Evaluation of Cleanness and Physical Properties of Semi-Aqueous Cleaning Agents

Similar documents
An Example file... log.txt


The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

Vectors. Teaching Learning Point. Ç, where OP. l m n

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

Framework for functional tree simulation applied to 'golden delicious' apple trees

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method

Dimethyl Ether Production using a Reactive Distillation Process

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Optimal Control of PDEs

T h e C S E T I P r o j e c t

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

Planning for Reactive Behaviors in Hide and Seek

New method for solving nonlinear sum of ratios problem based on simplicial bisection

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Oxygen Transfer Characterization in Aeration Tank for Oxidation Treatment of Water Pollutants

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Redoing the Foundations of Decision Theory

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

Constructive Decision Theory

Sample Exam 1: Chapters 1, 2, and 3

Research of Application the Virtual Reality Technology in Chemistry Education

TWO-DIMENSIONAL CUSP ON THE FREE SURFACE AT LOW REYNOLDS NUMBER FLOW. vß (cusp) Ç\ Hassager[1,2], Coutanceau & Hajjam[3], Bhaga & Weber[4] #

This document has been prepared by Sunder Kidambi with the blessings of

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Examination paper for TFY4240 Electromagnetic theory

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Damping Ring Requirements for 3 TeV CLIC

An Introduction to Optimal Control Applied to Disease Models

ETIKA V PROFESII PSYCHOLÓGA

Preparation of Hydrophilic Inorganic-Organic Hybrid Coating Solutions by Sol-Gel Method

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

! -., THIS PAGE DECLASSIFIED IAW EQ t Fr ra _ ce, _., I B T 1CC33ti3HI QI L '14 D? 0. l d! .; ' D. o.. r l y. - - PR Pi B nt 8, HZ5 0 QL

A Study on Dental Health Awareness of High School Students

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

TELEMATICS LINK LEADS

P a g e 5 1 of R e p o r t P B 4 / 0 9

New BaBar Results on Rare Leptonic B Decays

SCOTT PLUMMER ASHTON ANTONETTI

. ffflffluary 7, 1855.

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Matrices and Determinants

Loop parallelization using compiler analysis

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

JEE(Advanced) 2015 TEST PAPER WITH ANSWER. (HELD ON SUNDAY 24 th MAY, 2015) PART - III : MATHEMATICS

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Lower Austria. The Big Travel Map. Big Travel Map of Lower Austria.

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q


February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

Advanced Treatment of Sewage Using a Magnetic Fluid Separation

Stochastic invariances and Lamperti transformations for Stochastic Processes

Unit 3. Digital encoding

/".#2 Q S:, Q C / Q :!"! hp://

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

Testing SUSY Dark Matter

Port Vintage. Foundry: Onrepeat Types Website: Designer: João Oliveira INTRO PORT VINTAGE REGULAR

CHAPTER 5 ESTABLISHING THEORETICAL / TARGET VALUES FOR DENSITY & MOISTURE CONTENT

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

APPH 4200 Physics of Fluids

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

The New Technique and Application of Pile-cap Treatment on DH-PHC pile

ALLEN. Pre Nurture & Career Foundation Division For Class 6th to 10th, NTSE & Olympiads. å 7 3 REGIONAL MATHEMATICAL OLYMPIAD-2017 SOLUTION

R =! Aco! What is formulation?

Surface Characteristics of a Polyimide Film Treated with a Dielectric Barrier Discharge Plasma

Winsome Winsome W Wins e ins e WUin ser some s Guide

â, Đ (Very Long Baseline Interferometry, VLBI)

Functionalization of reduced graphene oxides by redox-active ionic liquids for energy storage

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

4.3 Laplace Transform in Linear System Analysis

ACS AKK R0125 REV B 3AKK R0125 REV B 3AKK R0125 REV C KR Effective : Asea Brown Boveri Ltd.

