Citation 数理解析研究所講究録 (2007), 1570:

Similar documents
and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

Citation 数理解析研究所講究録 (2002), 1254:

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

Citation 数理解析研究所講究録 (2016), 1995:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

Citation 数理解析研究所講究録 (1994), 886:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Citation 数理解析研究所講究録 (2012), 1805:

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

Citation 数理解析研究所講究録 (2004), 1396:

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Citation 数理解析研究所講究録 (2010), 1716:

Citation 数理解析研究所講究録 (2013), 1841:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

Citation 数理解析研究所講究録 (2010), 1679:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

Citation 数理解析研究所講究録 (2015), 1963:

Citation 数理解析研究所講究録 (2009), 1665:

Citation 数理解析研究所講究録 (1996), 966:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

Citation 数理解析研究所講究録 (2006), 1466:

Citation 数理解析研究所講究録 (2001), 1191:

Citation 数理解析研究所講究録 (1999), 1099:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Self-similar solutions to a parabolic system modelling chemotaxis

Mode generating effect of the solut. Citation 数理解析研究所講究録 (2005), 1425:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Citation 数理解析研究所講究録 (2008), 1605:

Citation 数理解析研究所講究録 (2000), 1123:

ON THE DEFINITION AND PROPERTIES OF. Citation 数理解析研究所講究録 (2007), 1553:

(Theory of Biomathematics and its A. Citation 数理解析研究所講究録 (2010), 1704:

VECTOR-VALUED WEAKLY ALMOST PERIODI Title. FUNCTIONS AND MEAN ERGODIC THEOREMS BANACH SPACES (Nonlinear Analysis a Analysis)

Citation 数理解析研究所講究録 (2012), 1794:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

Title series (Analytic Number Theory and. Citation 数理解析研究所講究録 (2009), 1665:

Citation 数理解析研究所講究録 (2014), 1898:

Citation 数理解析研究所講究録 (2004), 1368:

Citation 数理解析研究所講究録 (2005), 1440:

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

Citation 数理解析研究所講究録 (1996), 941:

Citation 数理解析研究所講究録 (2008), 1588:

in the geometric function theory) Author(s) Shigeyoshi; Darus, Maslina; Cho, Na Citation 数理解析研究所講究録 (2010), 1717: 95-99

Citation 数理解析研究所講究録 (2003), 1347:

INDISCERNIBLE SEQUENCES AND. notions in model theory) Citation 数理解析研究所講究録 (2010), 1718:

Citation 数理解析研究所講究録 (2006), 1465:

GLOBAL ATTRACTIVITY IN A NONLINEAR DIFFERENCE EQUATION

Wave and Dispersive Equations) Citation 数理解析研究所講究録 (2004), 1355:

Citation 数理解析研究所講究録 (2015), 1942:

Citation 数理解析研究所講究録 (1997), 1014:

Citation 数理解析研究所講究録 (2002), 1244:

Sogabe, Tomohiro; Hoshi, Takeo; Zha Fujiwara, Takeo. Citation 数理解析研究所講究録 (2010), 1719:

Title series (New Aspects of Analytic Num. Citation 数理解析研究所講究録 (2002), 1274:

Title numbers (Mathematics of Quasi-Perio. Citation 数理解析研究所講究録 (2011), 1725:

DIFFERENTIAL OPERATORS AND SIEGEL-M. Author(s) IMAMOGLU, OZLEM; RICHTER, OLAV K. Citation 数理解析研究所講究録 (2010), 1715:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B33:

Author(s) Aoshima, Makoto; Srivastava, Muni S. Citation 数理解析研究所講究録 (1999), 1101:

SPECTRAL PROPERTIES OF DIRAC SYSTEM. and asymptotic analysis) Citation 数理解析研究所講究録 (2003), 1315:

Citation 数理解析研究所講究録 (2007), 1531:

Disconjugate operators and related differential equations

Citation 数理解析研究所講究録 (1999), 1078:


Title (Properties of Ideals on $P_\kappa\ Citation 数理解析研究所講究録 (1999), 1095:

Citation 数理解析研究所講究録 (2003), 1308:

Citation 数理解析研究所講究録 (2006), 1476:

number theory and related topics) Citation 数理解析研究所講究録 (2010), 1710: 1-6

Kahler submanifolds of a quaternion (Geometry of homogeneous spaces and. Citation 数理解析研究所講究録 (2003), 1346:

Citation 数理解析研究所講究録 (1994), 860:

Author(s) SAITO, Yoshihiro; MITSUI, Taketomo. Citation 数理解析研究所講究録 (1991), 746:

Citation 数理解析研究所講究録 (2012), 1798:

Jae Hyoung Lee. Gue Myung Lee

Title free boundary problems (Free Bounda. Citation 数理解析研究所講究録 (2001), 1210:

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

BRAUER CORRESPONDENCE AND GREEN. Citation 数理解析研究所講究録 (2008), 1581:

Citation 数理解析研究所講究録 (2013), 1871:

Mathematical Sciences) Citation 数理解析研究所講究録 (2004), 1386:

Citation 数理解析研究所講究録 (2009), 1669:

Citation 数理解析研究所講究録 (2014), 1891:

Title Numerics(The 7th Workshop on Stocha. Citation 数理解析研究所講究録 (2006), 1462:

A note on the convergence of linear semi-groups of class (\bm{1},\bm{a})

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

A SURVEY ON FIXED POINT THEOREMS IN. Citation 数理解析研究所講究録 (2006), 1484:

Citation 数理解析研究所講究録 (1995), 925:

Citation 数理解析研究所講究録 (2005), 1452:

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

Citation 数理解析研究所講究録 (2013), 1866:

Review: Stability of Bases and Frames of Reproducing Kernels in Model Spaces

Transcription:

Construction of solutions $f'(x) = Title1(Banach spaces, function spaces, applications) Author(s) Yoneda, Tsuyoshi Citation 数理解析研究所講究録 (2007), 1570: 1-7 Issue Date 2007-10 URL http://hdlhandlenet/2433/81278 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

1570 2007 1-7 1 Construction of solutions $f (x)=af(\lambda x),$ $\lambda>1$ (Tsuyoshi Yoneda) Graduate School of Mathematical Sciences The University of Tokyo 1 MAIN RESULT on $\mathbb{r}$ $C^{\infty}(\mathbb{R})$ We denote by Let the set of all infinitely differentiable functions $C_{0}^{\infty}(\mathbb{R})=\{f\in C^{\infty}(\mathbb{R})$ : $\frac{d^{p}f}{dx^{p}}(x)arrow 0$ as $C_{comp}^{\infty}(\mathbb{R})=$ { $f\in C^{\infty}(\mathbb{R})$ : $f$ has a compact support} $ x arrow\infty,$ $P=0,1,2,$ $\cdots\}$, We denote by $x_{[r,\ell)}$ the characteristic function of the interval $[r, s$ ) be the set of all step functions Let $X$ (11) $p= \sum_{j=1}^{m}c_{j}\chi_{[r_{j-1},r_{j})}$, such that $m=1,2,$ $\cdots$ and $c_{j}\in \mathbb{r}$ $(j=1,2, \cdots m)$, $c_{1}=1$, $r_{0}=0$, $0<r_{1}<r_{2}<\cdots<r_{m}<\infty$, $\sum_{j=1}^{m}c_{j}(r_{j}-r_{j-1})=1$ We note that $\int_{\mathbb{r}}p(x)dx=1$ for $p\in X$ For $\lambda>1$ and $p\in X$, we define an operator $T=T_{\lambda,p}$ : $L^{1}(\mathbb{R})arrow$ $L^{1}(\mathbb{R})$ (by $T_{\lambda,p}$ [17] (p 149, Remark 2) and [2], we can say that :, since $s\in \mathbb{r}$ $\lambda p(\lambda\cdot)\in B_{1,\infty}^{1}(\mathbb{R}))$ as follows: $B_{1,\infty}^{8}(\mathbb{R})arrow B_{1,\infty}^{\epsilon+1}(\mathbb{R})$ for (12) $Tf(x)=T_{\lambda,p}f(x)=\lambda(p*f)(\lambda x)$ We note that, since and $Tf\in L^{1}(\mathbb{R})\cap C(\mathbb{R})$ $f\in L^{1}(\mathbb{R})$ $p\in If we have (see [15]) Therefore $f\in B_{1,\infty}^{s}(\mathbb{R})$ $\hat{f}(1+ \cdot ^{2})^{s/2}\in L^{\infty}(\mathbb{R})$ we have for $k>-s-1$ if $T^{k}f\in L^{2}(\mathbb{R})\cap C(\mathbb{R})$ $f\in B_{1,\infty}^{s}(\mathbb{R})$ L_{\infty mp}^{\infty}(\mathbb{r})$

