Chapter 5. Diffraction Part 2

Similar documents
Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Phys 531 Lecture 27 6 December 2005

If the wavelength is larger than the aperture, the wave will spread out at a large angle. [Picture P445] . Distance l S

31. Diffraction: a few important illustrations

5. LIGHT MICROSCOPY Abbe s theory of imaging

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

PHY410 Optics Exam #3

Lecture notes 5: Diffraction

Waves Part III Electromagnetic waves

Fourier Approach to Wave Propagation

Lecture 9: Indirect Imaging 2. Two-Element Interferometer. Van Cittert-Zernike Theorem. Aperture Synthesis Imaging. Outline

PRINCIPLES OF PHYSICAL OPTICS

Lecture 11: Introduction to diffraction of light

Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ Office Hours: Call for appointment or see after class

Week 7: Interference

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur

High-Resolution. Transmission. Electron Microscopy

Phys102 Lecture Diffraction of Light

Optics.

Nature of Light Part 2

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof.

Light Propagation in Free Space

Lecture 9: Introduction to Diffraction of Light

Laser Speckle and Applications in Optics

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed.

Design and Correction of optical Systems

Electricity & Optics

12 주 /15 주 작은구멍이나장애물을만나면넘어가거나돌아간다. 원거리에돌이 ( 프라운호퍼에돌이 ) 에돌이 ( 회절 )- 불확정성의원리 근거리에돌이 ( 프레스넬에돌이 )

Engineering Physics 1 Prof. G.D. Vermaa Department of Physics Indian Institute of Technology-Roorkee

Diffractive Optics. Professor 송석호, Physics Department (Room #36-401) , ,

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

Physical Optics. Lecture 2: Diffraction Herbert Gross.

Topic 4 &11 Review Waves & Oscillations

Nature of diffraction. Diffraction

FIRST YEAR PHYSICS. Unit 4: Light II

Chapter 10. Interference of Light

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND FRESNEL ZONE PLATE

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

The science of light. P. Ewart

The Diffraction Grating

Chapter 6 SCALAR DIFFRACTION THEORY

Chapter 2 Basic Optics

Spectroscopic Instruments

Contents. Diffraction by 1-D Obstacles. Narrow Slit. Wide Slit. N Slits. 5 Infinite Number of Slits

The science of light. P. Ewart


The science of light. P. Ewart

The Grating Spectrometer and Atomic Spectra

PH880 Topics in Physics

Vector diffraction theory of refraction of light by a spherical surface

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

Coherence. This is based on. Chapter 10. Statistical Optics, Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich. and

Introduction to Interferometer and Coronagraph Imaging

Summary of Fourier Optics

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

B r Solved Problems Magnetic Field of a Straight Wire

B.Tech. First Semester Examination Physics-1 (PHY-101F)

Laboratory #29: Spectrometer

Design and Correction of Optical Systems

An Example of Telescope Resolution

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph

The Grating Spectrometer and Atomic Spectra

Probing the orbital angular momentum of light with a multipoint interferometer

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 FRAUNHOFER DIFFRACTION

47.3. Physics Case Studies. Introduction. Prerequisites. Learning Outcomes

The maximum value of the acceleration occurs when sin=1 with magnitude

A refl = R A inc, A trans = T A inc.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

GEOMETRIC THEORY OF FRESNEL DIFFRACTION PATTERNS

Optics Optical Testing and Testing Instrumentation Lab

Downloaded from

Heating Beam Pattern Optical Design CO2 Laser Thermal Compensation Bench

DIFFRACTION AND INTERFERENCE

Metrology and Sensing

Applied Physics - II

Physics of Light and Optics

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Interference by Wavefront Division

Transmission Electron Microscopy

Fourier Optics - Exam #1 Review

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

EGR491 Notes: Optics, Part 1

On the Interpretation of Phase-contrast Images

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, August 23, 2004, 12:14 PM)

Optical/IR Observational Astronomy Telescopes I: Telescope Basics. David Buckley, SAAO

Problem Solving 1: Line Integrals and Surface Integrals

DIFFRACTION AND FOURIER OPTICS I.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

Version 087 EX4 ditmire (58335) 1

Chapter 36, example problems:

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Today. MIT 2.71/2.710 Optics 11/10/04 wk10-b-1

Foundations of Scalar Diffraction Theory(advanced stuff for fun)

CBSE_2014_SET_3 Physics

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy)

CBSE Examination Paper

Study of the Composition and Spectral Characteristics of a HDG-Prism Disperse System (GRISM) by Refractive Index Phase Matching

Optical Instruments. Chapter 25. Simple Magnifier. Clicker 1. The Size of a Magnified Image. Angular Magnification 4/12/2011

Transcription:

EE 430.43.00 06. nd Semester Chapter 5. Diffraction Part 06. 0. 0. Changhee Lee School of Electrical and Computer Engineering Seoul National niv. chlee7@snu.ac.kr /7 Changhee Lee, SN, Korea

5.5 Fresnel diffraction patterns iωt ik r r' ik 0e e [ cos n, r cos n, r ']da 4π rr' P EE 430.43.00 06. nd Semester r r' h R / h' R / h h' R h... h' Fresnel zones: regions bounded by concentric circles, Rconstant, defined such that rr differs by λ/ from one boundary to the next. R λl, R λl,... R nλl n L h h' If R n and R n are the inner and outer radii of the nst zone, the area is π R πr πr λl, independent of n. n n /7 Changhee Lee, SN, Korea

5.5 Fresnel diffraction patterns EE 430.43.00 06. nd Semester The optical disturbance at P is the sum of the contributions from the various Fresnel zones. Since the mean phase changes by exactly 80 o from one zone to the next, p 3... For the case of an infinitely large aperture no aperture at all, the total optical disturbance at P is ½. p 3 4 5 3... n 3/7 Changhee Lee, SN, Korea

5.5 Fresnel diffraction patterns EE 430.43.00 06. nd Semester In the case of an irregular obstacle, If P is in the illuminated region, the presence of the obstacle makes little difference, If it is in the shadow region, the optical disturbance is very small, roughly in agreement with geometrical optics. Diffraction fringes appear around the shadow only if the irregularities at the edge of the obstacle are small compared to the radius of the st Fresnel zone. 4/7 Changhee Lee, SN, Korea

Zone plate EE 430.43.00 06. nd Semester If an aperture is constructed so as to obstruct alternate Fresnel zones, say the evennumbered ones, then the remaining terms in the summation are all of the same sign. Such an aperture is called a zone plate. p 3 5... It is much like a lens, because p is much larger than if there were no aperture. The equivalent focal length is L as given by L R λ st Fresnel zone R λl 5/7 Changhee Lee, SN, Korea

Rectangular aperture iωt ik r r' ik 0e e [ cos n, r cos n, r ']da 4π rr' P EE 430.43.00 06. nd Semester R x y r r' h h' L x y Simplifying assumptions: The obliquity factor and /rr vary so slowly compared to e ikrr /r that they can be taken outside the integral. P C x x y y e ik x y / L dxdy C x x e ikx / L dx y y e iky / L dy 6/7 Changhee Lee, SN, Korea

Rectangular aperture EE 430.43.00 06. nd Semester u x k πl x λl v y k πl y λl P u v iπu / iπv / e dx e dy u, v CπL k s 0 e iπw / dw C s is s Fresnel integrals s cos πw / dw, S s C s sin πw 0 s 0 / dw dc s cos π w / ds, ds s sin πw / ds dc ds ds 7/7 Changhee Lee, SN, Korea

Cornu spiral, a plot of the Fresnel integrals The Cornu spiral is useful for graphical evaluation of the Fresnel integrals. The limit points s and s are marked on the spiral. A straight line segment drawn from s to s gives the value of the integral s i w / e π dw s EE 430.43.00 06. nd Semester The length of the line segment is the magnitude of the integral, and the projections on the C and S axes are the real and imaginary parts, respectively. ds represents an element of arc. dc ds ds 8/7 Changhee Lee, SN, Korea

Changhee Lee, SN, Korea EE 430.43.00 06. nd Semester 9/7 Cornu spiral, a plot of the Fresnel integrals L y y v v s s L x x u u s s λ λ, i S C S C [ ] [ ] 0 v v u u p v is v C u is u C i For the general case in the normalized form

Slits and straightedge EE 430.43.00 06. nd Semester p i [ C v is v ] v 0 v p i i v 0 [ C v is v ] C v is v i 0 F. A. Jenkins and H. E. White, Fundamentals of Optics, 3 rd ed. McGraw-Hill, 957 0/7 Changhee Lee, SN, Korea

Changhee Lee, SN, Korea EE 430.43.00 06. nd Semester /7 Straightedge If the receiving point P is exactly at the geometrical shadow edge, then v 0. [ ] 0 0 0 0 i i i v is v C i v is v C i p v p The highest irradiance occurs just inside the illuminated region at v ~.5, where I p ~.37I 0.

