatives in all such questions. Use of calculators is not permitted. You ma ask for logarithmic tables, if required. 65//1

IÊS> A SECTION A àíz g»`m 1 go 10 VH$ àë`oh$ àíz 1 A H$ H$m h & Question numbers 1 to 10 carr 1 mark each. 1. _mzm R = {(a, a 3 ) : a, nm±m go N>moQ>r A^mÁ` g»`m h } EH$ g ~ Y h & R H$m n[aga kmv H$s{OE & Let R = {(a, a 3 ) : a is a prime number less than 5} be a relation. Find the range of R. 1 1 1 1. cos sin H$m _mz {b{ie & Write the value of cos 1 1 sin 1 1. 3. Amì`h g_rh$au 4 3 1 3 0 C C C 1 H$m à`moj H$s{OE & 3 1 0 1 _ àma {^H$ ñv ^ g {H«$`mAm Use elementar column operations C C C 1 in the matri 4 1 0 equation. 3 3 0 3 1 1 4. `{X a 4 8 3b a 6 8 b a 8b h, Vmo a b H$m _mz {b{ie & If a 4 8 3b a 6 8 b, write the value of a b. a 8b 65//1 3 P.T.O.

5. `{X A EH$ Eogm 3 3 Amì`h h {H$ A 0 VWm 3A = k A h, Vmo k H$m _mz {b{ie & If A is a 3 3 matri, A 0 and 3A = k A, then write the value of k. 6. _mz kmv H$s{OE : Evaluate : sin sin 7. _mz kmv H$s{OE : cos cos Evaluate : / 4 0 / 4 0 tan tan 8. g{xe ^i + ^j + ^k H$m g{xe ^j Ho$ AZw{Xe àjon {b{ie & Write the projection of vector ^i + ^j + ^k along the vector ^j. 9. g{xe ^i 3 ^j + 6^k Ho$ AZw{Xe EH$ Eogm g{xe kmv H$s{OE {OgH$m n[a_mu 1 _mìh$ h & Find a vector in the direction of vector ^i 3 ^j + 6^k which has magnitude 1 units. 65//1 4

10. aoimam r = ^i 5 ^j + ^k + (3^i + ^j + 6^k ) VWm r = 7^i 6^k + (^i + ^j + ^k ) Ho$ ~rm H$m H$moU kmv H$s{OE & Find the angle between the lines r = ^i 5 ^j + ^k + (3^i + ^j + 6^k ) and r = 7^i 6^k + (^i + ^j + ^k ). IÊS> ~ SECTION B àíz g»`m 11 go VH$ àë`oh$ àíz 4 A H$ H$m h & Question numbers 11 to carr 4 marks each. 11. _mzm f : W W, f() = 1, `{X {df_ h VWm f() = + 1, `{X g_ h, Ûmam n[a^m{fv h & Xem BE {H$ f ì`wëh«$_ur` h & f H$m à{vbmo_ kmv H$s{OE, Ohm± W g^r nu g»`mam H$m g_wƒ` h & Let f : W W, be defined as f() = 1, if is odd and f() = + 1, if is even. Show that f is invertible. Find the inverse of f, where W is the set of all whole numbers. 1. Ho$ {be hb H$s{OE : cos (tan 1 ) = sin AWdm cot 1 3 4 {gõ H$s{OE {H$ : cot 1 7 + cot 1 8 + cot 1 18 = cot 1 3 Solve for : cos (tan 1 ) = sin cot 1 3 4 OR Prove that : cot 1 7 + cot 1 8 + cot 1 18 = cot 1 3 65//1 5 P.T.O.

13. gma{uh$m Ho$ JwUY_m] H$m à`moj H$a {gõ H$s{OE {H$ a z a z a (a z) a z Using properties of determinants, prove that a z a z a (a z) a z 14. `{X = a cos + b sin VWm = a sin b cos h, Vmo Xem BE {H$ d d 0. If = a cos + b sin and = a sin b cos, show that d d 0. 15. `{X m n = ( + ) m + n h, Vmo {gõ H$s{OE {H$ If m n = ( + ) m + n, prove that d. d. 16. f(3. 0) H$m g{þh$q> _mz Xe_bd Ho$ ñwmzm VH$ kmv H$s{OE, Ohm± f() = 3 + 5 + 3 h & AWdm dh A Vamb kmv H$s{OE {OZ_ \$bz f() = 3 4 4 3 45 + 51 (a) (b) {Za Va dy _mz h & {Za Va õmg_mz h & Find the approimate value of f(3. 0), upto places of decimal, where f() = 3 + 5 + 3. OR 65//1 6

Find the intervals in which the function f() = 3 4 4 3 45 + 51 is (a) (b) strictl increasing. strictl decreasing. 17. _mz kmv H$s{OE : cos 1 1 AWdm _mz kmv H$s{OE : (3 ) 1 Evaluate : cos 1 1 OR Evaluate : (3 ) 1 18. AdH$b g_rh$au ( ) d + ( + ) = 0 H$mo hb H$s{OE, {X`m h {H$ O~ = 1 h, Vmo = 1 h & Solve the differential equation ( ) d + ( + ) = 0, given that = 1, when = 1. 65//1 7 P.T.O.

