Introduction to Radiopharmaceutical chemistry. (Lecture

Similar documents
Radiochemistry and Radiopharmacy III

Outline Chapter 14 Nuclear Medicine

Bases of radioisotope diagnostic methods

Historical Perspective - Radiotracing -

CLINICALLY USEFUL RADIONUCLIDES:

PRODUCTION OF RADIOISOTOPES FOR IMAGING AND THERAPY AT LOW ENERGY

Best MeV. Best , 25 MeV

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiochemistry in nuclear medicine

1st Faculty of Medicine, Charles University in Prague Center for Advanced Preclinical Imaging (CAPI)

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

RADIOPHARMACEUTICALS

Imaging: PET and SPECT

Radiotracers for Early Diagnosis - ReSearching for a Better Life!

Laboratory 3: Kit Preparation and Chromatography. Design Considerations for a Radiopharmaceutical

Positron Emission Tomography Dr. William C. Uhland Tyco-Mallinckrodt Pharmaceuticals, Maryland Heights, Missouri, USA

Dosimetry of patients injected with tracers Ga-68, Zr-89 and Lu-177. Bruno Vanderlinden

Medical Applications of Nuclear Radiation and Isotopes

Positron Emission Tomography

Radioisotopes and PET

Structure of the course

III. Proton-therapytherapy. Rome SB - 2/5 1

Bioimage Informatics. Lecture 23, Spring Emerging Applications: Molecular Imaging

Nuclear Medicine Intro & Physics from Medical Imaging Signals and Systems, Chapter 7, by Prince and Links

Radiopharmacy. Prof. Roger Schibli Department of Chemistry and Applied Biosciences ETHZ Center for Radiopharmaceutical Science ETH-PSI-USZ

Radioisotopes in action. Diagnostic application of radioisotopes. Steps of diagnostic procedure. Information from various medical imaging techniques

Nuclear Physics and Astrophysics

69 Ga Ga

Synthesis and stability of [ 77 Br]-m-Bromobenzylguanidine ( 77 Br-MBBG)

Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA ramsey

Tomography is imaging by sections. 1

Nuclear Medicine Treatments and Clinical Applications

Nuclear Medicine RADIOPHARMACEUTICAL CHEMISTRY

Physics in Nuclear Medicine

Radiochemistry and Radiopharmacy IV

Beyond FDG Manufacturing of 11 C and 18 F Radiopharmaceuticals. Krzysztof Kilian

PHY138Y Nuclear and Radiation Section

Nuclear Radiation. Natural Radioactivity. A person working with radioisotopes wears protective clothing and gloves and stands behind a shield.

Essentials of nuclear medicine

Isotope Production for Nuclear Medicine

Differentiating Chemical Reactions from Nuclear Reactions

PANEL DISCUSSION. Radionuclides and Health A promising future! OCTOBER 14-16, 2014 PARIS LE BOURGET FRANCE

Functional Neuroimaging with PET

Radiopharmacy quality control

Center for Design and Synthesis of Radiopharmaceuticals for Molecular Targeting CERAD on the Polish Roadmap for Research Infrastructures

Lesson 14. Radiotracers

MEDICAL EQUIPMENT: NUCLEAR MEDICINE. Prof. Yasser Mostafa Kadah

Radiopharmaceuticals for Nuclear Cardiac Imaging: Generator Systems for Tc-99m and Rb-82. Charles W. Beasley, Ph.D. Associate Professor of Radiology

COMMITTEE FOR HUMAN MEDICINAL PRODUCTS (CHMP) GUIDELINE ON RADIOPHARMACEUTICALS

ADME studies with radiolabeled compounds. Biomedical Applications of Radioisotopes and Pharmacokinetics Unit

KIVI 9 Oct 2015 Fysische Beeldtechnieken 18 feb

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

What is scintigraphy? The process of obtaining an image or series of sequential images of the distribution of a radionuclide in tissues, organs, or

Introduction to SPECT & PET TBMI02 - Medical Image Analysis 2017

LIFTING HANDLE SUPPORT LUCITE TUBE GLASS COLUMN. VOLUME - 20 ml RETAINER. ALUMINA PACKING 10g (Al ) GLASS FRIT

Chapter. Nuclear Chemistry

6: Positron Emission Tomography

Positron Annihilation in Material Research

LSC for Quality Control of 99m TC Eluate from 99 Mo- 99m Tc Generator

Positron Emission Tomography Basics: Radiochemistry. N. Scott Mason, Ph.D. Radiochemist University of Pittsburgh PET Facility


