Triple positive solutions of fourth-order impulsive differential equations with integral boundary conditions

Similar documents
Triple positive solutions for a second order m-point boundary value problem with a delayed argument

MULTIPLICITY OF CONCAVE AND MONOTONE POSITIVE SOLUTIONS FOR NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

Multiplesolutionsofap-Laplacian model involving a fractional derivative

Abdulmalik Al Twaty and Paul W. Eloe

Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving integral conditions

Multiple positive solutions for a nonlinear three-point integral boundary-value problem

MULTIPLE POSITIVE SOLUTIONS FOR FOURTH-ORDER THREE-POINT p-laplacian BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR NONLOCAL SEMIPOSITONE FIRST ORDER BOUNDARY VALUE PROBLEMS

arxiv: v1 [math.ca] 31 Oct 2013

Existence Of Solution For Third-Order m-point Boundary Value Problem

Research Article Solvability of a Class of Integral Inclusions

Three symmetric positive solutions of fourth-order nonlocal boundary value problems

Research Article The Existence of Countably Many Positive Solutions for Nonlinear nth-order Three-Point Boundary Value Problems

Multiple Positive Solutions For Impulsive Singular Boundary Value Problems With Integral Boundary Conditions

Positive solutions for integral boundary value problem of two-term fractional differential equations

TRIPLE POSITIVE SOLUTIONS FOR A CLASS OF TWO-POINT BOUNDARY-VALUE PROBLEMS

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

Positive solutions of BVPs for some second-order four-point difference systems

NONLINEAR THREE POINT BOUNDARY VALUE PROBLEM

Positive solutions for singular third-order nonhomogeneous boundary value problems with nonlocal boundary conditions

Positive solutions for a class of fractional 3-point boundary value problems at resonance

On the existence of solution to a boundary value problem of fractional differential equation on the infinite interval

Layered Compression-Expansion Fixed Point Theorem

Existence of solutions of fractional boundary value problems with p-laplacian operator

Positive Solution of a Nonlinear Four-Point Boundary-Value Problem

MONOTONE POSITIVE SOLUTION OF NONLINEAR THIRD-ORDER TWO-POINT BOUNDARY VALUE PROBLEM

Existence and multiplicity of positive solutions of a one-dimensional mean curvature equation in Minkowski space

Research Article Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

Research Article Existence and Uniqueness Results for Perturbed Neumann Boundary Value Problems

FUNCTIONAL COMPRESSION-EXPANSION FIXED POINT THEOREM

Existence Results for Semipositone Boundary Value Problems at Resonance

On boundary value problems for fractional integro-differential equations in Banach spaces

NONLINEAR EIGENVALUE PROBLEMS FOR HIGHER ORDER LIDSTONE BOUNDARY VALUE PROBLEMS

Upper and lower solution method for fourth-order four-point boundary value problems

INTERNATIONAL PUBLICATIONS (USA)

POSITIVE SOLUTIONS FOR A SECOND-ORDER DIFFERENCE EQUATION WITH SUMMATION BOUNDARY CONDITIONS

Positive Solutions of a Third-Order Three-Point Boundary-Value Problem

Oscillation theorems for nonlinear fractional difference equations

Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

Fixed point theorem utilizing operators and functionals

Existence of a Positive Solution for a Right Focal Discrete Boundary Value Problem

Positive Solutions of Operator Equations and Nonlinear Beam Equations with a Perturbed Loading Force

Research Article Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential Equations

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

Research Article Uniqueness of Positive Solutions for a Class of Fourth-Order Boundary Value Problems

POSITIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEM OF SINGULAR FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION

MULTIPLE POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR P-LAPLACIAN IMPULSIVE DYNAMIC EQUATIONS ON TIME SCALES

Monotone Iterative Method for a Class of Nonlinear Fractional Differential Equations on Unbounded Domains in Banach Spaces

A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM

Research Article New Fixed Point Theorems of Mixed Monotone Operators and Applications to Singular Boundary Value Problems on Time Scales

Nontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation

Research Article Nonlinear Boundary Value Problem of First-Order Impulsive Functional Differential Equations

THREE SYMMETRIC POSITIVE SOLUTIONS FOR LIDSTONE PROBLEMS BY A GENERALIZATION OF THE LEGGETT-WILLIAMS THEOREM

Oscillation by Impulses for a Second-Order Delay Differential Equation

Research Article MultiPoint BVPs for Second-Order Functional Differential Equations with Impulses

Singularities and Laplacians in Boundary Value Problems for Nonlinear Ordinary Differential Equations

A class of second-order nonlocal indefinite impulsive differential systems

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

Existence of homoclinic solutions for Duffing type differential equation with deviating argument

Sign-changing solutions to discrete fourth-order Neumann boundary value problems

Positive solutions for singular boundary value problems involving integral conditions

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

Research Article On the Existence of Solutions for Dynamic Boundary Value Problems under Barrier Strips Condition

BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION

Positive solutions for a class of fractional boundary value problems

Journal of Inequalities in Pure and Applied Mathematics

Computation of fixed point index and applications to superlinear periodic problem

Fixed points of monotone mappings and application to integral equations

On Positive Solutions of Boundary Value Problems on the Half-Line

Positive solutions of singular boundary. value problems for second order. impulsive differential equations

Research Article Multiple Positive Solutions for m-point Boundary Value Problem on Time Scales

Solvability of Neumann boundary value problem for fractional p-laplacian equation

Existence and multiple solutions for a second-order difference boundary value problem via critical point theory

MULTIPLE FIXED POINT THEOREMS UTILIZING OPERATORS AND FUNCTIONALS

Research Article Strong Convergence of a Projected Gradient Method

Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric spaces

Existence and Uniqueness of Anti-Periodic Solutions for Nonlinear Higher-Order Differential Equations with Two Deviating Arguments

Properties for the Perron complement of three known subclasses of H-matrices

Fixed point theorems for Kannan-type maps

Fractional differential equations with integral boundary conditions

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations

Impulsive Stabilization of certain Delay Differential Equations with Piecewise Constant Argument

K-DIMENSIONAL NONLOCAL BOUNDARY-VALUE PROBLEMS AT RESONANCE. 1. Introduction In this article we study the system of ordinary differential equations

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

A fixed point problem under two constraint inequalities

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS

Strong convergence theorems for asymptotically nonexpansive nonself-mappings with applications

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations

Impulsive stabilization of two kinds of second-order linear delay differential equations

Oscillation results for certain forced fractional difference equations with damping term

PERIODIC PROBLEMS WITH φ-laplacian INVOLVING NON-ORDERED LOWER AND UPPER FUNCTIONS

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

Some new sequences that converge to the Ioachimescu constant

Transcription:

Zhou and Zhang Boundary Value Problems (215) 215:2 DOI 1.1186/s13661-14-263-7 R E S E A R C H Open Access Triple positive solutions of fourth-order impulsive differential equations with integral boundary conditions Yaling Zhou and XueMei Zhang * * Correspondence: zxm74@sina.com Department of Mathematics and Physics, North China Electric Power University, Beijing, 1226, Republic of China Abstract By using Leggett-Williams? fixed point theorem and Hölder?s inequality, the existence of three positive solutions for the fourth-order impulsive differential equations with integral boundary conditions x (4) (t)=ω(t)f(t, x(t)), < t <1,t t k, x t=tk = I k (t k, x(t k )), x t=tk =,k =1,2,..., m, x() = g(s)x(s) ds, x (1) =, x () = h(s)x (s) ds, x (1) = is considered, where ω(t)isl p -integrable. Our results cover a fourth-order boundary value problem without impulsive effects and are compared with some recent results. Keywords: triple positive solutions; impulsive differential equations; integral boundary conditions; Leggett-Williams? fixed point theorem; Hölder?s inequality 1 Introduction Impulsive differential equations occur in many applications. Various mathematical models, such as population dynamics, ecology, biological systems, biotechnology, industrial robotic, pharmacokinetics, optimal control, etc., can be expressed by differential equations with impulses. Therefore, the study of impulsive differential equations has gained prominence and it is a rapidly growing field; see [1 22] and the references therein. We note that the difficulties dealing with such problems are that theirs states are discontinuous. Therefore, the results of impulsive differential equations, especially for higher-order impulsive differential equations, are fewer in number than those of differential equations without impulses. At the same time, owing to its importance in modeling the stationary states of the deflection of an elastic beam, fourth-order boundary value problems have attracted much attention frommany authors;see, for example [23 53] and the references therein. In particular, we would like to mention some results of Yang [28], Anderson and Avery [31], and Zhang et al. [36]. In [28], Yang considered the following fourth-order two-point boundary value problem: { x (4) (t)=g(t)f(x(t)), t 1, x() = x () = x (1) = x (1) =. By using Krasnoselskii?s fixed point theorem, the author established some new estimates to the positive solutions to the above problem and obtained some sufficient conditions for the existence of at least one positive solution. 215 Zhou and Zhang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 2 of 14 In [31], Anderson and Avery considered the following fourth-order four-point right focal boundary value problem: { x (4) (t)=f(x(t)), t [, 1], x() = x (q)=x (r)=x (1) =, where < q < r <1aretwoconstants,f : R R is continuous and f (x) forx. By using the five functionals fixed point theorem, the authors gave sufficient conditions for the existence of three positive solutions of above problem. Recently, Zhang et al. [36] studied the existence of positive solutions of the following fourth-order boundary value problem with integral boundary conditions: x (4) (t) λf(t, x(t)) = θ, <t <1, x() = x(1) = g(s)x(s) ds, x () = x (1) = h(s)x(s) ds, where θ is the zero element of E. However, to the best of our knowledge, no paper has considered the existence results of triple positive solutions for fourth-order impulsive differential equations with integral boundary conditions till now;for example,see [54 58] and the references therein. In this paper, we investigate the existence of three positive solutions for the following fourth-order impulsive differential equations with integral boundary conditions: x (4) (t)=ω(t)f(t, x(t)), < t <1,t t k, x t=tk = I k (t k, x(t k )), x t=tk =, k =1,2,...,m, x() = (1.1) 1 g(s)x(s) ds, x (1) =, x () = h(s)x (s) ds, x (1) =. Here ω L p [, 1] for some 1 p +, t k (k =1,2,...,m) (wherem is fixed positive integer) are fixed points with = t < t 1 < t 2 < < t k < < t m < t m+1 =1, x t=tk denotes the jump of x(t) att = t k, i.e. x t=tk = x(t + k ) x(t k ), where x(t+ k )andx(t k )representthe right-hand limit and left-hand limit of x(t) att = t k, respectively. In addition, ω, f, I k, g, and h satisfy (H 1 ) ω L p [, 1] for some 1 p + and there exists n >such that ω(t) n a.e. on J; (H 2 ) f C([, 1] [, + ), [, + )), I k C([, 1] [, + ), [, + )); (H 3 ) g, h L 1 [, 1] are nonnegative and μ [, 1), ν [, 1),where ν = g(t) dt, μ = h(t) dt. (1.2) Remark 1.1 The idea of impulsive effect for problem (1.1)is from Ding and O?Regan[59]. Some special cases of problem (1.1) have been investigated. For example, Zhang and Ge [45] studied the existence and multiplicity of symmetric positive solutions for problem (1.1)withI k (k =1,2,...,m)andω C(, 1), not ω L p [, 1]. Motivated by the results mentioned above, in this paper we study the existence of three positive solutions for problem (1.1) by new technique (different from the proof of The-