d 19. AdH$b g_rh$au + cot = cos H$mo hb H$s{OE, {X`m h {H$ O~ h, Vmo = 0 h & Solve the differential equation when. d + cot = cos, given that = 0, 0. Xem BE {H$ g{xe a, b, c g_vbr` h `{X Am a Ho$db `{X a + b, b + c VWm c + a g_vbr` h & AWdm EH$ Eogm _mìh$ g{xe kmv H$s{OE Omo XmoZm g{xem a + b VWm a b na bå~dv h, Ohm± a = ^i + ^j + ^k VWm b = ^i + ^j + 3^k. Show that the vectors a, b, c are coplanar if and onl if a + b, b + c and c + a are coplanar. OR Find a unit vector perpendicular to both of the vectors a b where a = ^i + ^j + ^k, b = ^i + ^j + 3^k. a + b and 1. aoimam, {OZHo$ g{xe g_rh$au {ZåZ h, Ho$ ~rm H$s Ý`ZV_ Xÿar kmv H$s{OE : r = ^i + ^j + (^i ^j + ^k ) VWm r = ^i + ^j ^k + (3^i 5 ^j + ^k ). Find the shortest distance between the lines whose vector equations are r = ^i + ^j + (^i ^j + ^k ) and r = ^i + ^j ^k + (3^i 5 ^j + ^k ).. AÀN>r àh$ma go \ $Q>r JB Vme H$s 5 nîmm H$s JÈ>r _ go VrZ nîmo `mñàn>`m ({~Zm à{vñwmnzm Ho$) {ZH$mbo JE & {ZH$mbo JE bmb nîmm H$s g»`m H$m àm{`h$vm ~ Q>Z kmv H$s{OE & AV ~ Q>Z H$m _mü` kmv H$s{OE & Three cards are drawn at random (without replacement) from a well shuffled pack of 5 plaing cards. Find the probabilit distribution of number of red cards. Hence find the mean of the distribution. 65//1 8

IÊS> g SECTION C àíz g»`m 3 go 9 VH$ àë`oh$ àíz Ho$ 6 A H$ h & Question numbers 3 to 9 carr 6 marks each. 3. Xmo {dúmb` P VWm Q AnZo MwZo hþe {dúm{w `m H$mo ghzerbvm, X`mbwVm VWm ZoV Ëd Ho$ _ë`m na nwañh$ma XoZm MmhVo h & {dúmb` P AnZo H«$_e 3, VWm 1 {dúm{w `m H$mo BZ VrZ _ë`m na H«$_e <, < VWm < z XoZm MmhVm h O~{H$ BZ nwañh$mam H$m Hw$b _ë` <,00 h & {dúmb` Q AnZo H«$_e 4, 1 VWm 3 {dúm{w `m H$mo BZ _ë`m Ho$ {be Hw$b < 3,100 XoZm MmhVm h (VWm {dúmb` P O go hr VrZ _ë`m na dhr nwañh$ma am{e XoZm MmhVm h ) & `{X BZ VrZm _ë`m na {XE JE EH$-EH$ nwañh$ma H$s Hw$b am{e < 1,00 h, Vmo Amì`hm H$m à`moj H$aHo$ àë`oh$ _ë` Ho$ {be Xr JB nwañh$ma am{e kmv H$s{OE & Cn`w º$ VrZ _ë`m Ho$ A{V[aº$ EH$ AÝ` _ë` gwpmbe, Omo nwañh$ma XoZo Ho$ {be em{_b hmozm Mm{hE & Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award < each, < each and < z each for the three respective values to 3, and 1 students respectivel with a total award mone of <,00. School Q wants to spend < 3,100 to award its 4, 1 and 3 students on the respective values (b giving the same award mone to the three values as school P). If the total amount of award for one prize on each value is < 1,00, using matrices, find the award mone for each value. Apart from these three values, suggest one more value which should be considered for award. 4. Xem BE {H$ D$na go Iwbo VWm {XE JE Am`VZ dmbo ~obz H$m Hw$b n ð>r` joì\$b Ý`ZV_ hmojm O~ CgH$s D±$MmB, CgHo$ AmYma H$s {ÌÁ`m Ho$ ~am~a h & Show that a clinder of a given volume which is open at the top has minimum total surface area, when its height is equal to the radius of its base. 65//1 9 P.T.O.