Medical Physics. Nuclear Medicine Principles and Applications

This Week. 3/23/2017 Physics 214 Summer

General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

A. I, II, and III B. I C. I and II D. II and III E. I and III

Structure of Biological Materials

PET Tracer Kinetic Modeling In Drug

Bioengineering 508: Physical Aspects of Medical Imaging Homework for Oct. 25

Peptides as Radiopharmaceuticals: CMC Perspectives

PREPARATION AND QUALITY CONTROL OF 99m Tc-MDP

TRIUMF TR13. Date form last updated: 2016 May 29. Completed by: David Prevost. 1. Cyclotron Facility Contact info. Institute (name/address):

Radionuclide Imaging MII Detection of Nuclear Emission

EPFL SB - 2/4 1

Table of Contents. 1 Introduction 1

Overview of Nuclear Medical Imaging Instrumentation and Techniques*

SODIUM PERTECHNETATE ( 99m Tc) INJECTION (FISSION): Revised Final text for addition to The International Pharmacopoeia (January September 2009)

PART II VIII. CONCERNING CHEMICAL. PHARMACEUTICAL AND BIOLOGICAL DOCUMENTATION FOR RADIOPHARMACEUTICAL PRODUCTS.

Syllabus for PG Medical Course M.D. Nuclear Medicine.

State Atomic Energy Corporation Rosatom Russian Radiation Technologies: opportunities to success

THE INTERNATIONAL PHARMACOPOEIA RADIOPHARMACEUTICALS: GENERAL MONOGRAPH REVISION. (June 2013)

Nuclear Medicine: Physics and Imaging Methods (SPECT and PET)

Applications of Nuclear Physics Technology

Radionuclide Imaging MII Positron Emission Tomography (PET)

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Nuclear Chemistry. Chapter 23

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

From Isotopes to Images: Accelerator Production of Radionuclides for Nuclear Medicine

Chapter 21 Nuclear Chemistry: the study of nuclear reactions

Unit 12: Nuclear Chemistry

The isotope revolution that can change imaging and therapy

11/10/2014. Chapter 1: Introduction to Medical Imaging. Projection (Transmission) vs. Emission Imaging. Emission Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

The Chemical Context of Life. Chapter 2

Low Energy Medical Isotope Production. Naomi Ratcliffe IIAA, University of Huddersfield UK

Applications of Nuclear and Particle Physics Technology: Particles & Detection A Brief Overview

Fusion Gamma radiation Half-life Radioactive tracer

A dual scintillator - dual silicon photodiode detector module for intraoperative gamma\beta probe and portable anti-compton spectrometer

Basic physics of nuclear medicine

Mayneord-Phillips Summer School St Edmund Hall, University of Oxford July Proton decays to n, e +, ν

Transcription:

Introduction to Radiopharmaceutical chemistry (Lecture 1) Outline 1. Introduction Radiopharmaceuticals, Basics on radiochemistry, Molecular imaging, Nuclear medicine, PET and SPECT, Radiopharmacology 2. Radionuclide production, Nuclear reactor, Cyclotron, Radionuclide generators in medicine Radionuclide generators 3. Radiometal pharmaceuticals I Radiopharmaceutical chemistry: 99m Tc-Radiopharmaceuticals, Kits 4. Radiometal pharmaceuticals II Radiopharmaceutical chemistry: Re, Cu, In, Ga, Y 5. Organic radiopharmaceuticals I Introduction to PET, 11 C-radiopharmaceuticals 6. Organic radiopharmaceuticals II 11 C-radiopharmaceuticals (continuation) 7. Organic radiopharmaceuticals III Radiofluorinations: 18 F-radiopharmaceuticals 8. Organic radiopharmaceuticals IV Radiohalogenations: Br, I, At 9. Radiopharmacology Diagnostics & Therapeutics 1

Molecular Imaging Molecular imaging of specific biological and physiological processes at the molecular level in the intact organism Optical imaging Radionuclide-based imaging Making the body biochemically transparent Molecular Imaging Gene expression Protein expression Protein function Physiological function 2

Application of radionuclides in life sciences Universal, efficient, simple igh sensitivity Studies of metabolism Mass balance, in vivo disribution (autoradiography) 14 C, 3, 32 P, 35 S Radiotracer-concept George de evesey 1943 Nobel Prize (Chemistry (Application of radionuclide-based indicators, Father of nuclear medicine) In vivo pharmacology/biochemistry Positron-emission-tomography (PET) Single photon emission computered tomography (SPECT) in vivo radiotracer techniques Molecular probes and the radiotracer principle Biochemical information 3