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

The incident energy per unit area on the electron is given by the Poynting vector, '

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

LEAD IN DRINKING WATER REPORT

!!"# $% &" ( )

I N A C O M P L E X W O R L D

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

Computer Systems Organization. Plan for Today

Transcription:

HWAHAK KONGHAK Vol. 40, No. 1, February, 2002, pp. 106-113 (Journal of the Korean Institute of Chemical Engineers) ****** () *() ** *** (2001 8 3, 2001 11 14 ) Evaluation of Cleanness and Physical Properties of Semi-Aqueous Cleaning Agents Byeong Deog Park, Myung Jin Lee, Ji Won Han, Jong Ki Lee*, Dong Ki Lee**, Sang Won Han, Sun Woo Park, Ho Yeol Lee and Jae Heum Bae*** NeoPharm Co., Ltd., Daejeon 305-333, Korea *Aekyung Industrial Co., Ltd., Daejeon 305-345, Korea **Korea Testing and Research Institute for Chemical Industry, Seoul 150-030, Korea ***Department of Chemical Engineering, The University of Suwon, Suwon 445-743, Korea (Received 3 August 2001; accepted 14 November 2001) polyoxyethylene(3, 5, 7) alkyl ether(lae-3, 5, 7),, D-limonene, 4 36!" #$% & '(, 30-32 dyne/ cm )* +,-.( )* /0 " water-in-oil(w/o)1 234 56 789 :;!<=. > >?6 @A BC!D 0 EFD alcohol/surfactant(a/s) G$ HI JKD LM N OP, QR8 D hydrophilic lipophilic balance(hlb). ST UM VN OW, HLB. X Y?6!T BC!D 0 UZ G$KD LM "[N O=. \] ^_ `4KD abietic acid 5 6 ab cd!" e '(, A/S $ G$f HI 56ab J!D LM "[gp, h id h=j S j kl=. hmp HLB. ) Y X* 56 ab "[n, W/O microemulsion Lo p6 qo rst u9v Og=. 56w6 r x y \ tyz x{ y ab }6 '(, HLB. 8.3-10.69 % `4 system Lo 40 o C A 80% A X* ~ ab ", ab89 56 $ $ ƒ@kg=. Abstract Using four components consisting of polyoxyethylene(3, 5, 7) alkyl ether(lae-3, 5, 7) as nonionic surfactants, water, D-limonene as hydrophobic oil component, and an alcohol as cosurfactant, 36 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30-32 dyne/cm) and low viscosities, they are satisfied with the general physical properties of water-in-oil(w/o) cleaning agents for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(a/s) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophilic balance(hlb) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. Although the formulated cleaning agents showed a tendency that their cleaning efficacy decreased in accordance with the increase of A/S ratio in the formulations, there was no significant difference in cleaning abietic acid as a soil, which was used for preparing a rosin-type flux. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy than that of the higher HLB value. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic To whom correspondence should be addressed. E-mail: bdpark@channeli.net 106