2 Theorem 11 For $\lambda>1$ and $p\in X$, let be the operator defined $T$ C_{comp}^{\infty}(\mathbb{R})$ such that, by (12) Then there exists a $u=u_{\lambda,p}\in function for all (or for all $f\in L^{1}(\mathbb{R})$ $f strtctly bigger than $L^{1}(\mathbb{R}))$, Mooeover, \in\bigcup_{s\in \mathbb{r}}b_{1,\infty}^{s}(\mathbb{r})_{f}$ which function set is $\lim_{\ellarrow\infty}t^{\ell}f(x)=c_{f}u(x)$ uniformly with respect to $x\in \mathbb{r}$, where $c_{f}=\hat{f}(0)$ (1) $Tu=u$ ; (2) $\int_{r}u(x)dx=1$ ; (3) $\frac{d}{dx}pu(0)=0k$ for all $k=0,1,2,$ $\cdots$ ; (4) if $p\geq 0_{f}$ then $u\geq 0$ ; and, (5) if supp $p\subset[0, r]$, then supp $u\subset[0, r/(\lambda-1)]$ In the above statement supp $f$ denotes the support of $f$ Remark 11 If $p_{1}\neq p_{2}$, then $u_{\lambda,p_{1}}\neq u_{\lambda,p_{2}}$ 2 APPLICATION To construct solutions for the $fouowing$ equation, (21) $\{\begin{array}{ll}f (x)=\lambda^{2}f(\lambda x), x\in \mathbb{r},f(0)=0, \end{array}$ we use $u=u_{\lambda,p}$ in Theorem 11 with $\lambda>1$ and $p= \sum_{j=1}^{m}c_{j}\chi[rr$ ) $\in$ $X$, and we define a sequence of functions $\{v_{\ell}\}$ inductively as follows: $\{\begin{array}{ll}v_{0}(x)=u(x)+\sum_{j=1}^{m}\overline{c}_{j}u(x-r_{j}), v_{\ell+1}(x)=v_{\ell}(x)+\sum_{j=1}^{m}\tilde{c}_{j}v_{\ell}(x-\lambda^{l+1}r_{j}), \ell=0,1,2, \cdots,\end{array}$ where $\tilde{c}_{j}=-(c_{j}-c_{j+1}),$ $j=1,2,$ $\cdots m-1,\tilde{c}_{m}=-c_{m}$ C_{\infty mp}^{\infty}(\mathbb{r}),$ $\ell=0,1,2,$, and $\cdots$ Then $v_{\ell}\in $vp(x)=v_{\ell+1}(x)$, $x\in(-\infty, \lambda^{\ell+1}r_{1}$], $\ell=0,1,2,$ $\cdots$ Therefore we get a function $f=f_{\lambda p}\in C^{\infty}(\mathbb{R})$ such that $x\in(-\infty, $f(x)=v_{\ell}(x)$, \lambda^{\ell+1}r_{1}$], $\ell=0,1,2,$ $\cdots$ Since $f(x)=u(x)$ near $x=0,$ for all $k=0,1,2,$ $\frac{d}{dx}\tau kf(o)=0$ $\cdots$