Radionuclides in medicine Nuclear medicine Nuclear medicine: Diagosis Use of gamma- and positron emitters Sensitivity = right positive/(right positive + false negative) Specificity = right negative/right negative + false positive) Nuklear medicine: Therapy Use of particle emitters (α, β - ) Antibody Iodine- 131 Yttrium-90 Indium-111 Rhenium-186, 188 Tumor cell Antigen Emission tomography - SPECT Gantry-design of a SPECT-camera 4

Emission tomography - PET O O O O 18 F O β + 511 kev BGO or LSO Scintillator crystals β 180 511 kev Photomultiplier Emission tomography - PET 5

Emission tomography - PET Pathobiochemistry in vivo Glycolysis Active transport Neurotransmission Multidrug resistance ypoxia Apoptosis Angiogenesis Monitoring of gene therapy Inflammation, Infection Tumor-associated antigenes and receptors etc. smart radiotracers! 6

Selection criteria and use of molecular probes for nuclear medicine molecular imaging Can an appropriate compound be labeled with a suitable radionuclide? Target specificity igh membrane permeability Rapid blood clearance No or only slow peripheral metabolism igh specific activity (Radiotracer principle) Low non-specific binding (Target-to-Non-target ratio >>1) Only a limited number of transport and biochemical reaction steps to facilitate tracerkinetic modelling 1. Molecular probes based upon enzyme-mediated transformations 2. Molecular probes based upon stochiometrical binding interactions 3. Molecular probes for perfusion studies Opportunities and trends of radiopharmaceutical chemistry Making tumors visible as early as possible Better understanding of tumor biochemistry Therapy monitoring 7

Complex evaluation of tumor biology Number of tumor cells 10 13 10 12 10 10 10 0 Clinical detection Sensitve detection Cure Complex evaluation Tod Number of tumor cells 10 13 10 12 10 10 10 0 Clinical detection Sensitve detection Cure Gene expression? Metabolic activity? Angiogenesis? Tumor-associated binding sites? Apoptosis? ypoxia? 8

Opportunities and trends of radiopharmaceutical chemistry Molecular of neurobiological basis of cerebral function See, how the brain is working Opportunities and trends of radiopharmaceutical chemistry PET in drug development and evaluation Pharmacokinetics (Administration, distribution, elimination) Radiolabeled drug Pharmacodynamics (Drug effect on metabolism, blood flow, receptor occupancy etc.) Radiotracers (probes) + drug 9

RADIOPARMACEUTICAL CEMISTRY Nuclear pharmaceuticals Radiopharmaceuticals Radioactive drug - Diagnostics (Radiotracers) - Therapeutics Lead structure (high-throughput-screening, pathobiochemistry Target molecule Modification: Introduction of radionuclide Biodistribution, pharmacokinetics ( contrast, quantifiable, minimal radiation burden, max. effect in radiation therapy Labeling methods Radiotracer-lead structure Radionuclide production 10

Important terms Radiation and radiation energy β, γ, β +, α Radioaktivity Equation; 1 Ci = 3,7. 10 10 Bq specific activity carrier-free, non-carrier-added, carrier-added alf-life (physical, biological, effective) Energy dose Nuclear reactions Nuclear reactor, Cyclotron Cross-section Activation equation (n,γ), (p,n), (p,α) and (d,n)-reactions Radiopharmaceutical chemistry Radiolabeling, radiotracer, lead structure radiochemical purity Good Manufacturing Practice (GMP) Radiopharmacology, Nuclear medicine Dose, Target/Nontarget, Sensitivity and specificity SPET, PET, in vitro, in vivo, Perfusion, clearance, Pharmacokinetics, Pharmacodynamics RADIOCEMISTRY Nuclear reactions Radionuclide production Radioaktive radiation Labeling methods Production of radiopharmaceuticals 11

RADIOCEMISTY Radionuclide production Nuclear reactionr Cyclotron Processing hot labs Radionuclide production Table of nuclide 12

