Physics 102 Exam 3 Fall Last Name: First Name Network-ID

Similar documents
Physics 102 Exam 1 Fall Last Name: First Name Network-ID

Last Name: First Name Network-ID

Physics 102 Exam 3 November Last Name: First Name Network-ID

Physics 102 Exam 2 Fall 2012

Physics 102 Exam 2 Spring Last Name: First Name Network-ID

Physics 214 Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name:

Physics 214. Midterm Exam Spring Last Name: First Name NetID Discussion Section: Discussion TA Name:

Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

On my honor, I have neither given nor received unauthorized aid on this examination.

Physics 101. Hour Exam I Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

On my honor, I have neither given nor received unauthorized aid on this examination.

Physics 101. Hour Exam III Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101. Hour Exam II Fall 2008

Physics 101. Hour Exam 3 Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Write your seat number on the answer sheet

Physics 101 Hour Exam 3 December 2, 2013

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Physics 101 Hour Exam 1 March 3, 2014

Physics 1302, Exam 3 Review

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

Physics 214* Sample Final Exam Spring 2010

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Final Exam April 21, a) No books, notes, or other such materials are permitted.

Physics 101. Hour Exam 2 Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Profs. Y. Takano, P. Avery, S. Hershfield. Final Exam Solution

Physics 213. Midterm Exam Fall Last Name: First Name NetID Discussion Section: Discussion TA Name:

PHYSICS 202 FINAL EXAM Wednesday, May 12, 2004, 8-10 am SECTION:

Physics 208 Final Exam May 12, 2008

LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code

LAST NAME First Name(s) Student Number Practical Group as on student card as on student card Code

Physics 104 Exam 3 April 24, Name ID # Section # TA Name

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 3 Section 1 Version 1 December 6, 2004 Total Weight: 100 points

Gen. Phys. II Exam 3 - Chs. 24,25,26 - EM Waves, Ray Optics, Optical Instruments Mar. 26, 2018

1 pt What is the total charge of the thorium nucleus? (The neutral thorium atom has 90 electrons.) (in C) 1. A B 1.

Name Final Exam May 1, 2017

Profs. P. Avery, A. Rinzler, S. Hershfield. Final Exam Solution

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

SP 212 and SP 212E Final Exam. Name Alpha Instructor Section # Tuesday, 11 May

This is a closed book exam. You have ninety (90) minutes to complete it.

Final Exam Solutions

PHYSICS PAPER 1 (THEORY)

Physics 1212 Exam #4A (Final)

For more sample papers visit :

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N

Physics 1212 Exam #4B (Final)

Where k = 1. The electric field produced by a point charge is given by

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

A) n 1 > n 2 > n 3 B) n 1 > n 3 > n 2 C) n 2 > n 1 > n 3 D) n 2 > n 3 > n 1 E) n 3 > n 1 > n 2

Last Name: First Name NetID Discussion Section: Discussion TA Name:

Test 4 Preparation Questions

b. Which bulb is brightest? Justify your answer.

A) n L < 1.0 B) n L > 1.1 C) n L > 1.3 D) n L < 1.1 E) n L < 1.3

Physics 202 Final Exam Dec 20nd, 2011

Physics Final. Last Name First Name Student Number Signature

PHY 205 Final Exam 6/24/2009 Second Semester2008 Part 1.

Exam 4 (Final) Solutions

PHYS 1112 In-Class Exam #1, Version D

Phys 2B Final Exam Name:

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately. Constants ǫ 0 = F/m m e = kg

r1 (D) r 2 = 2 r 1 (E) r 2 = 4r 1 2

Name (Please Print)...

5) Ohm s Law gives the relationship between potential difference and current for a.

Final Exam. PHY2049 Fall11

Final Exam, Physics 122-Summer 2003, Fri. 8/22/2003

Exam 3--PHYS 202--S10

Physics 202 Final Exam May 14, 2012

Physics 208 Final Exam

PHY 2049 SPRING 2001 FINAL EXAM

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

APRIL 2015 EXAMINATION version A PHY 132H1S Duration - 2 hours

Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference

PHYSICS PAPER 1 (THEORY) (Three hours)

Problem Score 1 /30 2 /15 3 /15 4 /20 5 /20 6 /20 7 /15 8 /25 9 /20 10 /20 Total /200

Seat Number. Print and sign your name, and write your Student ID Number and seat number legibly in the spaces above.

