Measurement of charged particle spectra in pp collisions at CMS

Similar documents
Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

arxiv: v1 [hep-ex] 2 Nov 2010

PoS(DIS 2010)190. Diboson production at CMS

First Run II results from ALICE

PoS(High-pT physics09)040

Mini-Bias and Underlying Event Studies at CMS

The first Z boson measurement in the dimuon channel in PbPb collisions at s = 2.76 TeV at CMS

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Measurement of W-boson production in p-pb collisions at the LHC with ALICE

arxiv: v1 [hep-ex] 9 Jan 2019

PoS(IHEP-LHC-2011)008

PoS(DIS2014)064. Forward-Central Jet Correlations. Pedro Miguel RIBEIRO CIPRIANO, on behalf of CMS. DESY - CMS

Charged Particle Production in Proton-Proton Collisions at s = 13 TeV with ALICE at the LHC

Z 0 /γ +Jet via electron decay mode at s = 7TeV in

Radiation background simulation and verification at the LHC: Examples from the ATLAS experiment and its upgrades

Two Early Exotic searches with dijet events at ATLAS

LHCb Semileptonic Asymmetry

Measurements on hadron production in proton-proton collisions with the ATLAS detector

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

arxiv: v1 [nucl-ex] 14 Oct 2013

Muon reconstruction performance in ATLAS at Run-2

Small-x QCD and forward physics results from CMS

PoS(ICHEP2012)300. Electroweak boson production at LHCb

PoS(Confinement X)171

arxiv: v1 [hep-ex] 20 Jan 2013

Diffraction and rapidity gap measurements with ATLAS

Muon commissioning and Exclusive B production at CMS with the first LHC data

Results from combined CMS-TOTEM data

PoS(CORFU2016)060. First Results on Higgs to WW at s=13 TeV with CMS detector

Future prospects for the measurement of direct photons at the LHC

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS

Data-driven approaches to pile-up treatment at the LHC

arxiv: v1 [physics.ins-det] 10 Apr 2013

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Some studies for ALICE

Correlations, multiplicity distributions, and the ridge in pp and p-pb collisions

Status of ATLAS and Preparation for the Pb-Pb Run

First Run-2 results from ALICE

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. First Physics at CMS

Recent results on soft QCD topics from ATLAS

AGH-UST University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

Performance of muon and tau identification at ATLAS

QCD Jets at the LHC. Leonard Apanasevich University of Illinois at Chicago. on behalf of the ATLAS and CMS collaborations

PoS(EPS-HEP 2013)508. CMS Detector: Performance Results. Speaker. I. Redondo * CIEMAT

Validation of Geant4 Physics Models Using Collision Data from the LHC

Charged Particle Production in Pb+Pb Collisions at snn=2.76 TeV with the ATLAS detector at the LHC

Jet quenching in PbPb collisions in CMS

First Physics Results from CMS experiment with LHC Collision Data of Kajari Mazumdar DHEP, TIFR

HEAVY ION PHYSICS WITH CMS

CMS Paper. The CMS Collaboration. Abstract

QCD Studies with CMS at LHC. Gunther Roland for the Collaboration

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb

Top production measurements using the ATLAS detector at the LHC

The rejection of background to the H γγ process using isolation criteria based on information from the electromagnetic calorimeter and tracker.

Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS

Ridge correlation structure in high multiplicity pp collisions with CMS

W mass measurement in the ATLAS experiment

Drell Yan process at Large Hadron Collider

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration

Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with ATLAS

Review of LHCb results on MPI, soft QCD and diffraction

New results related to QGP-like effects in small systems with ALICE

Measurement of t-channel single top quark production in pp collisions

Di muons and the detection of J/psi, Upsilon and Z 0 Jets and the phenomenon of jet quenching

arxiv: v1 [hep-ex] 6 Jul 2007

PoS(ICHEP2012)049. Study of tau-pair production at HERA. Masaki Ishitsuka Tokyo Institute of Technology

Studies of the diffractive photoproduction of isolated photons at HERA

arxiv: v1 [hep-ex] 16 Aug 2010

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Heavy Hadron Production and Spectroscopy at ATLAS

READINESS OF THE CMS DETECTOR FOR FIRST DATA

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Rare B decays at CMS

The CMS Experiment: Status and Highlights

First 13 TeV results from CMS

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

arxiv: v4 [hep-ex] 25 Aug 2016

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron

arxiv: v1 [hep-ex] 18 Jul 2016

Charged particle multiplicity in proton-proton collisions with ALICE

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Latest results on heavy flavor di-lepton (p-pb and Pb-Pb)

PoS(DIS2014)183. Charmonium Production at ATLAS. S. Cheatham on behalf of the ATLAS Collaboration. McGill University