107 surfactant of HLB value 8.3-10.6 showed over 80% water-oil separation efficacy at over 40 o C. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system. Key words: Nonionic Surfactant, D-Limonene, Cosurfactant, Microemulsion, Cleaning Efficacy, Water-oil Separation 1.,! "# $%& '(). *+,-., /0, /,, 100, 234, #5 6 7& 89 :; <=>?@, AB CFC-113& C /,, 5D, 100, EF G4H 6 89 C <=I J@, 1989K /L /M CFC <N 25-30%.OP)[1]. QR 1974K CFC ( ST UV WX Y=> 1980K ZI ST U V [( \]^_ `ab b=i 1985K cd efg 1987K hi4j _ klmn CFC 6 ST UV o ( pq r_ st=i uvp w Q < 5O=x) [2]. [ M yy z_{ =x> R _O M _ yy=i J). M G I }~, }~, M ~, } ~, ƒ j~, z ~ 6!: }?, ˆ Š \] Š [M (, S UV ˆ 6 Œ Ž, }~ }~ _?I ( M 7&!Z v =I J)[3]. # }~ & _šn : 5Dg œf žg Ÿ\ => 5D ( & _O>? O >?I, 8 9 :; CFC-113, 1,1,1-TCE 6 ( M _ L 7& :; q< 0=>?). }~ & <, ~ Š ª #, HLB, «~ w ª#(CMC),, ~ _, ±# Š ~ //² 6 '} ³F 7& ). ³F )µ( 89 A( q ( ¹ yy0 a '}º ( M~q[!_» )> }?). AB }~ Š }~ yy& ¼ ½ ¾ F, À}34 g À} YÁ  }? s à X~_ ÄÅ )> }?). ± ~ c, ÆÇ ÈE _É c± ~ M CMC_ >, Á:#_, ½ \] Ê q [ Ë 7& _O>?)[4]. Ì( c± ~ ± # ³F, Ê} #_ ÍFÎ, [ ±# ³Ï ' _ Ð ƒñî?@, ² ±# =, ~ _ Ò µ Ê (amphophilic)[ o Ó> } ÔÕI, }<Ö Ò < Ø S 0 IÑÙ Ù (cloud point, c.p.) _O>?)[5]. Ú& o <, gq[ L, qû Û : gq, Ü Ö #¹ ÝI, q[ =#Þ s Ã# y=>? )[6-9]. Ú& 0ßq[ Aà c± ~ _ á â s à yy?i c± ~ Š án ', A/S ánc, ±# ³Ï ' 6 q Œ )µ( # & ½ Yã }? yy» @, L Ü s Ü Ö ä q :4, â Ü Ö <án }~ Š }~ å [ À }34 ^ æ> ]c¹ Û #Þ }? ÄÅ ). ß ç^, \] Ê & >=>? D-limonene < <>, aa HLB è )Ï 3_O c ± ~ ¹ <, )µ( ( L 0ßq[ g R ³Ï _P@, Ü }:4 éê( æg¹ Y>, (). 2-1. 2. ß ëˆ <( ~ ph ]# ì O í @ ± ~ c cîq & CMC¹ ï> ±# ' cîq ì ( c± ~ polyoxyethylene(3, 5, 7) alkyl ether (LAE-3, 5, 7)(Ÿðñ W, Korea)¹ º)Ï g ò Q <P@, ß ëˆ <( c± ~ 0ß & Table 1 ó x). Q4> ² : D-limonene((z ª, Korea) <P@, & ô Š ±î\ õ¹ Ê ö } (18 µs/cm)¹ <P). Ì( ~ butyl diethylene glycol ether(kyowa Hakko Co., Japan)¹ <P). Q4> <( øù v~ øù f 50% :[ abietic acid(aldrich, USA) 5 g isopropyl alcohol 10 ml <Ö <sú û[ü ý (SUS plate) ²N #þ 1.q ± 1sÿ -Œ ( ) 80 o C 12sÿ <P). 2-2. }~ & c± ~ //D-limonene/ ~ ¹ Š án ' sú <Ö ( L, f 30öÿ 3,000 rpm î L 60 o C ± 10² -Œ s_ É #Í ŽO P@ 10² ]g# Table 1. Physical properties of LAE series surfactants Trade name Characteristics Unit LAE-3 LAE-5 LAE-7 Analysis method Appearance - Clear liquid Clear liquid Clear liquid Visual inspection Color APHA 5 5 5 ASTM D1209 OH value mgkoh/g 169.7 135.2 111.4 ASTM D 4252-89 Degree of EO addition mol 3.10 5.02 7.03 ISO 1065 Free PEG wt% 0.05 0.36 0.24 ISO 2268-1972 ph - 6.9 6.8 6.8 ISO 4316 HLB - 8.3 10.6 12.3 Suppliers document HWAHAK KONGHAK Vol. 40, No. 1, February, 2002

