Combining InSAR, Levelling and GNSS for the Estimation of 3D Surface Displacements

Similar documents
Effect of Unmodelled Reference Frame Motion on InSAR Deformation Estimates

Atmospheric Phase Screen (APS) estimation and modeling for radar interferometry

Atmospheric Water Vapor Effect on GNSS Signals and InSAR Data

Ground surface deformation of L Aquila. earthquake revealed by InSAR time series

Haiti Earthquake (12-Jan-2010) co-seismic motion using ALOS PALSAR

Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations

Deformation measurement using SAR interferometry: quantitative aspects

Modeling of Atmospheric Effects on InSAR Measurements With the Method of Stochastic Simulation

High-resolution temporal imaging of. Howard Zebker

3-Dimension Deformation Mapping from InSAR & Multiaperture. Hyung-Sup Jung The Univ. of Seoul, Korea Zhong Lu U.S. Geological Survey, U.S.A.

Dr. Simon Plank. German Remote Sensing Data Center (DFD), German Aerospace Center (DLR)

to: Interseismic strain accumulation and the earthquake potential on the southern San

DETECTING ICE MOTION IN GROVE MOUNTAINS, EAST ANTARCTICA WITH ALOS/PALSAR AND ENVISAT/ASAR DATA

Volcanoes Session. Chairs: Y. Fukushima & G. Puglisi

The Potential of High Resolution Satellite Interferometry for Monitoring Enhanced Oil Recovery

APPLICABILITY OF PSINSAR FOR BUILDING HAZARD IDENTIFICATION

3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method

Surface Deformation Measurements Scientific Requirements & Challenges

TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling

The PaTrop Experiment

GEODETIC NETWORK OF SAUDI ARABIA AND FIDUCIAL STATIONS. GFN OF Saudi Arabia in Based on ITRF2000 Datum

RADAR TIME SERIES ANALYSIS OVER WEST ANATOLIA

Improved PSI Performance for Landslide Monitoring Applications. J. Duro, R. Iglesias, P. Blanco-Sánchez, F. Sánchez and D. Albiol

The Santorini Inflation Episode, Monitored by InSAR and GPS

J. Manuel Delgado (1,2), Roberto Cuccu (1), Giancarlo Rivolta (1)

Consequences of the Local Oscillator Drift model for ENVSAT ASAR

Landslide Monitoring in Three Gorges Area By Joint Use of Phase Based and Amplitude Based Methods

Retrieving 3D deformation pattern of a landslide with hiresolution InSAR and in-situ measurements: Just landslide case-study

Radar Interferometry Dealing with atmospheric errors for individual interferograms

INSAR ATMOSPHERIC DELAY MIGITIGATION BY GPS; CASE STUDY IZMIT EARTQUAKE INTERFEROGRAMS

InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction

Implementation of Multi-Temporal InSAR to monitor pumping induced land subsidence in Pingtung Plain, Taiwan

The Removal of Lava Flow Subsidence Signals from deformation interferograms at Nyamuragira Volcano, D.R. Congo

Strategies for Measuring Large Scale Ground Surface Deformations: PSI Wide Area Product Approaches

Preparation for the ITRF2013. Zuheir Altamimi Xavier Collilieux Laurent Métivier IGN, France

PERSISTENT SCATTERER SAR INTERFEROMETRY APPLICATIONS ON LANDSLIDES IN CARPATHIANS (SOUTHERN POLAND)

ERS Track 98 SAR Data and InSAR Pairs Used in the Analysis

ERS-2 and ENVISAT orbit control Current and future strategy The impact on the interferometric baseline

GEORED Project: GNSS Geodesy Network for Geodynamics Research in Colombia, South America. Héctor Mora-Páez

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

ERS-ENVISAT Cross-interferometry for Coastal DEM Construction

DIFFERENTIAL INSAR STUDIES IN THE BOREAL FOREST ZONE IN FINLAND

Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model

ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION.

InSAR water vapour correction models: GPS, MODIS, MERIS and InSAR integration

Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities

Application of satellite InSAR data for hydrocarbon reservoir monitoring

Journal of Geophysical Research Letters Supporting Information for

ERAD Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics

GMES TERRAFIRMA. Validation of existing processing chains in Terrafirma stage 2 TECHNICAL NOTE ON THE TEST SITE SELECTION: ALKMAAR-AMSTERDAM

Application of PSI technique to slope stability monitoring in the Daunia mountains, Italy

Geophysical Journal International

Earth-Oriented Space Research at TU-Delft

MERIS and OSCAR: Online Services for Correcting Atmosphere in Radar

estimated by InSAR, and the temporal evolution of the deformation and possible cause.