5. _mz kmv H$s{OE : 0 Evaluate : tan sec tan 0 tan sec tan 9 4 3 6. XrK d Îm 1 VWm aoim 1 Ûmam {Kao N>moQ>o joì H$m joì\$b kmv H$s{OE & Find the area of the smaller region bounded b the ellipse 1 9 4 and the line 1. 3 7. Cg g_vb H$m g_rh$au kmv H$s{OE {Og_ {~ÝXþ (1, 1, ) pñwv h VWm Omo g_vbm + 3 z = 5 VWm + 3z = 8 na b ~dv h & AV D$na kmv {H$E JE g_vb go {~ÝXþ P(, 5, 5) H$s Xÿar kmv H$s{OE & AWdm {~ÝXþAm A(, 1, ) VWm B(5, 3, 4) H$mo {_bmzo dmbr aoim VWm g_vb + z = 5 Ho$ à{vàn>oxz {~ÝXþ H$s {~ÝXþ P( 1, 5, 10) go Xÿar kmv H$s{OE & Find the equation of the plane that contains the point (1, 1, ) and is perpendicular to both the planes + 3 z = 5 and + 3z = 8. Hence find the distance of point P(, 5, 5) from the plane obtained above. OR Find the distance of the point P( 1, 5, 10) from the point of intersection of the line joining the points A(, 1, ) and B(5, 3, 4) with the plane + z = 5. 65//1 10

8. EH$ Hw$Q>ra CÚmoJ {Z_m Vm n S>oñQ>b b n VWm bh$ S>r Ho$ eos> ~ZmVm h & àë`oh$ Ho$ {Z_m U _ EH$ aj S>Zo/H$mQ>Zo H$s _erz Am a EH$ ñào`a H$s Amdí`H$Vm hmovr h & EH$ n S>oñQ>b b n Ho$ {Z_m U _ K Q>o aj S>Zo/H$mQ>Zo H$s _erz Am a 3 K Q>o ñào`a H$s Amdí`H$Vm hmovr h O~{H$ EH$ eos> Ho$ {Z_m U _ 1 K Q>m aj S>Zo/H$mQ>Zo H$s _erz Am a K Q>o ñào`a H$s Amdí`H$Vm hmovr h & ñào`a à{v{xz A{YH$V_ 0 K Q>o Am a aj S>Zo/H$mQ>Zo H$s _erz à{v{xz A{YH$V_ 1 K Q>o Ho$ {be CnbãY h & EH$ b n H$s {~H«$s na < 5 bm^ VWm EH$ eos> H$s {~H«$s na < 15 bm^ hmovm h & `h _mzvo hþe {H$ {Z_m Vm {Z{_ V g^r b n VWm eos> ~om bovm h, Vmo ~VmBE {H$ dh à{v{xz {Z_m U H$s H $gr `moozm ~ZmE {H$ Cgo A{YH$V_ bm^ hmo & Cnamoº$ H$mo EH$ a {IH$ àmoj«m_z g_ñ`m ~Zm H$a J«m\$ Ûmam hb H$s{OE & A cottage industr manufactures pedestal lamps and wooden shades, each requiring the use of a grinding/cutting machine and a spraer. It takes hours on the grinding/cutting machine and 3 hours on the spraer to manufacture a pedestal lamp. It takes 1 hour on the grinding/cutting machine and hours on the spraer to manufacture a shade. On an da, the spraer is available for at the most 0 hours and the grinding/cutting machine for at the most 1 hours. The profit from the sale of a lamp is < 5 and that from a shade is < 15. Assuming that the manufacturer can sell all the lamps and shades that he produces, how should he schedule his dail production in order to maimise his profit. Formulate an LPP and solve it graphicall. 9. EH$ ~r_m H $nzr 000 ñh$q>a MmbH$m, 4000 H$ma MmbH$m VWm 6000 Q >H$ MmbH$m H$m ~r_m H$aVr h {OZHo$ XþK Q>ZmJ«ñV hmozo H$s àm{`h$vme± H«$_e 0. 01, 0. 03 VWm 0. 15 h & ~r_mh $V ì`{º$`m (MmbH$m ) _ go EH$ XþK Q>ZmJ«ñV hmo OmVm h & Cg ì`{º$ Ho$ ñh$q>a MmbH$ AWdm H$ma MmbH$ hmozo H$s àm{`h$vm kmv H$s{OE & AWdm 65//1 11 P.T.O.

AÀN>r àh$ma go \ $Q>r JB Vme H$s EH$ JÈ>r _ go nm±m nîmo, EH$-EH$ H$aHo$ à{vñwmnzm g{hv, {ZH$mbo OmVo h & àm{`h$vm kmv H$s{OE {H$ (i) g^r {ZH$mbo JE nîmo BªQ> Ho$ h & (ii) Ho$db 3 nîmo BªQ> Ho$ h & (iii) H$moB ^r nîmm BªQ> H$m Zht h & An insurance compan insured 000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probabilities of an accident for them are 0. 01, 0. 03 and 0. 15 respectivel. One of the insured persons meets with an accident. What is the probabilit that he is a scooter driver or a car driver? OR Five cards are drawn one b one, with replacement, from a well shuffled deck of 5 cards. Find the probabilit that (i) (ii) (iii) all the five cards are diamonds. onl 3 cards are diamonds. none is a diamond. 65//1 1,800