108! :4_ =O í s Œ( microemulsion ÿc> aa ( (, #, ph, /0/## 6) ËP). É â microemulsion /## electrical conductivity meter(weilheim, LF 340, Germany) Q4> & surface tensiometer(fisher Scientific, Surface Tensiomat 21, USA)¹ < ËP). # viscosity meter(brookfield, LVDV II+CP, USA)¹ < ±# ³F Ë P@, 10 ml test tube aa >, ±#' ³Ï ' ¹ å² S ±# ¹ ËP). Ì( ±g 40 o C 2yÿ $õ L (phase) ' ¹ Œ P>, cyclic incubator(uvgw t¼, Korea) 22(1 cycle/ 2 days, 1 cycle=20 o C 20 o C 20 o C) $õ L ' ¹ Œ Œ ËP). 2-3. c± ~,, D-limonene, ~ 6 Š án ' ³F â }~ Z o ( < ëˆ& ²N o[ øù _ #þâ { 40 o C Ö qsú sÿ ' ³Ï o N Ëá n } P). Ì( ß! â ¼ ÿ cî ëˆ& R _O _%?O [10], cîq Nq Ë _½( N%(gravimetric method) < _P@ Ž { =I? N Ë& 0.1 mg #¹ ï /,(Sartorius AG, LA 230S, Germany) <P@, s s 2 _2=I?0 Ž^ ± #Í ŽO sä ( L ' _ ò Ž ¹ ËP). Ì( ë g Ú ( $% 40 khz öu(sonication method)¹ < N%g ( ~ cîp). Ì( :ñ00 UV/Visable Spectrophotometer(Varian, Cary 1 Bio, USA) FT-IR Spectrometer(Mattson, FT-IR 7,000, USA)¹ < N%(gravimetric method) ( :ñ _ P). Ü Ö }:4 ëˆ& Ü ô}¹ _2 25 o C, 40 o C Š 60 o C õs L, [ øù 3%¹ á ( Ö / M Ü Ö c 10% _ î L aa 20:ÿ õ Tg T :4( L, T COD¹ Ë } :4 _P). 3. 3-1. c± ~,, } Ú& c ² 3 :!Iv s à ±# ³Ï -& & ±# lower phase microemulsiong excess oil 2 É!@, & ±# upper phase microemulsion excess water É! 2 S (). Ì( R( 2 S ÿ±# middle-phase microemulsion excess water, excess oil g aa É! 3 S @, AB middle-phase microemulsion Ú& { g ² þá ±#¹ phase inversion temperature(pit)f @, PIT s à } -Ê} "É!@ ²q 10 2-10 4 dyne/cm # ÄÅ & ~ S á [ ² middle-phase microemulsion  _< # }?)> ƒñî?) [12-16]. QR R( middle phase microemulsion É = ±# $O í %& } ƒ j _á /M s à } ' s& }?@, middle phase microemulsion Á = ±# $' }? ƒñî?). ( c± ~ 40 1 2002 2 Fig. 1. Typical ethylene oxide distributions of LAE series. s à ethylene glycol _É ~ ¹ _ ] Å excess water+middle-phase microemulsion+excess oil 3 É = ±#¹ Ý@, ethylene glycol _É ~ _ } _ t<0 Ž^ ƒñî?)[17, 18]. QR, Ú cîq ±# $Iv) ÒF# middle phase microemulsion,m 0 S Œ ^_ # }?0 Ž^, ë 89 ) 0 S Œ )I* W/O +& O/ W microemulsioné _ uÿ= â). ß!, W/O microemulsioné }~ 36 Š ½ _¹ }, a :Z c ' ³Ï A > >, P). c± ~ 9 =I? c± ~ Á:#_ & linear alcohol ethoxylateé c± ~ ¹ ulp). c± ~ ;,, ƒ j C12 C14 c_ 40 : 60 c¹ _O>?@, _â ethylene oxide(eo) " -} 3 mole(lae-3), 5 mole(lae-5), 7 mole (LAE-7), aa HLB è& 8.3, 10.6, Q4> 12.3x)(Table 1). c± ~ EO _ ÉØ Š free PEG6 S ³F c± ~ Ù (cloud point) ÍFO â). Â. cîq /& EO _ :þ¹ c± ~ # y=>?, ß ëˆ ²q[ c± ~ ¹ <P@, EO _ :þ Fig. 1 ó* Ô Ú /Éq[ EO _ 01 >?). N-1~N-12 ]Å, c± ~ LAE-7 <=x @, ~ ~ c(a/s ratio)¹ 0.5-1.5O ' s2>, c± ~ ¹ 8.7-18.2%O ' s2, 12 P). N-13~N-24 & LAE-5¹ <P@, N-25~N-36 & LAE-3 <>, N-13~N-24 Š N-25~N-36 c N-1~N-12 Ú& 01 c P) [Table 2(a)]. a Aà&, /Mq ² :[ D-limonene C : @, D-limoneneg c± ~ c G 'O í, g ~ án ô_= ÉØ, AB A/S c_ 0.5, 0.7, 1.0, Q4> 1.5 ' = X~_ =x @, R( ' ³Ï Š wõ >>, P)(Fig. 2). â Z õ¹ wetting ½ 3#F }? & N-1~N-36 4b 30.2-32.2 dyne/cm & ó x). ægq, c± ~ Š A/S c ~ ò c5( õ¹ P@, D D-limonene C :, è D-limonene 0ßq æ= 0 Ž^ [). # Ëæg c± ~ ª#