Sample Question Paper. Class XII -Physics. (Applicable for March 2016 Examination) Time Allowed: 3 Hours Maximum Marks: 70

PHYSICS 109 FINAL EXAMINATION

MIDTERM 3 REVIEW SESSION. Dr. Flera Rizatdinova

PHY2054 Summer 2017 Final ExamVersion 2

PHY2054 Summer 2017 Final ExamVersion 1

Indicate whether each statement is true or false by circling your answer. No explanation for your choice is required. Each answer is worth 3 points.

PHYSICS 202 FINAL EXAM Wednesday, May 10, 2006, 8-10 am

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Exam 3 Solutions. Answer: 1830 Solution: Because of equal and opposite electrical forces, we have conservation of momentum, m e

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version

Chapter 1: Electrostatics

University of Connecticut General Physics 122Q ECE Equivalent COURSE SYLLABUS Instructor: Hans Drenkard Trumbull High School

3. How long will a radioactive isotope, whose half-life is T years, take for its activity to reduce to 1/8 th of its initial value?

Sample Question Paper 3 Class XII Physics

Physics 1252 Sec.A Exam #1A

On my honor, I have neither given nor received unauthorized aid on this examination.

( ) + ( +kq 2 / L) + 2 ( kq2 / 2L) + ( +kq2 / 3L) =

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

PHYSICS PAPER 1 (THEORY)

PHYS 124 LEC A01 Final Examination Autumn 2007

Transcription:

Physics 0 Exam 3 Fall 03 Last Name: First Name Network-ID Discussion Section: Discussion TA Name: Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a closed book exam. You have ninety (90) minutes to complete it.. Use a # pencil. Do not use a mechanical pencil or pen. Darken each circle completely, but stay within the boundary. If you decide to change an answer, erase vigorously; the scanner sometimes registers incompletely erased marks as intended answers; this can adversely affect your grade. Light marks or marks extending outside the circle may be read improperly by the scanner. Be especially careful that your mark covers the center of its circle.. You may find the version of this Exam Booklet at the top of page. Mark the version circle in the TEST FORM box near the middle of your answer sheet. DO THIS NOW! 3. Print your NETWORK ID in the designated spaces at the right side of the answer sheet, starting in the left most column, then mark the corresponding circle below each character. If there is a letter "o" in your NetID, be sure to mark the "o" circle and not the circle for the digit zero. If and only if there is a hyphen "-" in your NetID, mark the hyphen circle at the bottom of the column. When you have finished marking the circles corresponding to your NetID, check particularly that you have not marked two circles in any one of the columns. 4. Print YOUR LAST NAME in the designated spaces at the left side of the answer sheet, then mark the corresponding circle below each letter. Do the same for your FIRST NAME INITIAL. 5. Print your UIN# in the STUDENT NUMBER designated spaces and mark the corresponding circles. You need not write in or mark the circles in the SECTION box. 6. Sign your name (DO NOT PRINT) on the STUDENT SIGNATURE line. 7. On the SECTION line, print your DISCUSSION SECTION. You need not fill in the COURSE or INSTRUCTOR lines. Before starting work, check to make sure that your test booklet is complete. You should have 6 numbered pages plus three (3) Formula Sheets. Academic Integrity Giving assistance to or receiving assistance from another student or using unauthorized materials during a University Examination can be grounds for disciplinary action, up to and including dismissal from the University. of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 This Exam Booklet is Version A. Mark the A circle in the TEST FORM box near the middle of your answer sheet. DO THIS NOW! Exam Grading Policy The exam is worth a total of 4 points, composed of three types of questions. MC5: multiple-choice-five-answer questions, each worth 6 points. Partial credit will be granted as follows. (a) If you mark only one answer and it is the correct answer, you earn 6 points. (b) If you mark two answers, one of which is the correct answer, you earn 3 points. (c) If you mark three answers, one of which is the correct answer, you earn points. (d) If you mark no answers, or more than three, you earn 0 points. MC3: multiple-choice-three-answer questions, each worth 3 points. No partial credit. (a) If you mark only one answer and it is the correct answer, you earn 3 points. (b) If you mark a wrong answer or no answers, you earn 0 points. MC: multiple-choice-two-answer questions, each worth points. No partial credit. (a) If you mark only one answer and it is the correct answer, you earn points. (b) If you mark the wrong answer or neither answer, you earn 0 points. Some helpful information: A reminder about prefixes: p (pico) = 0 - ; n (nano) = 0-9 ; (micro) = 0-6 ; m (milli) = 0-3 ; k (kilo) = 0 +3 ; M or Meg (mega) = 0 +6 ; G or Gig (giga) = 0 +9. of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 The next four questions pertain to the following situation: A pencil of height H 0 = 0 cm is placed a distance x in front of a concave mirror (of focal length f = +5 cm) as shown in the figure below.. What is the radius of curvature R of the mirror? a. R = 30 cm b. R = 5 cm c. R = 7.5 cm. At what position x in front of the mirror should the pencil be placed such that its image appears to be 60 cm behind the mirror? a. x = 3 cm b. x = 6 cm c. x = cm d. x = 4 cm e. x = 48 cm 3 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 (problem continues from previous page) 3. If the pencil is placed at a position x = 90 cm in front of the mirror, what will be the height H i of the pencil s image? a. H i = cm b. H i = cm c. H i = 4 cm d. H i = 8 cm e. H i = 6 cm 4. For which values of x will the image of the pencil be real? a. x > 5 cm b. x < 5 cm c. The image will always be virtual. 4 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 5. Which of the following figures correctly represents a ray reflected off a convex mirror? a. () b. () c. (3) d. () and () e. () and (3) 5 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 6. An object is placed 4 cm in front of a spherical mirror of unknown shape and focal length. The resulting image is located 7 cm behind the mirror. Is the mirror concave or convex? a. Concave b. Convex c. It cannot be determined from the information given 7. The Gateway Arch, located in St. Louis, Missouri, is H = 9 m in height. If you view it with your unaided eye from a distance of.5 km, what is the size of its image h that is formed on the retina of your eye? Your eye is 5 mm from pupil to retina. You may assume the small angle approximation for this problem. (Picture is not to scale.) a. h = 3. mm b. h = 3. mm c. h = 9.4 mm d. h =.9 mm e. h = 0.7 mm 6 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 8. A student with a laser pointer is located a distance h = m away from a mirror of length L = 7 m, as shown in the figure below. (The figure is not to scale.) The laser beam from the pointer is reflected off the mirror and subsequently hits a sensor located a distance y = 3 m away from the mirror; the sensor is located on a wall adjacent to and perpendicular to the mirror. At what distance x away from the wall must the incident beam hit the mirror? a. x =.8 m b. x =.0 m c. x = 3.6 m d. x = 5.4 m e. x = 4. m 7 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 The next two questions pertain to the following situation: Bob stands in front of a flat mirror whose bottom is a height y above the floor, as shown in the figure. Bob s eyes are.7 m above the floor. 