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 3 of 14 orems 3.1-3.4 of [45]) to overcome difficulties arising from the appearances of I k (k = 1,2,...,m) andω(t) isl p -integrable. The arguments are based upon a fixed point theorem due to Leggett and Williams which deals with fixed points of a cone-preserving operator defined on an ordered Banach space. The rest of the paper is organized as follows: In Section 2, we provide some necessary background. In particular, we state some properties of the Green?s function associated with problem (1.1). In Section 3, the main results of problem (1.1)willbestatedandproved. 2 Preliminaries Let J = J\{t 1, t 2,...,t m },and PC[, 1] = { x : x is continuous at t t k, x ( t k ) = x(tk )andx ( t + k ) exists, k =1,2,...,m }. Then PC[, 1] is a real Banach space with norm x = max x(t). t J Definition 2.1 (See [6]) Let E be a real Banach space over R. A nonempty closed set P E is said to be a cone provided that (i) au + bv P for all u, v P and all a, b and (ii) u, u P implies u =. Every cone P E induces an ordering in E given by x y if and only if y x P. Definition 2.2 The map β is said to be a nonnegative continuous concave functional on aconep of a real Banach space E provided that β : P [, ) is continuous and β ( tx +(1 t)y ) tβ(x)+(1 t)β(y) for all x, y P and t 1. Definition 2.3 Afunctionx PC[, 1] C 4 (J ) is called a solution of problem (1.1) ifit satisfies (1.1). We shall reduce problem (1.1) to an integral equation. With this goal, firstly by means of the transformation x (t)= y(t), (2.1) we convert problem (1.1)into { y (t)+ω(t)f(t, x(t)) =, t J, y() = h(t)y(t) dt, y (1) =, (2.2) and x (t)=y(t), t J, t t k, x t=tk = I k (t k, x(t k )), x t=tk =, k =1,2,...,m, x() = g(t)x(t) dt, x (1) =. (2.3)

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 4 of 14 Lemma 2.1 Assume that (H 1 )-(H 3 ) hold. Then problem (2.2) has a unique solution y given by where y(t)= H(t, s)ω(s)f ( s, x(s) ) ds, (2.4) H(t, s)=g(t, s)+ 1 G(s, τ)h(τ) dτ, (2.5) 1 μ { t, t s 1, G(t, s)= (2.6) s, s t 1. Proof The proof of Lemma 2.1 issimilartothatoflemma2.1in[61]. Write e(t)=t. Thenfrom(2.5) and(2.6), we can prove that H(t, s) andg(t, s) havethe following properties. Proposition 2.1 Let δ (, 1 2 ), J δ =[δ,1 δ]. If μ [, 1), then we have H(t, s)>, G(t, s)>, t, s (, 1), (2.7) H(t, s), G(t, s), t, s J, (2.8) e(t)e(s) G(t, s) G(t, t)=t = e(t) 1, t, s J, (2.9) ρe(t)e(s) H(t, s) γ s = γ e(s) γ, t, s J, (2.1) G(t, s) δg(s, s), H(t, s) δh(s, s), t J δ, s J, (2.11) where γ = 1 1 μ, ρ =1+ Remark 2.1 From (2.5)and(2.11), we can obtain sh(s) ds 1 μ. (2.12) H(t, s) δs = δg(s, s), t J δ, s J. Lemma 2.2 If (H 2 ) and (H 3 ) hold, then problem (2.3) has a unique solution x and x can be expressed in the form where x(t)= H 1 (t, s)y(s) ds + H 1 (t, s)=g(t, s)+ 1 H 1s (t, 1 s)=g s (t, s)+ k)i k tk, x(t k ) ), (2.13) G(s, τ)g(τ) dτ, (2.14) G s (τ, s)g(τ) dτ, (2.15)