109 Table 2. Compositions and physical properties of W/O microemulsion systems containing nonionic surfactants(lae 7/LAE-5/LAE-3), water, D-limonene and BDG (a) Compositions of N-1~N-36 LAE-7 Series N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10 N-11 N-12 Lot number LAE-5 Series N-13 N-14 N-15 N-16 N-17 N-18 N-19 N-20 N-21 N-22 N-23 N-24 LAE-3 Series N-25 N-26 N-27 N-28 N-29 N-30 N-31 N-32 N-33 N-34 N-35 N-36 LAE-7 / LAE-5 / LAE-3 9.5 9.3 9.1 8.7 14.0 13.6 13.0 12.2 18.2 17.5 16.7 15.4 D-Limonene 81.0 78.7 77.3 73.9 74.4 72.4 69.6 65.3 68.2 65.8 62.5 57.7 Water 4.8 4.6 4.5 4.3 4.7 4.5 4.3 4.1 4.5 4.4 4.2 3.8 BDG 4.8 6.5 9.1 13.0 7.0 9.5 13.0 18.4 9.1 12.3 16.7 23.1 Total 100 100 100 100 100 100 100 100 100 100 100 100 A/S ratio (BDG/LAE ratio) 0.5 0.7 1.0 1.5 0.5 0.7 1.0 1.5 0.5 0.7 1.0 1.5 (b) Physical properties of N-1~N-4, N-13~N-16, and N-25~N-28 Lot Number N-1 N-2 N-3 N-4 N-13 N-14 N-15 N-16 N-25 N-26 N-27 N-28 Surface tension(dyne/cm) 32.2 31.9 32.0 31.7 31.7 31.8 31.8 31.8 32.1 32.3 32.1 32.3 25 o C 1.52 2.43 2.13 2.28 1.89 1.84 1.87 1.95 1.78 1.73 1.70 1.96 Viscosity(c.P.) 40 o C 1.07 1.41 1.36 1.58 1.18 1.28 1.31 1.32 1.07 1.14 1.19 1.31 60 o C 0.82 0.87 0.87 1.02 0.83 1.08 0.85 0.87 0.81 0.83 0.84 0.87 Electroconductivity(s/cm) 1.8 0.6 0.4 0.6 0.2 0.2 0.3 0.3 0.1 0.1 0.2 0.4 R/T S S S S S S S S S S S S Phase stability 40 o C S S S S S S S S U U U U C/I S S S S U S S U U U S U *A/S ratio: Alcohol/Surfactant Ratio, C/I: Cyclic Incubator, R/T: Room Temperature, S: Stable, U: Unstable Fig. 2. Partial phase diagram of the surfactant, D-limonene, and water+bdg system. Ê} ô_ }Þ & è ó I c± ~ ª# Ê} g c6q ~_ 7á ƒ }?x>, Ì( Ë ±# ô _ ³F #_ ] [ }?x). /0/## ß! } â Z 0.1-1.8 µs/cm # & è ó8n /Éq[ W/O microemulsioné «[ }? x). Ì(, /Mq EO _ -}_ & [ N-13~N- 16s Ãg N-25~N-28 s à HLB è & c± ~ [ N-1~N-4 c cîq & /0/## è s à c± ~ Ê} ô_m ³F ±/ ##_ ô_= ²q[ ] g ²õ= ] C>?) [Table 2(b)]. ægq â 36 & & # & Fig. 3. Temperature range of one-phase microemulsion of the samples with nonionic surfactant type systems. (a) Comparison of temperature range of one-phase microemulsion with different HLB value. (b) Comparison of temperature range of onephase microemulsion with different A/S ratio. è, ²q[ 9 ó :). HWAHAK KONGHAK Vol. 40, No. 1, February, 2002