Radionuclide production - Radioactivity Bq 10 15-10 18 10 14 Czernobyl accident I-131, Xe-133, Cs-137, Kr-85, Sr-90 u.a. Spallation I-131, I-133/Xe-133, Mo-99/Tc-99m, Xe-135 u.a. 10 9 Thyroid ectomy 10 3 10 1 K-40in adults Cs-137/l milk in Berlin after Czernobyl Radionuclide production Impurities with dramatic effects Radiation burden e.g. 125 I in 123 I, euthyreotic thyroid 533 mgy/mbq 125 I 5.6 mgy/mbq 123 I 1% of 125 I doubles radiation burden!!! 13

Radionuclide production Nuclear power plants Iod-131 era Iod-123 (13 h) Shorter physical half-lifes in the clinics Technetium-99m era PET era 11 C 20.4 min 14 N(p,α) 11 C 13 N 10.0 min 16 O(p,α) 13 N 15 O 2.0 min 14 N(d,n) 15 O 18 F 109.6 min 20 Ne(d,α) 18 F 18 O(p,n) 18 F Radionuclides Diagnosis Iodine-123 Technetium-99m PET-Radionuclides Therapy Iodine-131 Radiometals (hard M 3+ ) C-11 F-18 I-123 Tc-99m authentic F for, O I for, O, C 3 dramatic alterations compound Increasing availability of radionuclides 14

TcO 4 - Iodide Active transport 10-8 - 10-9 M Iodide 10-1 M Chloride hnis (mamma CA): TcO 4- Uptake D.. Moon et al., Nucl. Med. Biol. 28 (2001) 829-834 15

PET: Radiopharmaceuticals [ 18 F]FDG O besonders in irn und erz O O O 18 F O O C 2 O O O O O gute Permeabilität O O C 2 O O O exokinase Phosphatase 18 F-DG 18 F-DG 18 F-DG-6- P Plasma O Zelle O C 2 O O F O E in allen Organen, aber weniger in irn und erz D-Glucose 2-Desoxy-D-glucose 2-Fluor-2-desoxy-D-glucose Principle: Increased glycolysis in tumor cells (O. WARBURG) Glucose transporter (GLUT 1) and/or hexokinase Intracellular phosphorylation through hexokinase Intracellular trapping PET: Radiopharmaceuticals [ 18 F]FDG 18 F-FDG PET - Control Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 16

PET: Radiopharmaceuticals [ 18 F]FDG Primary tumour in the neck with lung metastesis R L R L R L Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf PET: Radiopharmaceuticals [ 18 F]FDG Therapy control Morbus odgkin Lymphoma (before Chemotherapy) Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 17

PET: Radiopharmaceuticals [ 18 F]FDG Therapy control Morbus odgkin Lymphoma (after Chemotherapy) Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf Radiopharmaceuticals: 3-O-Methyl-[ 18 F]FDOPA Amino acid transporter Blood-brain-barrier Tumour MeO O 2 N 18 F CO 2 activity (Bq/ccm ) 25000 20000 15000 10000 5000 Tumour Reference region Tumour / Brain 2.2 4 3,5 3 2,5 2 1,5 1 0,5 tumour / non tumour 0 0 0 1000 2000 3000 4000 5000 Frame Midpoint Time [sec] MRT: Surgery defect Target/Non-Target OMFD-PET 18

PET: Radiopharmaceuticals - [ 18 F]FDOPA O 2 C O O 2 C Decarboxylation O O N 2 O N 2 O N 2 Tyrosine Dopa Dopamine 2 N CO 2 O O 18 F Control Decarboxylation disturbance Dopa to dopamine PET: Radiopharmaceuticals - [ 18 F]Fluoride O O P O O O O P O O O O P O O Ca 2+ Ca 2+ Ca 2+ PO 3- Ca 2+ 4 O - Ca 2+ PO 3- Ca 2+ 4 F - O - Ca 2+ Knochenmetastase Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 19

PET: Radiopharmaceuticals - [ 11 C]Acetats Precise mechanism unclear Increased lipid metabolism O * ONa Lymph nodemetastasis Rezidive Nuklearmedizin TU Dresden / PET-Zentrum Rossendorf 20

Strahlenschutz Gesamte Strahlenexposition 5-A-Regel Radiation protection Begrenzung der eingesetzten Aktivität Aufenthaltszeit begrenzen - Verringerung der Bestrahlungszeit Abstand halten Abschirmungen verwenden Aufnahme von radioaktiven Stoffen vermeiden (bei Umgang mit offenen Radionukliden) Kombination von Strahlenschutzmaßnahmen 1. Verringerung der Bestrahlungszeit Aufenthaltszeit begrenzen 2. Abstand halten 3. Abschirmungen verwenden 21