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 5 of 14 G s (t, s)= {, t s 1, 1, s t 1. Proof The proof of Lemma 2.2 issimilartothatoflemma2.6in[53]. (2.16) From (2.14)-(2.16), we can prove that H 1 (t, s), H 1s (t, s), and G s (t, s) have the following properties. Proposition 2.2 If ν [, 1), then we have where H 1 (t, s), t, s J; (2.17) ρ 1 e(t)e(s) H 1 (t, s) γ 1 s = γ 1 e(s) γ 1, t, s J, (2.18) H 1 (t, s) δh 1 (s, s), t J δ, s J. (2.19) G s (t, s) 1, 1 H 1s (t, s), (2.2) γ 1 = 1, ρ 1 =1+ Remark 2.2 From (2.14)and(2.19), we can obtain sg(s) ds. (2.21) H 1 (t, s) δs = δg(s, s), t J δ, s J. Remark 2.3 From (2.2), one can prove that <H 1s (t, s)(1 ν) 1, t J δ, s [, 1). (2.22) Suppose that x is a solution of problem (1.1). Then from Lemma 2.1 and Lemma 2.2,we have x(t)= Define a cone in PC[, 1] by k)i k tk, x(t k ) ). K = { x PC[, 1] : x }. (2.23) It is easy to see K isaclosedconvexconeofpc[, 1]. Define an operator T : K PC[, 1] by (Tx)(t)= k)i k tk, x(t k ) ). (2.24) From (2.24), we know that x PC[, 1] is a solution of problem (1.1)ifandonlyifx is a fixed point of operator T.

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 6 of 14 Lemma 2.3 Suppose that (H 1 )-(H 3 ) hold. Then T(K) KandT: K K is completely continuous. Proof The proof of Lemma 2.3 issimilartothatoflemma2.4in[53]. Let < a < b be given and let β be a nonnegative continuous concave functional on the cone K.DefinetheconvexsetsK a, K(β, a, b)by K a = { x K : x < a }, K(β, a, b)= { x K : a β(x), x b }. Finally we state Leggett-Williams? fixed point theorem [62]. Lemma 2.4 Let K be a cone in a real Banach space E, A : K a K a be completely continuous and β be a nonnegative continuous concave functional on K with β(x) x for all x K a. Suppose there exist <d < a < b csuchthat (i) {x K(β, a, b):β(x)>a} and β(ax)>a for x K(β, a, b); (ii) Ax < d for x d; (iii) β(ax)>a for x K(β, a, c) with Ax > b. Then A has at least three positive solutions x 1, x 2, x 3 satisfying x 1 < d, a < β(x 2 ), x 3 > d and β(x 3 )<a. To obtain some of the norm inequalities in Theorem 3.1 and Corollary 3.1, weemploy Hölder?s inequality. Lemma 2.5 (Hölder) Let f L p [a, b] with p >1,g L q [a, b] with q >1,and 1 p + 1 q =1.Then fg L 1 [a, b] and fg 1 f p g q. Let f L 1 [a, b], g L [a, b]. Then fg L 1 [a, b] and fg 1 f 1 g. 3 Existence of triple positive solutions to (1.1) In this section, we apply Lemma 2.4 and Lemma 2.5 to establish the existence of triple positive solutions for problem (1.1). We consider the following three cases for ω L p [, 1]: p >1,p =1,andp =.Casep > 1 is treated in the following theorem. For convenience, we introduce the following notation: D = γγ 1 e q ω p, D 1 = m, { } δ δ 1 = min t J δ,s (,1) H 1s (t, s)(1 ν), δ = min, δ 1, γ 1 f = lim sup max x t J f (t, x) x, I (k)=lim sup max x t J I k (t, x), k =1,2,...,m. x