110! 3-2. one phase microemulsion c± ~ _ á â ]Å ±# ³F, c± ~ HLB_ ÍFš ³F ' _ }â). Fig. 3(a) å ² microemulsion S ±# ¹ ó x). LAE-7 <( s Ã[ N-1~N-4 ]Å 2 o C ä. ±#¹ j4 ' =O í  ±#¹ Ë ß æg 58-66 o C O# Œ( å² microemulsion O=x). LAE- 5¹ <( s Ã[ N-13~N-16 ]Å 46-56 o C ±#O ' =O í Ø S P@, LAE-3 <( s Ã[ N-25~N-28 ]Å 28-34 o CO ' =O í Ø S, c± ~ HLB ³F G ƒ }?). c± ~ ²q[ -g ²õ æg¹ ). c± ~ µ Ê o(amphophilic property) & Ù (cloud point, c.p.)g ÄÅ 1;( ~¹ _O>?). < c ±~ ±#_ Ù #ÍP Ž c± ~ µ Ê o ÓI=4> } o > =I ²g ~ ÿ ½ Ó â). HLB è 12.3[ LAE-7 < ( N-1~N-4 ]Å_ HLBè 10.6[ LAE-5 s Ãg HLB è 8.3 [ LAE-3 s à c ÄÅ & ±#O å² S ± # C>? & c± ~ EO _ -}_ š ³F Ù ô_ æp & ±#O microemulsion Œâ Os2 ñ }?). Ì( ß s Ã& W/O microemulsion, c± ~ ² Dg g ² ~ S ¹ â). Ê} & c± ~ ]Å q Ê} q& c± ~ c, Tg ² ~ cîq 7& µ S }?, ±#_ ô_m ³ F c± ~ } ô_>, ægq ² T 8 ô_= â). g ² ~ ~ Ý> W/O?G@A Œ Osú CxB c± ~ _ ²T 8 m ³F, ~ c± ~ ª#_ =>, ægq Œ #_ = :4= â). HLB_ Ú& c± ~ ¹ <( ]Å ² án ô_ /Mq Œ( å² S ±# Ð C O C, ~ µ& å² S ±# Ð D ƒ }?). N-1~N-4 s <â ~ ~ c(a/s ratio)_ 0.5-1.5 ô_=>?@, ~ án ô_m ³F, / ±#_ O ] >?). 0S ëˆæg ÆÇ E4F _É ~ _ Ê} ) } t<() ëˆæg # ² õ>?). <, s à } ô_=g /_ = ±#_ ] [). c± ~ án ô_ ³Ï / ±# A/S ratio_ -²( F ²q c± ~ án ô_m ³F / ±# s ô_= 01 C>?)[Fig. 3(b)]. ( 89 & 40-60 o C!I O ƒñî?@, ³F, 0 æg, LAE-3 <( s4h ]Å, ± q }?, 40# ±# & :4 [ c q)(fig. 3, Table 1). 3-3. 1 /, ¼ & ÄÅ )> }?@, _ q[ _ øù ). øù ¹ u> & N%(gravimetric method) < _P)[10, 11]. Å}( s à u 40 1 2002 2 Fig. 4. Comparison of flux removal efficacy by dipping method for cleaning agents with different formulations. (a) Comparison of cleaning time of the 100% flux removal by dipping method for cleaning agents with different nonionic surfactant type systems. (b) Comparison of flux removal efficacy of N-1, N-13 and N-25. Fig. 5. Comparison of flux removal efficacy by dipping method for cleaning agents with different formulations. $% Åu, öu¹ _O í> { Ö å B q(dipping)s2 q%(dipping method) Z }?). q% sÿ ³F ß æg, HLB è 12.3[ LAE- 7 <â N-1~N-4 s4h ]Å f 10: ]g L, N-1~N-4 4b 90% ÄÅ )I* [). A/Sc g I JK ß æg, A/S c_ ô_m ³F, = ] 0#, Q. Q)O GO í & [). / ëˆæg, BDG BTG Ú& ƒ j~ ~ _ _# ]Å, _< ô_=x[17], ß ëˆæg ~ _ ³Ï. & O íl).?m_o LAE-5 <â N-13~N-16 s4h Š LAE-3 N-25~N-28 s4h ]Å# LAE-7 <â N-1~N-4 s