9. At what maximum height y max can the mirror be placed above the ground such that Bob can still see his feet in the mirror? a. y max = 0.43 m b. y max = 0.86 m c. y max =.9 m d. y max = 0.65 m e. y max =.7 m 0. Alice runs towards the mirror at a speed of 8 m/s while Bob stands still. What is the speed v i of Alice s image in the mirror according to Bob? a. v i = 4 m/s b. v i = 8 m/s c. v i = 6 m/s 8 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03. A blue underwater decorative lamp is located on the bottom of a pool. The pool is 4 m deep. The index of refraction for blue light in water is n water,blue =.34. The rays of light shown are at the maximum angle that can refract to the air. What is the diameter of the circle of blue light D blue from this lamp observed on the surface of the pool (as indicated in the figure)? a. D blue = 4.5 m b. D blue =. m c. D blue = 9.0 m d. D blue = 30.8 m e. D blue = 4.0 m 9 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 The next four questions pertain to the following situation: An object is placed 3 cm in front of a diverging lens of focal length f = 8 cm.. Identify the correct principal ray in the above sketch. a. Ray b. Ray c. Ray 3 3. Calculate the location of the image formed by the lens. a. d i = +3.0 cm b. d i = 4.8 cm c. d i =. cm 4. What is the orientation of the image formed by the diverging lens relative to its object? a. upright b. inverted 5. Now let the diverging lens be replaced by a converging lens of equal but opposite focal length (f new = +8 cm). For the same object distance, what is the nature of image formed by the converging lens? a. real b. virtual 0 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 6. A microscope has an objective lens with focal length f obj = +0 mm and an eyepiece lens with focal length f eye = +40 mm. The two lenses are positioned 68 mm apart in the barrel of the microscope. An object to be viewed is placed 5 mm in front of the objective lens. What is the magnitude of the total magnification m total of the microscope for this object? a. m total = 300 b. m total = 40 c. m total = 5 d. m total = 70 e. m total = 00 7. What is the power of contact lenses needed for a person whose near point is 60 cm to read comfortably a book placed 8 cm from her eyes? a. +.90 diopters b. +5.9 diopters c..6 diopters d. +0.4 diopters e. 7.3 diopters of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 The next two questions pertain to the following situation: In the following experiment, light of wavelength λ = 633 nm from a red laser illuminates a double slit. An interference pattern is observed on a screen placed 5 m away. (You may use the small angle approximation throughout.) 8. If the second order bright fringe is at a position y =.8 cm on the screen, what is the separation d between the two slits? a. d =. mm b. d = 0.89 mm c. d = 0.67 mm d. d =.7 mm e. d = 0.35 mm 9. A material is inserted just behind the bottom slit that causes the bottom ray to be shifted by λ/. Which of the following drawings best represents the interference pattern seen on the screen? a. () b. () c. (3) () () (3) of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 The next two questions pertain to the following situation: The lenses on your reading glasses have a thin anti-reflection coating on them. The lenses are made of plastic with an index of refraction n lens =.53, and the coating is made from a material with index of refraction n coat =.0. 0. The coating works in such a way that yellow light of wavelength λ = 575 nm (in vacuum) is NOT reflected. Which of the following is a possible value for the coating thickness t? a. t = 67 nm b. t = 03 nm c. t = 0 nm. Would yellow light (λ = 575 nm) still destructively interfere if the glasses were worn under water (n water =.33)? a. Yes b. No 3 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03. On a clear night you see a small airplane flying toward you, approaching for a landing at Willard airport. The jet has red lights of wavelength λ = 650 nm on each wing,.8 m apart, but from far away you can only make out one light. How close must the airplane get to you for you to start just making out the two wing lights? Assume that you have perfect vision and that your pupil diameter is.5 mm. (You may use the small angle approximation.) a. km b. 8.8 km c. 53 km d. 4 km e. 9.6 km 3. You are driving along a stretch of highway. As shown in the figure below, two AM radio towers are 5 km apart alongside the highway and are emitting coherent radio waves of frequency f = 00 khz. You discover that you cannot listen to the AM radio station in your car at your present location L because there is complete destructive interference of the two radio waves. What is the smallest distance you need to drive further to get complete constructive interference and be able to hear the station? (Note: the value of L is unknown and irrelevant.) a. 7. m b. 74.3 m c. 5. m d. 467 m e. 83 m 4 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 The next two questions pertain to the following situation: At your grandparents house you discover two old walkie-talkies, i.e. handheld radio emitters/receivers. Your friend uses one as an emitter inside the house, while you stand outside using the other as a receiver. Your friend stands inside, behind the front door, which you can treat as a slit of width w = 90 cm. 4. You notice that if you stand outside at an angle of 45 relative to the doorway, you DO NOT receive your friend s radio signal because of destructive interference. What is the frequency f of the radio wave? a. f = 47 MHz b. f = 333 MHz c. f = 647 MHz 5. Suppose you can change the frequency of the radio signal. What maximum frequency f max could you use so that there is NO destructive interference anywhere outside? a. f max = 47 MHz b. f max = 333 MHz c. f max = 647 MHz 5 of 6 pages (7 problems)