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 7 of 14 Theorem 3.1 Assume that (H 1 )-(H 3 ) hold. Furthermore, suppose that there exist constants <d < a < a δ csuchthat (H 4 ) f < 1 2D, I (k)< 1 (H 5 ) f (t, x)>, k =1,2,...,m; 3a for (t, x) J δ 2 (1 2δ)n δ [a, a δ ]; (H 6 ) f (t, x)< d 2D, I k(t, x)< d for (t, x) J [, d], k =1,2,...,m. Then problem (1.1) has at least three positive solutions x 1, x 2, and x 3 such that x 1 < d, a < β(x 2 ), and x 3 > d withβ(x 3 )<a. Proof By the definition of operator T and its properties, it suffices to show that the conditions of Lemma 2.4 hold with respect to T. Let β(x)=min t Jδ x(t). Then β(x) is a nonnegative continuous concave functional on the cone K satisfying β(x) x for all x K. For convenience, we denote b = a δ. Considering (H 4 ), there exist < σ < 1 2D,<σ 1 < 1,andl >suchthat f (t, x) σ x, I k (t, x) σ 1 x, k =1,2,...,m, t J, x l. Let η = max f (t, x), η 1 = max I k(t, x), xl,t J xl,t J k =1,2,...,m. Then f (t, x) σ x + η, I k (t, x) σ 1 x + η 1, t J, x +. (3.1) Set { 2Dη c > max 1 2Dσ, η 1, a }. 1 σ 1 δ Then, for x K c, it follows from (2.19), (2.22), and (3.1)that (Tx)(t)= γ 1 γ (σ c + η) γ 1 γ e(τ)ω(τ)f ( τ, x(τ) ) dτ ds + 1 γ 1 γ e(τ)ω(τ)(σ x + η) dτ ds + 1 k)i k tk, x(t k ) ) ( I k tk, x(t k ) ) (σ 1 x + η 1 ) γ 1 γ e(τ)ω(τ) ( σ x + η ) dτ ds + 1 e(τ)ω(τ) dτ + m (σ 1c + η 1 ) ( ) σ1 x + η 1

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 8 of 14 γ 1 γ (σ c + η) e q ω p + < c 2 + c 2 = c, m (σ 1c + η 1 ) which shows that Tx K c. Hence, we have shown that if (H 4 )holds,thent maps K c into K c. Next, we verify that {x K(β, a, b):β(x)>a} and β(tu)>a for all x K(β, a, b). Take ϕ (t) δ +1 2δ a,fort J.Then { ϕ x x K (β, a, aδ ) }, β(x)>a. This shows that { x K(β, a, b):β(x)>a }. Therefore, it follows from (H 5 )that β(tx)=min t J δ (Tx)(t) = min t J δ min t J δ δ δ δ δ δ 2 s 2 ds H 1 (t, s)h(s, τ)ω(τ)f ( τ, x(τ) ) dτ ds e(s)h(s, τ)ω(τ)f ( τ, x(τ) ) dτ ds e(s)h(s, τ)ω(τ)f ( τ, x(τ) ) dτ ds δ > 1 3a 3 δ2 n(1 2δ) δ 2 (1 2δ)n = a. δ ω(τ)f ( τ, x(τ) ) dτ k)i k tk, x(t k ) ) If x K d, then it follows from (H 6 )that (Tx)(t)= < = d. γ 1 γ e(τ)ω(τ)f ( τ, x(τ) ) dτ ds + 1 γ 1 γ e(τ)ω(τ) d 1 dτ ds + 2D d k)i k tk, x(t k ) ) ( I k tk, x(t k ) )

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 9 of 14 Finally, we assert that if x K(β, a, c)and Tx > b,thenβ(tx)>a. Suppose x K(β, a, c)and Tx > b, then it follows from (2.18), (2.2), and (2.23)that β(tx)= min(tx)(t) t J δ [ = min t J δ δ + min t J δ δ γ 1 e(s)h(s, τ)ω(τ)f ( τ, x(τ) ) dτ ds H 1s (t, t 1 k)(1 ν) I ( k tk, x(t k ) ) { } [ δ 1 min, δ 1 γ 1 δ Tx > a. γ 1 e(s)h(s, τ)ω(τ)f ( τ, x(τ) ) dτ ds + δ 1 k)i k tk, x(t k ) )] m γ 1 e(s)h(s, τ)ω(τ)f ( τ, x(τ) ) dτ ds + 1 I ( k tk, x(t k ) ) 1 I ( k tk, x(t k ) )] To sum up, the hypotheses of Lemma 2.5 hold. Therefore, an application of Lemma 2.5 implies problem (1.1) has at least three positive solutions x 1, x 2,andx 3 such that x 1 < d, a < β(x 2 ), and x 3 > d with β(x 3 )<a. The following theorem deals with the case p =. Corollary 3.1 Assume that (H 1 )-(H 6 ) hold. Then problem (1.1) has at least three positive solutions x 1, x 2, and x 3 such that x 1 < d, a < β(x 2 ), and x 3 > d withβ(x 3 )<a. Proof Let e 1 ω replace e p ω q and repeat the argument above. Finally we consider the case of p =1.Let (H 4 ) f < 1 D, I (k)< 1 D 1, k =1,2,...,m; (H 6 ) f (t, x) d 2D, I k (t, x) d (k =1,2,...,m)for(t, x) J [, d], where D = γγ 1 ω 1. Corollary 3.2 Assume that (H 1 )-(H 3 ), (H 4 ),(H 5 ), and (H 6 ) hold. Then problem (1.1) has at least three positive solutions x 1, x 2, and x 3 such that x 1 < d, a < β(x 2 ), and x 3 > d withβ(x 3 )<a.