111 Fig. 6. Comparison of flux removal efficacy by sonication method for cleaning agents with different formulations. (a) Comparison of cleaning time of the 100% flux removal by sonicating method for cleaning agents with different nonionic surfactant type systems (b) N-1N-12 series containing LAE-7. 4H c± ~ ª# Š A/Sc ' Q ' _ wwpo D# ) NÏ ó:)(fig. 4). ( c± ~ ³Ï & 7&.¹ >?). HLB è & c± ~ _ <â s ò }Þ & ô_= ] C>?). <, LAE-7 < â N-1~N-4 s4h q%(dipping method) 12-14: øù _ O/B â, LAE-5_ <â N-13~N-16 s4h LAE-3 <â N-25~N-28 s4h 8-10: øù _ O/ B m C>?)(Fig. 4). Ì( ~ án ô_â LAE-7 s4h(n-5-n-8), LAE-5 s4h(n-17~n-20), LAE-3 s4h(n- 29~N-32)?I# Fig. 4 æg?m_o HLB è & s Ã Ò NÏ C>?)(Fig. 5). 89 ]Å )µ( $%?, %& sÿ q[ 0, öu ]Å_ 7). LAE-7 < â N-1~N-4 s4h?i o öu (sonication method) ]Å 60-80ö : = æg¹ C >?@, Ú& A/S c c± ~ án ô _â s à æg c± ~ án ô_ m ³F & ó >? ÿ Q)O Ð. O íl)., LAE-5_ <â N-13~N-16 s4h LAE-3_ <â N-25~N-28 s4h ]Å LAE-7 s à c q%(dipping method) æg Ò Å}( æg¹ P }?x)(fig. 6). 0 b_o _ æg s Ã?I } ô_#}þ } ô_= ²q[ ] g ² õ(). Z N-22¹ ul q%(dipping method) ( :ñ00¹ < sÿº(0:, 5:, 10:) _P)(Fig. 7). UV/Visable Spectrophotometer Ë?I abietic acid ( Q}U [ 241 nm 0 ËP@, Fig. 7. Instrumental measurements by dipping method for cleaning agent, N-22. (a) Flux residue (%) by dipping method. (b) UV measurement at 0, 5, 10 minute. (c) FT-IR measurement before cleaning(0 minute) and after cleaning(10 minutes). Q æg abietic acid ( ABS è sÿ ³F m [P, 5: ]Å f 75% m, 10: L O/B m Ë=x)[Fig. 7(b)]. Q4> FT-IR Spectrometer Ë ] Å# /(0:) abietic acid ( peak(2932.98 nm, 1690.98 nm, 1280.21 nm)_ L(10:) O/B Fv Ë =x)[fig. 7(c)]. HWAHAK KONGHAK Vol. 40, No. 1, February, 2002