3 Theorem 21 Let $\lambda>1$ For every $p\in X$, the function $f=f_{\lambda,p}$ given by the above method is a solution for (21) Remark 21 By the property (5) in Theorem 11 and the definition of $v_{\ell}$, supp $u\subset[0, r_{m}/(\lambda-1)]$, $supp(v_{0}-u)\subset[r_{1}, r_{m}\lambda/(\lambda-1)]$, supp $v_{\ell}\subset[0, r_{m}\lambda^{\ell+1}/(\lambda-1)]$, $supp(v_{\ell+1}-v_{\ell})\subset[r_{1}\lambda^{l+1},r_{m}\lambda^{\ell+2}/(\lambda-1)]$ $[r_{m}\lambda^{\ell}/(\lambda-1), Therefore, if $r_{m}/(\lambda-1)<r_{1}$, then $f(x)=0$ on $P=0,1,2,$ $\ldots$, and is bounded (See the graph (S12)) Let $f$ r_{1}\lambda^{\ell}]$, $n_{4}$ $p_{i}= \sum_{j=1}c_{i,j}\chi_{[r:_{l-1r_{ij})}},\in X$, $i=1,2$ If and there exists $R>0$ such taht $p_{1}\neq p_{2}$ $r_{i,m_{1}}/(\lambda-1)<r<r_{i,1}$, $f_{\lambda,p_{1}}\neq f_{\lambda,p_{2}}$ $i=1,2$, then by Remark 11, while $\int_{0}^{r}f_{\lambda,ps}(x)dx=$ $\int_{0}^{r}u_{\lambda,p:}(x)dx=1,$ $i=1,2$ Remark 22 In the definition (11), let $m=\infty$ with the condition $\sum_{j=1}^{\infty} c_{j+1}-c_{j} <\infty$ Then the derivative of in the sense of distribution is a finite Radon measure and the Fourier transform of the $p$ derivative is an almost periodic function With some conditions we can ako construct solutions for (21) from such functions For the Fourier preimage of the space of all finite Radon measures, see, for example, $[6, 7]$ In the rest of this section, we give graphs of solutions for $f (x)=$ $4f(2x),$ $f (x)=(3/2)^{2}f(3x/2)$ and $f (x)=9f(3x)$ with $f(o)=0$ Let be as in Table 1 Then, calculating $p$ $T_{\lambda,p}^{\ell}\chi_{[0_{y}1)}$ numerically by computer, we get the graphs of solutions $(S1)-(S7)$ in Figure 1, $(S8)-$ (Sll) in Figure 2 and $(S12)-(S13)$ in Figure 3 REFERENCES [1] A Augustynowicz, H Leszczy\ oki and W Walter, On some nonlinear $ordina\eta$ differential equations Utth advanced arguments, Nonlinear Anal, 53 (2003), 495-505 [2] VI Burenkov, On estimates of Fourier transforrns and convolutions in Nikol skij-besov spaces, Proc Steklov Inst 3(1990), 35-44

4 (S1) (S2) (S3) (S4) (S5) FIGURE 1 Solutions of $f (x)=4f(2x)$

5 $\lambda,$ TABLE 1 $p$ $f_{p,\lambda}$ and the solution FIGURE 2 Solutions of $f (x)=(3/2)^{2}f(3x/2)$ (S13) FIGURE 3 Solutions of $f (x)=9f(3x)$