THE INTERPRETATION OF BAM FAULT KINEMATICS USING ENVISAT SAR INTERFEROMETRIC DATA

Noise covariance model for time-series InSAR analysis. Piyush Agram, Mark Simons

PERSISTENT SCATTERER INTERFEROMETRY: POTENTIAL AND LIMITS

Real Time Subsidence Monitoring Techniques in Undercity Mining and a Case Study: Zonguldak Undercity Applications-Turkey

Urban land and infrastructure deformation monitoring by satellite radar interferometry

Infrastructure monitoring using SAR interferometry

A Unique Reference Frame: Basis of the Global Geodetic Observing System (GGOS) for Geodynamics and Global Change

MAPPING DEFORMATION OF MAN-MADE LINEAR FEATURES USING DINSAR TECHNIQUE

Università di Roma La Sapienza, Facoltà d Ingegneria, Dipartimento di Idraulica,Trasporti e Strade (D.I.T.S.) 00185, Roma, Italy

Slow Deformation of Mt. Baekdu Stratovolcano Observed by Satellite Radar Interferometry

PSI Precision, accuracy and validation aspects

CAPABILITY OF DETECTING RAPID SUBSIDENCE WITH COSMO SKYMED AND SENTINEL-1 DATASET OVER KONYA CITY

Journal of Geophysical Research - Solid Earth

DETECTION OF GROUND MOTION IN THE LISBON REGION WITH PERSISTENT SCATTERER INTERFEROMETRY (PSI)

Geodesy (InSAR, GPS, Gravity) and Big Earthquakes

Karlsruhe Integrated Displacement Analysis Approach Towards a rigorous combination of different geodetic methods

SAR interferometry Status and future directions. Rüdiger Gens

ALOS PI Symposium 2009, 9-13 Nov 2009 Hawaii MOTION MONITORING FOR ETNA USING ALOS PALSAR TIME SERIES

GPS measurements of current crustal movements along the Gulf of Suez, Egypt.

Pilot service: Southern Emilia Romagna (Italy)

APLICATION OF INSAR TO THE STUDY OF GROUND DEFORMATION IN THE MEXICALI VALLEY, B. C., MEXICO.

INGV. Giuseppe Pezzo. Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma. Sessione 1.1: Terremoti e le loro faglie

The Tohoku Earthquake 2011 Case.

Introduction to geodetic VLBI

Advanced interpretation of land subsidence by validating multiinterferometric SAR data: the case study of Anthemountas basin (Northern Greece)

Introduction: the Abruzzo earthquake The network and the processing strategies. displacements estimation at earthquake epoch. horizontal displacements

INSAR DEM CALIBRATION FOR TOPOGRAPHIC MAPPING IN EASTERN UGANDA

Determination of Current Velocity Field (Rate) of North Anatolian Fault in Izmit-Sapanca Segment

Ivana Zinno, Francesco Casu, Claudio De Luca, Riccardo Lanari, Michele Manunta. CNR IREA, Napoli, Italy

Castaldo R. (1) De Novellis V. (1) Lollino P. (2) Manunta M. (1) Tizzani P. (1) 1: IREA-CNR, Napoli, Italy. 2: IRPI-CNR, Bari, Italy.

Sentinel-1A SAR Interferometry Verification

CRUSTAL DEFORMATION MAPPED BY COMBINED GPS AND INSAR

A new era of geodetic big data - challenges and opportunities Tim Wright (COMET, University of

Ice & Snow Session. Chairs: J. Mouginot & N. Gourmelen

Continuous Risk Assessment of Structures and Plants in Areas of Ground Deformation Susceptibility by Space-based SAR/ASAR Interferometry

Land subsidence induced by groundwater extraction in the Alto Guadalentín aquifer, SE Spain.

Monitoring of landslide dynamics with LIDAR, SAR interferometry and photogrammetry. Case study of Kłodne landslide (Southern Poland)

NOTES AND CORRESPONDENCE Segmented Faulting Process of Chelungpu Thrust: Implication of SAR Interferograms

Dealing with significant differential tectonic plate velocities within an RTK-network: The case of HEPOS

CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION

PHASE UNWRAPPING. Sept. 3, 2007 Lecture D1Lb4 Interferometry: Phase unwrapping Rocca

MEASURING VOLCANIC DEFORMATION AT UNIMAK ISLAND FROM 2003 TO 2010 USING

A Deformation Model to support a Next Generation Australian Geodetic Datum

Measuring rock glacier surface deformation using SAR interferometry

Transcription:

Combining InSAR, Levelling and GNSS for the Estimation of 3D Surface Displacements Thomas Fuhrmann (1), Miguel Caro Cuenca (2), Freek van Leijen (3), Malte Westerhaus (1), Ramon Hanssen (3), Bernhard Heck (1) (1) Karlsruhe Institute of Technology, (2) Netherlands Organisation for Applied Scientific Research (TNO), (3) Delft University of Technology 0 Introduction Database Combination Results KIT University of the State of Baden-Wuerttemberg and www.kit.edu National T. Fuhrmann Research Center et al. of thecombining Helmholtz Association InSAR, Levelling and GNSS Fringe Workshop 2015, Frascati March 24, 2015

Motivation Major drawbacks of SAR-Interferometry 1-dimensional measurements along the LOS direction Decomposition into horizontal and vertical components not possible Accuracy of estimated displacement/rate not easily accessible (filtering) Results relative to a reference point/area 1 Introduction Database Combination Results

Motivation Major drawbacks of SAR-Interferometry 1-dimensional measurements along the LOS direction Decomposition into horizontal and vertical components not possible Accuracy of estimated displacement/rate not easily accessible (filtering) Results relative to a reference point/area 3D velocity field Realistic accuracy information Reference frame 1 Introduction Database Combination Results