112! Fig. 8. The removal of flux by gravity separation of the contaminated rinse water. (a) Comparisons of water-oil separation efficacy. (b) Photographic views of water-oil separation at 60 o C. 3-4.!"# $% & }~ Š }~ _ Ð å, À}_ 7 YÁ>, À} 34 c< 7 R) ). R( ^ æ0, ².q À} YÁ  _ Ð æsf> }?@, s Ã Ü Ö <N  ÄÅ <( $%F> }?). c± ~ Ù o <( $%&, }:4¹ ( >, cîq Ü Ö ~Dq \sú < }?)?I, & g µÿ( Ù/ T ). ß ëˆ ëˆëq â â Ü Ö < _½ [0 ( Uq } ( }:4 ëˆ } P). : abietic acid_ 10% á â Ü 4V ZI }:4 ëˆ } P@, }:4 L T COD¹ Ë ~8P)(Fig. 8). <â ~ HLB è 12.3[ N-10, 10.6[ N-22, 8.3[ N-34 }:4 JK, HLB è & N-22, N-34 ]Å 40 o C ±# 80% _N }:4 >?). HLB è & N-10 ]Å 60 o C# }:4_!I OO í& Éع C >?). 0 æg Ž, HLB è & N-22 N-34 ]Å 60 o C WX}¹ 34 Ž WX} < _½án À}3 4c< # }?4F ýåâ). 4. }~ Š }~ 7 <=>? polyoxyethylene alkyl ether~ c± ~,, D-limonene ² 4 : ~ 36 Š _¹ } P). 36 4b, 30-32 dyne/cm & èg, & # W/OÉ ²q[ & 9P). Polyoxyethylene alkyl 40 1 2002 2 ether~ c± ~,, D-limonene 3 : s à ~ ƒ j~ BDG¹ aa _, A/S ratio¹ ô_sú ß æg å² microemulsion S ±# P @, & ~ _ g Y o _š# z!> s à } t<0 Ž^). /Mq ~ HLB è ³F, å² S ±# Ð.?x @, HLB è }Þ, å² microemulsion S = ] Cx). flux C :[ abietic acid¹ u >, N%(gravimetric method) éê ß æg, A/S ratio_ ô_m ³F ] Cx, (.¹ ó O íl). QR c± ~ HLB è }Þ & CI, W/O microemulsion ]Å c± ~ u ÄÅ á [ }?x)., N-22 00:ñ UV/Visable Spectrophotometer FT-IR Spectrometer¹ <( _ æg, 10: L O/ m [ }?x@, æzq 0 N%(gravimetric method) ³Ï Ëg ²õ= æg¹ P }?x). L Ü á } }:4 Ž, HLB è 10.6 Ì 8.3[ c± ~ ¹ <( system ]Å 40 o C 80% &, ]q[ _½ )> v). /Mq Ž W/O microemulsion?i,, $& ±# å² microemulsion, Q 4> }:4 Œ qû( _» )> ýåâ). ß! 89, C "Á80[ 9 g¹ 9,5 } =x@, g } #\ (pá80[g c

113 ± ~ Š,¹ Ÿðñ W v` E4@, Ì( Š _?I 7& #\ C] }Wî \]"0[!^ä(RRC ^ä) v` E7 ). 1. Row, K. H., Choi, D. K. and Lee, Y. Y.: Chemical Industry and Technology, 10, 328(1992). 2.:, 2001!"#, $%&, ' ()*+,-.(2001). 3. Row, K. H.: */ 0*), 25, 53(1996). 4. Swisher, R. D.: Surfactant Biodegradation, Marcel Dekker, New York(1985). 5. Myers, D.: Surfactant Science and Technology, VCH Publisher Inc., New York(1988). 6. Eiji, N. and Kozo, K.: USP 5,958,298(1999). 7. Junji, K. and Eiji, N.: USP 5,954,891(1999). 8. Kozo, K.: USP 5,853,489(1998). 9. Kozo, K. and Atsushi, T.: USP 5,725,679(1998). 10. Shin, M. C., Lee, H. Y. and Bae, J. H.: J. Korean Ind. Eng. Chem., 11(8), 825(2000). 11. Bae, J. H. and Shin, M. C.: Clean Technology, 5(2), 1(1999). 12. Raney, K. H., Benton, W. J. and Miller, C. A.: J. Colloid Interface Sci., 117, 282(1987). 13. Mori, F., Lim, J. C., Raney, O. G., Elsik, C. M. and Miller, C. A.: Colloids and Surfaces, 40, 323(1989). 14. Mori, F., Lim, J. C. and Miller, C. A.: Prog. Colloid Polym. Sci., 82, 114(1990). 15. Raney, K. H. and Benson, H.: J. Am. Oil Chem. Soc., 67, 722(1990). 16. Miller, C. A. and Raney, K. H.: Colloid Suf. A, 74, 169(1993). 17. Go, H. G., Park, B. D. and Lim, J. C.: J. Korean Ind. Eng. Chem., 11(6), 679(2000). 18. Go, H. G.: MS. Thesis, Dongguk Univ., Chemical Engineering(1999). HWAHAK KONGHAK Vol. 40, No. 1, February, 2002