Measurement of Properties of Electroweak Bosons with the DØ Detector

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE

Differential photon-jet cross-section measurement with the CMS detector at 7 TeV

Jet reconstruction with first data in ATLAS

Jet Energy Calibration. Beate Heinemann University of Liverpool

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

arxiv: v1 [hep-ex] 21 Aug 2011

WW Same-Sign Double Parton Scattering CMS Experiment

Beauty jet production at HERA with ZEUS

Zero degree neutron energy spectra measured by LHCf at s = 13 TeV proton-proton collision

Overview of the Higgs boson property studies at the LHC

PoS(KAON)049. Testing the µ e universality with K ± l ± ν decays

Transcription:

Measurement of arged particle spectra in pp collisions at CMS for the CMS Collaboration Eötvös Loránd University, Budapest, Hungary E-mail: krisztian.krajczar@cern. We present the plans of the CMS collaboration to measure cross sections and differential yields of unidentified arged particles produced in inelastic proton-proton collisions. The measurements of these basic observables could also serve as an important tool for calibrating and understanding the CMS detector at start-up. The tracking of very low transverse momentum arged particles will be possible down to about MeV/c, with good efficiency and negligible fake rate. The tracklet reconstruction and the pixel counting analysis methods can complement the tracking and lower this limit to about MeV/c. European Physical Society Europhysics Conference on High Energy Physics, EPS-HEP 9, July 6-9 Krakow, Poland Speaker. Also at KFKI RMKI, Budapest, Hungary c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

. Introduction The inclusive transverse momentum and pseudorapidity distributions of hadrons produced in inelastic proton-proton collisions at the LHC provide valuable information on both non-perturbative and perturbative aspects of high-energy hadron interactions. On the one hand, soft hadron observables, not accessible to first-principle QCD calculations, can be compared to various phenomenological models. Their tuning and calibration is a basic pre-requisite to understand and control important backgrounds whi affect other physics measurements at the LHC. On the other hand, the p T spectrum above GeV/c can be compared to perturbative calculations at next-to-leading-order accuracy using modern parton distribution and fragmentation functions.. Detector A detailed description of the Compact Muon Solenoid (CMS) experiment can be found elsewhere []. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter. The silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL) and the brass-scintillator hadronic calorimeter (HCAL) are located within the field. Muons are measured in gas ambers embedded in the iron return yoke. Besides the barrel and endcap detectors, CMS has extensive forward calorimetry. Mid-rapidity arged particles are tracked by three layers of silicon pixel detectors, made of 66 million µm pixels, followed by ten microstrip layers, with strips of pit between 8 and 8 µm. The silicon pixel detector consists of three barrel layers centered on the beam- line and two endcap disks on ea side of the interaction point. The methods presented here either use the full tracking detector or only the pixel barrel layers.. Experimental methods. Charged particle tracking In this analysis method both pixel and strip silicon tracker detectors are used for the reconstruction of the arged particles. The procedure presented here roughly follows the standard one [, ], but it was adapted to the needs of minimum bias tracking. A good measurement of differential and integrated yields requires tracking down to p T. GeV/c, since extrapolations are model dependent, in particular in the low p T region. With a modified hit triplet finding algorithm the pixel detector can be employed for the reconstruction of low p T arged particles []. The particles are restricted to originate from the vicinity of the beam-line. The acceptance of the method extends down to about.,. and. GeV/c in p T for pions, kaons and protons, respectively. The fake rate was greatly reduced, and kept at or below the percent level, with help of information present in the geometrical shape of the pixel cluster. The measured shape in the case of pixel hits, and later the measured width in the case of strip hits, is compared to the dimensions predicted from the local direction of the trajectory. This filter helps to eliminate incompatible trajectory candidates at an early stage. The obtained pixel tracks are used for finding and fitting the primary vertex or vertices [].