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 1 of 14 Proof Set { 2D c η > max 1 2D σ, η 1, a }, 1 σ 1 δ where < σ < 1 2D.Then,forx K c, it follows from (2.19), (2.22), and (3.1)that (Tx)(t)= γ 1 γ e(τ)ω(τ)f ( τ, x(τ) ) dτ ds + 1 γ 1 γ e(τ)ω(τ)(σ x + η) dτ ds + 1 k)i k tk, x(t k ) ) ( I k tk, x(t k ) ) (σ 1 x + η 1 ) γ 1 γ e(τ)ω(τ) ( σ x + η ) dτ ds + 1 γ 1 γ ( σ c + η ) ω(τ) dτ + m ( σ1 c ) + η 1 γ 1 γ ( σ c + η ) ω 1 + m ( σ1 c ) + η 1 < c 2 + c 2 = c, ( ) σ1 x + η 1 which shows that Tx K c. Hence, we have shown that if (H 4 ) holds, then T maps K c into K c. If x K d, then it follows from (H 6 ) that (Tx)(t)= γ 1 γ d 2D = d. γ 1 γ e(τ)ω(τ) d 1 dτ ds + 2D ω(τ) dτ + 1 d k)i k tk, x(t k ) ) d SimilartotheproofofTheorem3.1, one can find the results of Corollary 3.2. We remark that the condition (H 6 )intheorem3.1 can be replaced by the following condition: (H 6 ) f d 1 2D, Id (k) 1, k =1,2,...,m,where f d = max {max t J f (t, x) d (H 6 ) f 1 2D, I (k) 1, k =1,2,...,m. { } : x [, d] }, I d (k)=max I k (t, x) max : x [, d]. t J d

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 11 of 14 Corollary 3.3 If the condition (H 6 ) in Theorem 3.1 is replaced by (H 6 ) or (H 6 ), respectively, then the conclusion of Theorem 3.1 also holds. Proof It follows from the proof of Theorem 3.1 that Corollary 3.3 holds. Remark 3.1 Comparing with Zhang and Ge [45], the main features of this paper are as follows. (i) Triple positive solutions are available. (ii) I k (k =1,2,...,m) is considered. (iii) ω(t) is L p -integrable, not only ω(t) C(, 1) for t J. 4 Example To illustrate how our main results can be used in practice, we present an example. Example 4.1 Let δ = 1 4, m =1,t 1 = 1, p = 1. It follows from p =1thatq =. Consider the 2 following boundary value problem: x (4) (t)=ω(t)f(t, x(t)), < t <1,t 1 2, x t= 1 = I 1 ( 1 2 2, x( 1 2 )), x t= 1 =, 2 x() = g(s)x(s) ds, x (1) =, x () = h(s)x (s) ds, x (1) =, (4.1) where ω(t)=2t +3 L 1 [, 1], g(t)=h(t)=t, I 1 (t, x)= tx 2δ, d, t J, x [, d], 48 d f (t, x)= 48 a x x d +64a a d a d, t J, x [d, a], 64a, t J, x [a, a δ ], 64a + t x a δ, t J, x [ a δ, ). Thus it is easy to see by calculating that ω(t) n =3fora.e.t J,and μ = h(t) dt = 1 2, ν = g(t) dt = 1 2, γ = 1 1 μ =2, γ 1 = 1 =2, δ 1 = 3 4, δ = 1 8. Therefore, it follows from the definitions ω, f, I 1, g,andh that (H 1 )-(H 3 )hold. On the other hand, it follows from ω(t)=2t +3ande(t)=t that ω 1 = Thus, we have ( 1 q ( ) 1 1 q (2t +3)dt =4, e q = e = lim t dt) q = lim =1. q q q +1 D = γγ 1 ω 1 e =16, D 1 = m 1 μ =2, 1 2D = 1 32, 1 = 1 4.