Narrow slits and opaque narrow strips Photographs of a number of Fresnel diffraction patterns for single slits of different widths. As the slit becomes wider, the fringes go through very rapid changes, approaching for a wide slit the general appearance of two opposed straight-edge diffraction patterns. EE 430.43.00 06. nd Semester Babinet's principle is not very useful in dealing with Fresnel diffraction. In Fraunhofer diffraction, the diffraction patterns due to complementary screens are identical. In a typical case of Fresnel diffraction, however, this is not true, as may be seen by comparing two Figs. Fresnel diffraction by narrow opaque strips. F. A. Jenkins and H. E. White, Fundamentals of Optics, 3 rd ed. McGraw-Hill, 957 /7 Changhee Lee, SN, Korea

Fresnel diffraction from a slit EE 430.43.00 06. nd Semester The diffraction pattern from a slit for different Fresnel numbers N F a /λd. corresponding to different distances d from the aperture. At very small distances very large N F, the diffraction pattern is a perfect shadow of the slit. As the distance increases N F decreases, the wave nature of light is exhibited in the form of small oscillations around the edges of the aperture. For very small N F, the Fraunhofer pattern is obtained. This is a sinc function with the first zero subtending an angle λ/d λ/a. Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics 99 3/7 Changhee Lee, SN, Korea

Fresnel integrals e i π X / cos πx / i sin πx / EE 430.43.00 06. nd Semester Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics 99 4/7 Changhee Lee, SN, Korea

5.6 Applications of the Fourier transform to diffraction EE 430.43.00 06. nd Semester Now we consider the general problem of Fraunhofer diffraction by an aperture having not only an arbitrary shape, but also an arbitrary transmission including phase retardation, which may vary over different parts of the aperture. 5/7 Changhee Lee, SN, Korea

5.6 Applications of the Fourier transform to diffraction Path difference δr R ix ˆ ˆjy, δr R nˆ P ~ e ikδr nˆ iˆ α xα yβ x da e ˆj β kˆ γ, X L ik xx yy / L Y y L α, β, γ direction cosines, dxdy L focal length of the lens EE 430.43.00 06. nd Semester 6/7 Changhee Lee, SN, Korea

5.6 Applications of the Fourier transform to diffraction For a nonuniform aperture we introduce an aperture function gx,y. X, Y µ, ν g x, y e g x, y e ik xx yy / L i µ x νy dxdy, dxdy µ kx L Spatial frequency, ν ky L Diffraction pattern is a Fourier resolution of the aperture function. g y g g cos ν 0 y g cosν 0 y..., ν 0 0 π h EE 430.43.00 06. nd Semester 7/7 Changhee Lee, SN, Korea

Apodization EE 430.43.00 06. nd Semester Apodization literally to remove the feet is any process by which the aperture function is altered in such a way as to produce a redistribution of energy in the diffraction pattern. It is an optical filtering technique, primarily used to remove Airy disks caused by diffraction around an intensity peak, improving the focus. Consider a single slit. gy for b/ <y< b/ and gy0 otherwise. b sin νb iνy e dy b b νb Suppose now that aperture function is altered by apodizing in such a way that the resultant aperture transmission is a cosine function: g y cos πy / b for b / < y < b / Apodization suppresses the higher spatial frequencies. In this way, it is possible to apodize the circular aperture of a telescope so as to reduce greatly the relative intensities of the diffraction rings that appear around the images of stars. This enhances the ability of the telescope to resolve the image of a dim star near that of a bright one. b b πy cos e b iνy dy νb cos ν π / b ν π / b 8/7 Changhee Lee, SN, Korea