. Tracklet reconstruction and cluster counting The analysis methods presented here are largely independent and complementary to the one presented in section.. The cluster counting method relies on measuring and correcting the number of clusters on a given single silicon barrel layer []. The tracklet method is based on pairs of clusters found on different pixel barrel layers, called tracklets [6]. Two distinct methods were used for reconstructing the position of the collision point along the beam line, v z. The first one correlates the pixel cluster size in the z direction with the z position of the cluster. The vertex position is then osen su that it is consistent with the expected proportional relation between those quantities for the largest possible number of pixel clusters. The second method is based on tracklets; ea pair of clusters span a straight line that defines a z value where it approaes the beam line. Close-by z positions are clustered and v z is determined as the mean z value of the most populated vertex candidate cluster. The found vertices are used to calculate the pseudorapidities of clusters.. Results. Charged particle tracking In this analysis we reconstructed million events produced by PYTHIA [7] with the DW6T tune. Only those (, p T ) bins were used where the geometrical acceptance was above %, the algorithmic efficiency was above 7%, the fake track rate was below %, multiple track counting was below %, and the feed-down correction was below %. This limits the kinematical region to <. and p T >. GeV/c for arged hadrons. The invariant yields were fitted by the Tsallis function [8, 9]. In general, results refer to the sum of positively and negatively arged particles. Symmetric positive and negative bins were also added. The measured invariant yields of arged hadrons are shown in the left panel of Fig., as a function of p T and in narrow bins (. units, in the range <.). The integral of the fit function is dn /d, therefore giving direct access to the p T integrated yield. It can be obtained by integrating the fit function for p T > GeV/c, summing the measured differential yields for. < p T < GeV/c and adding a correction for p T <. GeV/c. The pseudorapidity distribution of arged hadrons is shown in the right panel of Fig.. It is flat, with a slow increase towards higher values.. Tracklet reconstruction and cluster counting The results presented in this section were obtained using DW6T PYTHIA events. After the hit selection, hit counting and corrections in ea multiplicity bin, the arged particle dn /d distribution is shown on the left panel in Fig.. The solid histogram shows the simulated distribution, while the reconstructed distribution is plotted using different symbols for the three pixel layers, with error bars corresponding to systematic errors only (estimated to be 8%). In case of the tracklet reconstruction analysis the pseudorapidity distribution of arged particles is obtained from the measured number of tracklets after background subtraction, efficiency and acceptance correction and normalization to the number of selected events. The pseudorapidity

Charged hadrons simulation Measured Tsallis fit /πp T d N / d dp T [(GeV/c) - ] - 6 8 p T [GeV/c] =. =. =.9 =.7 =. =. =. =.9 =.7 =. =. =. dn/d 6 simulation... h 8% syst. Figure : Left: reconstructed invariant yields of arged hadrons in the range < <. in a series of. unit wide bins. Measured values (black diamonds) and empirical fit functions are plotted. The values with increasing are successively multiplied by. Right: pseudorapidity density distribution of arged hadrons. Estimated systematic error bands (8%) are also shown. The distribution from simulated tracks is given by the purple curve for comparison. region within the pixel detector acceptance ( <.) was divided into bins. The dn /d reconstruction is performed for ea bin. The reconstructed dn /d distributions and corresponding Monte Carlo truth distributions are presented on the right panel of Fig.. within statistical and systematic uncertainties. In order to eck the layer by layer systematic uncertainty, we also reconstruct tracklets from first and third, as well as second and third layer hits.. Summary Transverse momentum and pseudorapidity distributions of unidentified arged particles, produced in inelastic proton-proton collisions can be measured with good precision using the CMS tracker. The first few hours of data taking at the LHC injection energy,.9 TeV, and at 7 TeV at low luminosity and event pile-up will provide the possibility to measure arged particle spectra with less than % systematic uncertainty, using three largely independent analysis methods.

dn /d Sim. dn /d Rec. dn /d,. layer Rec. dn /d,. layer Rec. dn /d,. layer dn/d global syst. around 7% s= TeV - - - PYTHIA 9GeV_k MC Truth Reconstructed - - - Figure : Left: Charged particle dn /d distributions from simulated "truth" (histogram) and reconstructed (symbols) at TeV. Different symbols correspond to ea of the three pixel layers. Error bars show statistical errors using events. Right: Simulated and reconstructed dn/d distribution at 9 GeV. Error bars show statistical errors using events. The shaded area corresponds to 7..% systematic error band. Acknowledgments The author wishes to thank the Hungarian Scientific Resear Fund and the National Office for Resear and Tenology (K 8898 and NKTH-OTKA H7-C 78) for their support. References [] CMS Collaboration, R. Adolphi et al., The CMS experiment at the CERN LHC, JINST 8 (8) S8. [] S. Cucciarelli, M. Konecki, D. Kotlinski, and T. Todorov, Track reconstruction, primary vertex finding and seed generation with the Pixel Detector, CMS Note 6/6 (6). [] W. Adam, B. Mangano, T. Speer, and T. Todorov, Track Reconstruction in the CMS tracker, CMS Note 6/ (6). [] CMS Collaboration, Measurement of arged hadron spectra in proton-proton collisions at s = TeV, CMS PAS QCD-7- (7). [] CMS Collaboration, Pseudorapidity distributions of arged hadrons in minimum bias p-p collisions at s = TeV, CMS PAS QCD-8- (8). [6] CMS Collaboration, Study of Charged Hadron Multiplicity in Minimum Bias pp Collisions at s = 9 GeV and TeV, CMS PAS QCD-9- (9). [7] T. Sjostrand, S. Mrenna, and P. Skands, PYTHIA 6. Physics and Manual, JHEP (6) 6 [8] C. Tsallis, Possible Generalization of Boltzmann-Gibbs Statistics, J. Stat. Phys. (988) 79-87 [9] T. S. Biro, G. Purcsel, G. Gyorgyi, and A. Jakovac, A non-conventional description of quark matter, J. Phys G () S79-S76