High efficiency solar cells by nanophotonic design

Similar documents
PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS

DIELECTRIC nanoparticles (NPs) have recently been proposed

CONFORMAL PLASMONIC A-SI:H SOLAR CELLS WITH NON-PERIODIC LIGHT TRAPPING PATTERNS

Nanostrukturphysik (Nanostructure Physics)

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

Embedded metallic nanopatterns for enhanced optical absorption

Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate

Light trapping using nanostructures offers

Light trapping in thin-film solar cells: the role of guided modes

LIGHT TRAPPING IN SOLAR CELLS USING RESONANT NANOSTRUCTURES

Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array

Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array

Light Trapping on Plasmonic-Photonic Nanostructured Fluorine- Doped Tin Oxide

Fundamentals of Light Trapping

Optimal-enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture

Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres

scattering patterns Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam,

6 Correlation between the surface morphology and the current enhancement in n-i-p silicon solar cells

High resolution THz scanning for optimization of dielectric layer opening process on doped Si surfaces

ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL)

Plasmon enhancement of optical absorption in ultra-thin film solar cells by rear located aluminum nanodisk arrays

Nanophotonic resonators for InP solar cells

NSF EPSCoR Kansas Center for Solar Energy Research Annual Program Review June 12-14, 2011

Invited Paper ABSTRACT 1. INTRODUCTION

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Mesoporous titanium dioxide electrolyte bulk heterojunction

B eing the dominant products on the photovoltaic market, crystalline Si wafer solar cells have been the

Nanomaterials and their Optical Applications

Bulk crystalline silicon (c-si) solar cells dominate the

Light trapping in ultrathin silicon photonic crystal superlattices with randomly-textured dielectric incouplers

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Supporting Information

High transmission nanowire contact arrays with subwavelength spacing

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications

Photovoltaic cell and module physics and technology

Date This document is downloaded from the Digital Open Access Repository of VTT. VTT P.O. box 1000 FI VTT Finland

Research Article Enhanced Light Trapping in Thin Film Solar Cells Using a Plasmonic Fishnet Structure

Strong Absorption in a 2D Materials-based Spiral Nanocavity

OPTO-ELECTRONIC MODELLING OF THIN FILM NANOCRYSTALLINE SILICON SOLAR CELLS

Surface plasmon waveguides

Fabrication at the nanoscale for nanophotonics

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

arxiv: v2 [physics.optics] 11 Apr 2014

AS high-efficiency solar cell technologies mature, harvesting

Amorphous silicon thin film solar cells with engineered nanoparticles

Design of 4-terminal solar modules combining thin-film wide-bandgap top cells and c-si bottom cells Zhang, D.; Soppe, W.; Schropp, R.E.I.

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

High Efficiency Triple-Junction Solar Cells Employing Biomimetic Antireflective Structures

Photonic crystals. Semi-conductor crystals for light. The smallest dielectric lossless structures to control whereto and how fast light flows

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

Design Considerations for Plasmonic Photovoltaics

Demonstration of Near-Infrared Negative-Index Materials

UvA-DARE (Digital Academic Repository) Resonant nanophotonic structures for photovoltaics van de Groep, J. Link to publication

Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Plasmonic Hole Arrays for Combined Photon and Electron Management

Mie resonators on silicon Fabrication and optical properties

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Nanophotonics: solar and thermal applications

Lithography-Free Broadband Ultrathin Film. Photovoltaics

PHOTOVOLTAICS Fundamentals

High efficiency silicon and perovskite-silicon solar cells for electricity generation

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

Photovoltaic cell and module physics and technology. Vitezslav Benda, Prof Czech Technical University in Prague

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Optical cavity modes in gold shell particles

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking,

Supplementary information

Light Concentration in Polymer Bulk Heterojunction Solar Cells with Plasmonic Nanoparticles

A. Optimizing the growth conditions of large-scale graphene films

SUPPLEMENTARY INFORMATION

II.2 Photonic Crystals of Core-Shell Colloidal Particles

Study of Silver Nanoparticles Electroless Growth and Their Impact on Silicon Properties

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017

Surface Plasmon Polariton Assisted Metal-Dielectric Multilayers as Passband Filters for Ultraviolet Range

Energy transport in metal nanoparticle plasmon waveguides

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Classical and Quantum Effects in Plasmonic Metals

Supplementary Figure S1. Hole collection layer photovoltaic performance in perovskite solar cells. Current voltage curves measured under AM1.