6 [3] L Fox and D F Mayers, On afunctionai-differential equation, J Iot Maths Applics, 8(1971), 271-307 [4] P O Rederickson, Global solutioo to certain nonlinear functional differential equatioo J Math Anal Appl 33 (1971), 355-358 [5] P O Rederickson, Dirichlet series solutioo for certain functional differential equatioo Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971), 249-254 Lecture Notes in Math, Vol 243, Springer, Berlin, 1971 [6] Y Giga, K Inui, A Mahalov and S Matsui, Uniform local solvability for the Navier-Stokes equations with Coriolis force, Methods Appl Anal 12 (205), 381-393 [7] Y Giga, A Mahalov, H Jo and T Yoneda, On time analycity of the Nanier- $Stok\infty$ equations in arotating frame with spatially almoet periodic data, preprint [8] M Heard, A family of solutions of the $IVP$ for the equation $x (t)=ax(\lambda t),$ $\lambda>$ $1,$ $Aequatione8$ Math, 9(1973), 273-280 [9] A F Ivanov, Y Kitamura, T Kusano and V N Shevelo, $Oscillato\eta$ solu- $tion\epsilon$ of $func\hslash onal$ diffeoential equations Generated by $de\tau\dot{n}ation$ of $a7yuments$ $64\triangleright 655$ of mixed type, Hiroshima Math J 12 (1982), [10] T Kato Asymptotic behavior of solutions of the $diffeoen\hslash al$ fimctional equation $y (x)=ay(\lambda x)+by(x)$, in: Delay and Rnctional Differential Equatioo and Their Applicatioo, Proc Conf, Park City, Utah, 1972, Academic Praes, New York, 1972, 197-217 [11] T Kato and J B McLeod, The firnctional-differential equation $y (x)=$ $ay(\lambda x)+by(x)$, Btl Amer Math Soc 77 (1971), 891-937 [12] T Kusano, Oscillation of even order Linear hnctional Differentid $Equation\epsilon$ vrith of Mixed $De\tau\dot{n}a\hslash nga\eta uments$ $\Phi e$, J Math Anal Appl 98 (1984), 341-347 [13] E Nakai and T Yoneda $Con\epsilon truction$ of solutions for the $func\hslash onal- diffeoent al$ equation $f (x)=af(\lambda x),$, with $\lambda>1$ $f(o)=0$, preprint [14] J R O&endon and A B Tayler, The dynamics of a collection $cu v\epsilon nt$ $sy\epsilon tem$ for an electric $loc\cdot ornotive$, Proc $Roy$ Soc Lond A 322, 447-468 (1971) [15] Y Sawano and T Yoneda, On the Young theooem for amalgams and Besov $spac\cdot es$, Inteaational Joupal of Pure and Applied Mathematioe, 36, No 2 (2007), 199-208 [16]Y Sawano and T Yoneda, Quarkonial dxomposition suitable for $intq ution$, to appear in Mathematische Nachriiten [17] H Riebel, $Theo\eta$ of function spaces, Monographs in Mathematioe, 78 Birkhser Verlag, Baael, (1983) [18]W Volk, Properties of subspaces genemted by an infinity oflen diffeoentiable $func\cdot tion$ and its tmnslates, ZAMM Z Angew Math $M\infty h$ $76$ (Suppl 1) (1996) 575-576 [19] W Volk, $Evalua\hslash on$ of the solution of an integral-fimctional $e\varphi ation,$ JourM of Computational and Appli\ e Mathematioe 174 $(2\mathfrak{X}5)423-436$ [20] T Yoneda, Spline fixnctions and $n- pe\dot{n}odic$ points (Japanese), hansactioo of the Japan Society for Industrial and Appli\ e Mathematics (Japanaee), 15 (2005), 245-252 [21] T Yoneda, On the functional-diffeoential equation of advanced type $f (x)=$ $af(2x)$ with $f(o)=0$, J Math Anal Appl, 317 (2006), 320-330 [22]T Yoneda, On the nctional-differential equation of $fu$ $advanc\cdot ed$ type $af(\lambda x),$ $\lambda>1$, with $f(o)=0$, J Math Anal Appl, 332 (2007), 487-496 $f (x)=$

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, 3-8-1 KOMABA, MEGURO-KU TOKYO 153-8914, JAPAN E-mail address: yonedadms u-tokyo ac jp 7