Spatial filtering EE 430.43.00 06. nd Semester The xy plane represents the location of some coherently illuminated object. This object is imaged by an optical system, the image appearing in the x y plane. The diffraction pattern µ,ν of the object function gx,y appears in the µν plane. µ, ν g x, y e i µ x νy dxdy µ,ν is the Fourier transform of gx,y. The image function g x,y that appears in the x y plane is, in turn, the Fourier transform of µ,ν. 9/7 Changhee Lee, SN, Korea

Spatial filtering ' µ, ν T µ, ν µ, ν EE 430.43.00 06. nd Semester The finite size of the aperture at the µν plane limits the spatial frequencies that are transmitted by the optical system. And there are lens defects, aberrations, etc., which result in a modification of the function µ,ν. All of these effects can be incorporated into the transfer function Tµ,ν of the optical system, defined as follows: g' x', y' T µ, ν µ, ν e i µ x' νy' dµ dν The image function g x,y is the Fourier transform of the product of Tµ,ν µ,ν. The transfer function can be modified by placing various screens and apertures in the µν plane. This is known as spatial filtering. 0/7 Changhee Lee, SN, Korea

Spatial filtering EE 430.43.00 06. nd Semester Low-pass spatial filtering /7 Changhee Lee, SN, Korea

Spatial filtering EE 430.43.00 06. nd Semester High-pass spatial filtering /7 Changhee Lee, SN, Korea

Phase contrast and Phase gratings EE 430.43.00 06. nd Semester The method of phase contrast was invented by Zernike, and it is used to render visible a transparent object whose index of refraction differs slightly from that of a surrounding transparent medium. Phase contrast is particularly useful in microscopy for examination of living organisms. This method consists of the use of a special type of spatial filter. For example, consider a phase grating consisting of alternate strips of high- and low-index material, all strips being perfectly transparent. g y e iφ y iφ y ν b / b / e iνy ν i iφ y e dy i b / b / ν iνy dy φ y e iνy dy and are 80 o out of phase. The phase-contrast method is inserting a phase plate which shifts the phase of i by an additional 90 o. 3/7 Changhee Lee, SN, Korea

Phase contrast and Phase gratings EE 430.43.00 06. nd Semester The phase plate is just a transparent-glass plate having a small section whose optical thickness is λ/4 greater than the remainder of the plate. This thicker section is located in the central part of the µν plane, that is, in the region of low spatial frequencies. After inserting phase plate, ν i ν ν ν iνy' iνy' g' y' ν e dν ν e dν g y' g y' The g is the image function of the whole object aperture. It represents the constant background. The g the image function for a regular grating of alternate transparent and opaque strips. Thus, the phase grating has been rendered visible. It appears in the image plane as alternate bright and dark strips. 0 phase shift of 90 to the carrier freq. phase - modulated signal amplitude- modulated signal 4/7 Changhee Lee, SN, Korea

5.7 Reconstruction of the wave front by diffraction, Holography EE 430.43.00 06. nd Semester Holography is the science and practice of making holograms. Dennis Gabor was awarded the Nobel Prize in Physics in 97 "for his invention and development of the holographic method. Typically, a hologram is a photographic recording of a light field, rather than of an image formed by a lens, and it is used to display a fully three-dimensional image of the holographed subject, which is seen without the aid of special glasses or other intermediate optics. The hologram is an encoding of the light field as an interference pattern in the photographic medium. When suitably lit, the interference pattern diffracts the light into a reproduction of the original light field and the objects that were in it appear to still be there, exhibiting visual depth cues such as parallax and perspective that change realistically with any change in the relative position of the observer. Recording a hologram Reconstructing a hologram https://en.wikipedia.org/wiki/holography 5/7 Changhee Lee, SN, Korea

5.7 Reconstruction of the wave front by diffraction, Holography EE 430.43.00 06. nd Semester 6/7 Changhee Lee, SN, Korea

EE 430.43.00 06. nd Semester Homework set #4. Due date: 06.. 3 목 Problems in Chapter 5., 4, 8,, 5, 9, 0,. Midterm Exam 06.. 8 화 :00-:5 시험범위 : Chapter 3~ Chapter 5 sec. 3.~3.5 제외 7/7 Changhee Lee, SN, Korea