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 12 of 14 Choosing < d < a <8a c,wehave f =< 1 32 = 1 2D, I (1) = 1 5 < 1 4 = 1, f (t, x)=64a >32a = 3a δ 2 (1 2δ)n, (t, x) [ 1 4, 3 4 f (t, x)= d 48 < d 32 = 1 2D, I 1(t, x) d 5 < d 4 = d, ] [a,8a], (t, x) J [, d], which shows that (H 4 )-(H 6 )hold. By Corollary 3.2, problem(4.1) has at least three positive solutions x 1, x 2,andx 3 such that x 1 < d, a < β(x 2 ), and x 3 > d with β(x 3 )<a. Remark 4.1 In Example 4.1, we consider the norm of L [, 1], which is different from that used in [28, 31, 36, 45]. Competing interests The authors declare that they have no competing interests. Authors? contributions All results belong to YZ and XZ. All authors read and approved the final manuscript. Acknowledgements This work is sponsored by the project NSFC (1131178) and the Fundamental Research Funds for the Central Universities (214ZZD1, 214MS58). The authors are grateful to anonymous referees for their constructive comments and suggestions, which have greatly improved this paper. Received: 2 June 214 Accepted: 5 December 214 References 1. Yan, J: Existence and global attractivity of positive periodic solution for an impulsive Lasota-Wazewska model. J. Math. Anal. Appl. 279, 111-12 (23) 2. Yan, J: Existence of positive periodic solutions of impulsive functional differential equations with two parameters. J. Math. Anal. Appl. 327, 854-868 (27) 3. Agarwal, RP, O?Regan, D: Multiple nonnegative solutions for second order impulsive differential equations. Appl. Math. Comput. 114,51-59 (2) 4. Nieto, JJ, López, RR: Boundary value problems for a class of impulsive functional equations. Comput. Math. Appl. 55, 2715-2731 (28) 5. Zhang, X, Feng, M: Transformation techniques and fixed point theories to establish the positive solutions of second order impulsive differential equations. J. Comput. Appl. Math. 271, 117-129 (214) 6. Ding, W, Han, M: Periodic boundary value problem for the second order impulsive functional differential equations. Appl. Math. Comput. 155, 79-726 (24) 7. Lin, X, Jiang, D: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations. J. Math. Anal. Appl. 321, 51-514 (26) 8. Liu, B, Yu, J: Existence of solution of m-point boundary value problems of second-order differential systems with impulses. Appl. Math. Comput. 125,155-175 (22) 9. Feng, M: Positive solutions for a second-order p-laplacian boundary value problem with impulsive effects and two parameters. Abstr. Appl. Anal. (214). doi:1.1155/214/534787 1. Feng, M, Du, B, Ge, W: Impulsive boundary value problems with integral boundary conditions and one-dimensional p-laplacian. Nonlinear Anal. TMA 7,3119-3126 (29) 11. Ma, R, Yang, B, Wang, Z: Positive periodic solutions of first-order delay differential equations with impulses. Appl. Math. Comput. 219,674-683 (213) 12. Zhang, X, Feng, M, Ge, W: Existence of solutions of boundary value problems with integral boundary conditions for second-order impulsive integro-differential equations in Banach spaces. J. Comput. Appl. Math. 233, 1915-1926 (21) 13. Ding, W, Wang, Y: New result for a class of impulsive differential equation with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 195-115 (213) 14. Infante, G, Pietramala, P, Zima, M: Positive solutions for a class of nonlocal impulsive BVPs via fixed point index. Topol. Methods Nonlinear Anal. 36,263-284 (21)