Physics 0A Exam 3 Fall 03 The next two questions pertain to the following situation: As shown in the figure below, a three-slit grating is used to demonstrate interference. The slits are equally spaced apart by a distance d. Monochromatic laser light of wavelength λ illuminates the grating. At the angle shown, rays and 3 interfere destructively. Each ray has intensity I 0. 6. At this angle, what is the total intensity I tot of the light on a screen far away? a. I tot = 0 b. I tot = I 0 c. I tot = 3I 0 7. Now suppose that a 4 th slit is added, such that all 4 slits are equally spaced by the same distance d as before. At the same angle as above, what is the total intensity I tot of the light on a screen far away? a. I tot = 0 b. I tot = I 0 c. I tot = 3I 0 Check to make sure you bubbled in all your answers. Did you bubble in your name, exam version and network-id? 6 of 6 pages (7 problems)

Physics 0 Formula Sheet FA03 Mechanics: x at x 0 v 0 t v v at E tot K. E. P. E. 0 F ma v a c r p K. E. mv p mv W F Fd cos θ m Electrostatics: kq q F r kqq r E U E you W F q 0 U W U kq V Point charge: E, q 0 r kq V r Capacitance: Q κε0a C Parallel plate capacitor: C, V Ed V d Q U C QV CV C P C C C C C Resistance: V q L R I Physical resistance: R ρ I t A V P IV I R R S R R R R R C S R P Circuits: V 0 I in Iout t / τ t / τ q( t) q ( e ) q( t) q e 0 t / τ 0 I( t) I e τ RC Magnetism: F qvbsin θ B wire 0 μ I B sol μ 0 ni πr Induction and inductance: mv r F ILBsin θ τ NIAB sin φ qb ε N BAcos φ t ε bar BLv ε ε sin ωt ωnab sin ωt ω πf L N I gen max I ε L Solenoid inductor: L μ0n A t U L LI

Physics 0 Formula Sheet FA03 AC circuits and transformers: V V rms max I I V ( t) V, sin( ωt) I Rsin( ωt) ω πf R R max max VC ( t) VC, max sin( ωt π ) ImaxXC sin( ωt π ) X C ωc V ( t) V, sin( ωt π ) I X sin( ωt π ) X L ωl V L gen P I L max max L rms max ( t) V, sin( ωt φ) I Z sin( ωt φ) rms V gen max R, rms I rms V gen, rms max cos φ Z f 0 R π ( X L XC ) LC V V p s tan φ I I X s p N N X R L p s C Electromagnetic waves: c λ E cb f u E ε 0 E u B B μ u f f I I0 cos θ c 0 0 rms B u ε0erms Brms ε0erms S I uc μ μ 0 Reflection and refraction: θr θ i n sin θ n sin θ do di c v n f n sin θ c n hi di m ho do θ dnear M θ f Interference and diffraction: Double slit interference: Single-slit diffraction: Circular aperture: Thin film: 0 or ) Quantum mechanics: E hf hc λ Blackbody radiation: p x x d sin θ mλ d sin θ ( m ) λ m 0,, wsin θ mλ m, Dsin θ. λ n δ δ m or m ) m 0,, δ film ( δ (0 or ) t λ0 T λ max 3 λ h p (.8980 m K Photoelectric effect: K. E. hf W0 h π

Physics 0 Formula Sheet FA03 Bohr atom: πr n nλ n,,3 L mv r n n n 4 mk e Z Z r n (5.90 m) mke E n (3.6eV ) Z Z n n 7 (.0970 m ) Z λ n f n i Quantum atom: L ( ) L z Nuclear physics and radioactive decay: n m n n 5 A Z N r (.0 m) A N t λn / 3 λt t T/ N( t) N0e N0 T E0 mc ln 0.693 λ λ / Special relativity: t γ t 0 Constants and unit conversions: L0 L γ 9 γ v c g 9.8m / s e.600 C 9 7 ε0 8.850 C / Nm k 8.990 Nm / C μ 0 4π 0 T m/ A 4πε 8 0 c 30 m / s h 6.660 J s hc 40 nmev ε μ 0 0 9 7 ev.600 J m proton.670 kg 938MeV 34 3 m electron 9.0 kg 5keV SI Prefixes Power Prefix Symbol 0 9 giga G 0 6 mega M 0 3 kilo k 0 0 0 3 milli m 0 6 micro μ 0 9 nano n 0 pico p

Physics 0 Exam 3 -- Fall 03. a. c 3. b 4. a 5. e 6. b 7. a 8. e 9. b 0. b. c. c 3. c 4. a 5. b 6. b 7. a 8. e 9. c 0. c. b. b 3. b 4. a 5. b 6. b 7. a