3 Results and discussion

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

Design guidelines for efficient plasmonic solar cells exploiting the trade-off between scattering and metallic absorption

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Supporting information for: Semitransparent Polymer-Based Solar Cells with. Aluminum-Doped Zinc Oxide Electrodes

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

Photonic crystals of core shell colloidal particles

International Journal of Nano Dimension

Advanced Texturing of Si Nanostructures on Low Lifetime Si Wafer

SUPPORTING INFORMATION

Spring 2009 EE 710: Nanoscience and Engineering

Transcription:

High efficiency solar cells by nanophotonic design Piero Spinelli Claire van Lare Jorik van de Groep Bonna Newman Mark Knight Paula Bronsveld Frank Lenzmann Ruud Schropp Wim Sinke Albert Polman Center for Nanophotonics FOM-Institute AMOLF Amsterdam, The Netherlands Marc Verschuuren Dhritiman Gupta Martijn Wienk Bart Macco Erwin Kessels Rene Janssen Lourens van Dijk Guanchao Yin Martina Schmid Vivian Ferry Dennis Calahan Matt Sheldon Harry Atwater

Outline Light coupling and trapping Nanopatterned ARC on glass Transparent metal nanowire networks Plasmoelectric effect in metal nanostructures

light management J sc and V oc relative to SQ limit (at given bandgap) carrier management AMOLF

The scattering solar cell Light coupling and trapping by resonant light scatterers 4% n=1.0 n=3.5 96% H.A. Atwater and A. Polman Nature Mater. 9, 205 (2010), Nature Mater. 11, 174 (2012)

Silicon Mie scatterer on a Si substrate Si sphere Si cylinder Si Mie resonance Si Si Silicon nano-cylinders act as cavities for light and direct light into the substrate Si Piero Spinelli Nature Comm. 3, 692 (2012)

Black silicon using leaky Mie resonances Average reflectivity: 1.3% Si Si 3 N 4 Si Piero Spinelli Nature Comm. 3, 692 (2012)

Substrate conformal imprint lithography PDMS Stamp Thin glass PDMS stamp (6 ) on 200 µm AF-45 glass 1 m Full-wafer soft nano-imprint Flexible rubber on thin glass Conform to substrate bow and roughness No stamp damage due to particles Marc Verschuuren PhD thesis, Utrecht University (2010)

Light trapping in 5 m crystalline Si slab 100 FDTD simulation Mie (random) Si 3 N 4 Absorption (%) 80 60 40 20 flat coating Mie (periodic) Si Back reflector t = 5µm 0 400 600 800 1000 Wavelength (nm) Piero Spinelli IEEE J. Photovolt. 4, 554 (2014)

Optimizing spatial frequency of scattering pattern Asahi U-type Claire van Lare ACS Photon. 2, 822 (2015)

Effect of EVA encapsulation Si EVA Si Piero Spinelli IEEE J. Photovolt. 5, 559 (2015)

TiO 2 nanoscatterers on Si Al 2 O 3 surface passivation TiO 2 Mie coating Si wafer ( = 3 ms) 5 nm Al 2 O 3 Bare Si wafer 5 nm Al 2 O 3 32.1% TiO 2 Mie coating 2.6% 1.6% Piero Spinelli, Bart Macco Appl. Phys. Lett. 102, 233902 (2013)

Nanopatterned Si solar cell designs Piero Spinelli, Bonna Newman

Ultra-thin a-si:h solar cell: 90 nm i layer 400 nm pitch Experiment patterned flat enhanced red and blue response by resonant dielectric Simulation scatterers 400 nm pitch 400 nm pitch flat flat 500 nm pitch 500 nm ITO pitch a-si:h ZnO:Al 500 nm Ag sol-gel Vivian Ferry, Claire van Lare Nano Lett. 11, 4239 (2011), Optics Express 21, 20739 (2013)

Nanopatterned CIGS solar cell designs TiO 2 AZO (240 nm) ITO (130 nm) CdS (100 nm) CIGS (460 nm) Mo (800 nm) nano nano + enhanced V oc flat flat reduced backrecombination Claire van Lare, Guanchao Yin ACS Nano 9, 9603 (2015)

Nanopatterned GaAs, thin crystalline Si simulations Piero Spinelli, Dennis Callahan, Lourens van Dijk

The solar cell as an optical integrated circuit =670 nm ITO a-si:h ZnO:Al Ag sol-gel 500 nm Vivian Ferry, Claire van Lare Nano Lett. 11, 4239 (2011), Optics Express 21, 20739 (2013)

Soft-imprinted nanopatterned AR interference coating Silica sol-gel Rubber stamp Nanoglass Flexible Silica nanopattern with effective index n=1.22 100 nm d = 240 nm h = 120 nm p = 325 nm Jorik van de Groep, Piero Spinelli Nano Lett. 15, 4223 (2015)

Measured total reflection Silica nanopattern on glass substrate 7.3 % 4.3 % 1.1 % Jorik van de Groep, Piero Spinelli Nano Lett. 15, 4223 (2015)

Nano-imprinted encapsulated Si solar cells 3.8% increase in photocurrent Jorik van de Groep, Piero Spinelli Nano Lett. 15, 4223 (2015)