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 13 of 14 15. Jankowski, T: Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions. Nonlinear Anal. TMA 74,3775-3785 (211) 16. Liu, Y, O?Regan, D: Multiplicity results using bifurcation techniques for a class of boundary value problems of impulsive differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 1769-1775 (211) 17. Hao, X, Liu, L, Wu, Y: Positive solutions for second order impulsive differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 11-111 (211) 18. Sun, J, Chen, H, Yang, L: The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method. Nonlinear Anal. TMA 73,44-449 (21) 19. Shen, J, Wang, W: Impulsive boundary value problems with nonlinear boundary conditions. Nonlinear Anal. TMA 69, 455-462 (28) 2. Bai, L, Dai, B: Three solutions for a p-laplacian boundary value problem with impulsive effects. Appl. Math. Comput. 217, 9895-994 (211) 21. Xu, J, Kang, P, Wei, Z: Singular multipoint impulsive boundary value problem with p-laplacian operator. J. Appl. Math. Comput. 3, 15-12 (29) 22. Ning, P, Huan, Q, Ding, W: Existence result for impulsive differential equations with integral boundary conditions. Abstr. Appl. Anal. (213). doi:1.1155/213/134691 23. Sun, J, Wang, X: Monotone positive solutions for an elastic beam equation with nonlinear boundary conditions. Math. Probl. Eng. (211). doi:1.1155/211/69189 24. Yao, Q: Positive solutions of nonlinear beam equations with time and space singularities. J. Math. Anal. Appl. 374, 681-692 (211) 25. Yao, Q: Local existence of multiple positive solutions to a singular cantilever beam equation. J. Math. Anal. Appl. 363, 138-154 (21) 26. O?Regan, D: Solvability of some fourth (and higher) order singular boundary value problems. J. Math. Anal. Appl.161, 78-116 (1991) 27. Wei, Z: A class of fourth order singular boundary value problems. Appl. Math. Comput. 153, 865-884 (24) 28. Yang, B: Positive solutions for the beam equation under certain boundary conditions. Electron. J. Differ. Equ. 25, 78 (25) 29. Zhang, X: Existence and iteration of monotone positive solutions for an elastic beam equation with a corner. Nonlinear Anal., Real World Appl. 1,297-213 (29) 3. Gupta, GP: Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 26,289-34 (1988) 31. Anderson, DR, Avery, RI: A fourth-order four-point right focal boundary value problem. Rocky Mt. J. Math. 36(2), 367-38 (26) 32. Graef, JR, Yang, B: On a nonlinear boundary value problem for fourth order equations. Appl. Anal. 72, 439-448 (1999) 33. Agarwal, RP: On fourth-order boundary value problems arising in beam analysis. Differ. Integral Equ. 2,91-11 (1989) 34. Davis, J, Henderson, J: Uniqueness implies existence for fourth-order Lidstone boundary value problems. Panam. Math. J. 8, 23-35 (1998) 35. Kosmatov, N: Countably many solutions of a fourth order boundary value problem. Electron. J. Qual. Theory Differ. Equ. 24, 12 (24) 36. Zhang, X, Feng, M, Ge, W: Symmetric positive solutions for p-laplacian fourth order differential equation with integral boundary conditions. J. Comput. Appl. Math. 222, 561-573 (28) 37. Bai, Z, Huang, B, Ge, W: The iterative solutions for some fourth-order p-laplace equation boundary value problems. Appl. Math. Lett. 19, 8-14 (26) 38. Liu, X, Li, W: Existence and multiplicity of solutions for fourth-order boundary values problems with parameters. J. Math. Anal. Appl. 327, 362-375 (27) 39. Bonanno, G, Bella, B: A boundary value problem for fourth-order elastic beam equations. J. Math. Anal. Appl. 343, 1166-1176 (28) 4. Ma, R, Wang, H: On the existence of positive solutions of fourth-order ordinary differential equations. Appl. Anal. 59, 225-231 (1995) 41. Han, G, Xu, Z: Multiple solutions of some nonlinear fourth-order beam equations. Nonlinear Anal. TMA 68, 3646-3656 (28) 42. Zhang, X, Ge, W: Symmetric positive solutions of boundary value problems with integral boundary conditions. Appl. Math. Comput. 219,3553-3564 (212) 43. Zhai, C, Song, R, Han, Q: The existence and the uniqueness of symmetric positive solutions for a fourth-order boundary value problem. Comput. Math. Appl. 62, 2639-2647 (211) 44. Zhang, X, Feng, M, Ge, W: Existence results for nonlinear boundary-value problems with integral boundary conditions in Banach spaces. Nonlinear Anal. TMA 69,331-3321 (28) 45. Zhang, X, Ge, W: Positive solutions for a class of boundary-value problems with integral boundary conditions. Comput. Math. Appl. 58, 23-215 (29) 46. Zhang, X, Liu, L: A necessary and sufficient condition of positive solutions for fourth order multi-point boundary value problem with p-laplacian. Nonlinear Anal. TMA 68,3127-3137 (28) 47. Aftabizadeh, AR: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 116, 415-426 (1986) 48. Kang, P, Wei, Z, Xu, J: Positive solutions to fourth-order singular boundary value problems with integral boundary conditions in abstract spaces. Appl. Math. Comput. 26,245-256 (28) 49. Xu, J, Yang, Z: Positive solutions for a fourth order p-laplacian boundary value problem. Nonlinear Anal. TMA 74, 2612-2623 (211) 5. Webb, JRL, Infante, G, Franco, D: Positive solutions of nonlinear fourth-order boundary value problems with local and non-local boundary conditions. Proc. R. Soc. Edinb. 138, 427-446 (28) 51. Ma, H: Symmetric positive solutions for nonlocal boundary value problems of fourth order. Nonlinear Anal. TMA 68, 645-651 (28) 52. Zhang, X, Liu, L: Positive solutions of fourth-order four-point boundary value problems with p-laplacian operator. J. Math. Anal. Appl. 336, 1414-1423 (27)

Zhouand ZhangBoundary Value Problems (215) 215:2 Page 14 of 14 53. Feng, M: Multiple positive solutions of four-order impulsive differential equations with integral boundary conditions and one-dimensional p-laplacian. Bound. Value Probl. (211). doi:1.1155/211/654871 54. Cabada, A, Tersian, S: Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations. Bound. Value Probl. 214,15 (214) 55. Afrouzi, G, Hadjian, A, Radulescu, V: Variational approach to fourth-order impulsive differential equations with two control parameters. Results Math. (213). doi:1.17/s25-13-351-5 56. Sun, J, Chen, H, Yang, L: Variational methods to fourth-order impulsive differential equations. J. Appl. Math. Comput. 35, 323-34 (211) 57. Xie, J, Luo, Z: Solutions to a boundary value problem of a fourth-order impulsive differential equation. Bound. Value Probl. 213,154 (213) 58. Zhang, X, Feng, M: Positive solutions for classes of multi-parameter fourth-order impulsive differential equations with one-dimensional singular p-laplacian. Bound. Value Probl. 214,112 (214) 59. Ding, Y, O?Regan, D: Positive solutions for a second-orderp-laplacian impulsive boundary value problem. Adv. Differ. Equ. (212). doi:1.1186/1687-1847-212-159 6. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988) 61. Feng, M, Ji, D, Ge, W: Positive solutions for a class of boundary value problem with integral boundary conditions in Banach spaces. J. Comput. Appl. Math. 222, 351-363 (28) 62. Leggett, R, Williams, L: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673-688 (1979)