Nano-imprinted smart phones flat patterned Jorik van de Groep, Piero Spinelli Nano Lett. 15, 4223 (2015)

Hydrophobicity Jorik van de Groep, Piero Spinelli Nano Lett. 15, 4223 (2015)

Transparent conductive silver nanowire network 2 m Ag nanowire network fabricated with electron beam lithography width: 45-110 nm height: 60 nm Jorik van de Groep, Piero Spinelli Nano Lett. 12, 3138 (2012)

Transparent conductive silver nanowire network Optical transmission 45 nm 110 nm MIM plasmons Localized plasmons Surface plasmons I-V Ag nanowires can replace ITO Jorik van de Groep, Piero Spinelli Nano Lett. 12, 3138 (2012)

Ag nanowire network transparent conductors pitch 100 nm Ag nanowires on glass Jorik van de Groep, Dhritiman Gupta Sci. Rep. 5, 11414 (2015)

Metal nanowire printed Si HIT cells 2.5 2 1.5 ITO: reduces J sc Ohmic losses Shading by Ag fingers Optical absorption Light reflection ITO dielectric function Drude absorption 1 0.8 0.6 sunlight Ohmic losses shading ITO p+ a-si:h i a-si:h Ag fingers optical attenuation c-si wafer n type, FZ or CZ, <111> 50 µm 80 nm n 1 0.5 0 interband absorption 0.4 0.2 500 1000 1500 Wavelength (nm) k Synowicki, Thin Solid Films 313, 394 (1998) a-si:h i n+ a-si:h ITO Ag Mark Knight Jorik van de Groep

Metal nanowire printed Si HIT solar cells SCIL in silica sol-gel + Ag evaporation + lift-off Varying array pitch Width ~80 nm 1000 nm 800 nm 600 nm 400 nm Varying wire width Pitch 500 nm 63 nm 82 nm 101 nm 113 nm Mark Knight Jorik van de Groep

SCIL on FZ and CZ Si wafers Float-zone Si(100) mechanically polished Czochralski-grown Si(111) chemically polished 5 mm Flexible PDMS stamp conforms to rough substrate No stamp damage due to dust, roughness Mark Knight Jorik van de Groep

Nanoscale conformality of SCIL soft imprint Polished FZ Si Rough CZ Si height (nm) 200 100 NW height: 50 nm 0 0 5 10 15 20 position ( m) height (nm) 200 100 NW height: 50 nm 0 0 5 10 15 20 position ( m) Mark Knight Jorik van de Groep

Ag nanowire patterned Si heterojunction solar cells 80 nm ITO 20 nm ITO + Ag NW + SiNx Mark Knight, Jorik van de Groep, Paula Bronsveld

Ag nanowire patterned Si heterojunction solar cells NW pitch : 1 µm 2 µm 4 µm ITO only 1 cm 1 µm 80 nm ITO 4.0 7.2 15 width: 80 nm height: 120 nm Mark Knight, Jorik van de Groep, Paula Bronsveld

Efficiency (%) FF J sc (ma cm -2 ) V oc (mw) Ag nanowire patterned Si heterojunction solar cells 1 µm 2 µm 4 µm no NW Mark Knight, Jorik van de Groep, Paula Bronsveld

Soft imprinted nanowire networks 100 nm Jorik van de Groep, Dhritiman Gupta Sci. Rep. 5, 11414 (2015)

Absorption cross section (10-19 cm 2 ) Plasmon resonance depends on charge density 20 nm Ag sphere in vacuum R p ne m e * 2 0 Wavelength (nm) Jorik van de Groep, Matt Sheldon Science 346, 828 (2014)

Voltage (V) (nm) T(K) Plasmo-electric effect in metal nanostructures: thermodynamics Minimize free energy F(N,T) F( N, T) F F T N N T N T S N T N 0 0 o T/ N n/n 0 ( N, T) S( N, T) T N (nm) Jorik van de Groep, Matt Sheldon Science 346, 828 (2014)

Plasmo-electric potential: experiments Ag colloids on ITO Kelvin probe microscopy 60 nm Au Jorik van de Groep, Matt Sheldon Science 346, 828 (2014)

Plasmo-electric effect in metal nanostructures Jorik van de Groep, Matt Sheldon Science 346, 828 (2014)

Plasmo-electric effect on resonant Au hole arrays 100 mw/cm 2 Plasmo-electric potential spectral dependence shifts with array resonance Jorik van de Groep, Matt Sheldon Science 346, 828 (2014)

Plasmo-electric effect in metal nanostructures Jorik van de Groep, Matt Sheldon Science 346, 828 (2014)

Conclusions Light coupling and trapping Nanopatterned ARC on glass Transparent metal nanowire networks Plasmoelectric effect in metal nanostructures For details: see www.erbium.nl