Research objectives GNSS Levelling InSAR 3D velocity field Derivation of horizontal and vertical surface displacements Robust combination of InSAR, levelling and GNSS Focus on linear movements (displacement rates) Realistic information on the accuracies of the estimates Area of interest: Upper Rhine Graben 2 Introduction Database Combination Results

Upper Rhine Graben Most prominent segment of the Cenozoic rift system Significant probability for large earthquakes 3 Introduction Database Combination Results

Upper Rhine Graben Most prominent segment of the Cenozoic rift system Significant probability for large earthquakes Basel 1356: M W = 6.7 7.1 (Fäh et al., 2009) 3 Introduction Database Combination Results

Upper Rhine Graben Most prominent segment of the Cenozoic rift system Significant probability for large earthquakes Mahlberg 1728: M W = 5.3 (Meidow, 1998) Basel 1356: M W = 6.7 7.1 (Fäh et al., 2009) 3 Introduction Database Combination Results

Upper Rhine Graben Most prominent segment of the Cenozoic rift system Significant probability for large earthquakes Mahlberg 1728: M W = 5.3 (Meidow, 1998) Waldkirch 2004: M W = 4.6 (Häge et al., 2009) Basel 1356: M W = 6.7 7.1 (Fäh et al., 2009) 3 Introduction Database Combination Results

Upper Rhine Graben Most prominent segment of the Cenozoic rift system Significant probability for large earthquakes Tectonic motion: Small (< 1mm/a), but still not well constrained from Geodesy Mahlberg 1728: M W = 5.3 (Meidow, 1998) Waldkirch 2004: M W = 4.6 (Häge et al., 2009) Basel 1356: M W = 6.7 7.1 (Fäh et al., 2009) 3 Introduction Database Combination Results

Database 3 Introduction Database Combination Results

Database 3 Introduction Database Combination Results

Database 3 Introduction Database Combination Results

Database 3 Introduction Database Combination Results

Properties of the techniques Spatial distribution: InSAR: high in urban areas Levelling: high along lines GNSS: low (30 40 km) Temporal distribution: InSAR: 35 days Levelling: campaigns ( 20a) GNSS: permanent (daily) 4 Introduction Database Combination Results

Properties of the techniques Spatial distribution: InSAR: high in urban areas Levelling: high along lines GNSS: low (30 40 km) Temporal distribution: InSAR: 35 days Levelling: campaigns ( 20a) GNSS: permanent (daily) InSAR desc. InSAR asc. Temporal coverage, representative example GPS Levelling 1940 1950 1960 1970 1980 1990 2000 2010 Year 4 Introduction Database Combination Results

Single technique analysis InSAR: PS analysis using StaMPS (Hooper et al., JGR 2007) Data: 2 ascending, 1 descending track; ERS-1/2, Envisat Result: LOS displacement w.r.t. a master scene and a reference area Levelling: Kinematic adjustment of repeatedly measured levelling data Data: 40049 height differences at 15592 levelling benchmarks Result: Linear displacement rates (vertical) w.r.t. a reference point GNSS: Differential processing using Bernese GPS software (Dach et al., 2007) Data: GPS observations, daily coordinates at 76 sites Result: Linear displacement rates (horizontal) w.r.t. ITRF05 (block mean subtracted) 5 Introduction Database Combination Results

Single technique analysis InSAR: PS analysis using StaMPS (Hooper et al., JGR 2007) Data: 2 ascending, 1 descending track; ERS-1/2, Envisat Result: LOS displacement w.r.t. a master scene and a reference area Levelling: Kinematic adjustment of repeatedly measured levelling data Data: 40049 height differences at 15592 levelling benchmarks Result: Linear displacement rates (vertical) w.r.t. a reference point GNSS: Differential processing using Bernese GPS software (Dach et al., 2007) Data: GPS observations, daily coordinates at 76 sites Result: Linear displacement rates (horizontal) w.r.t. ITRF05 (block mean subtracted) 5 Introduction Database Combination Results

Single technique analysis InSAR: PS analysis using StaMPS (Hooper et al., JGR 2007) Data: 2 ascending, 1 descending track; ERS-1/2, Envisat Result: LOS displacement w.r.t. a master scene and a reference area Levelling: Kinematic adjustment of repeatedly measured levelling data Data: 40049 height differences at 15592 levelling benchmarks Result: Linear displacement rates (vertical) w.r.t. a reference point GNSS: Differential processing using Bernese GPS software (Dach et al., 2007) Data: GPS observations, daily coordinates at 76 sites Result: Linear displacement rates (horizontal) w.r.t. ITRF05 (block mean subtracted) 5 Introduction Database Combination Results

Combination approach PS interpolation @ levelling / GNSS locations Interferograms 1,2,...,n ------------------------------- ERS ascending ERS descending Envisat ascending Envisat descending PS interpolation @ PS grid Estimation of linear velocities Using time series of ERS/Envisat ------------------------------- ascending descending Estimation of linear velocities Interpolation of levelling velocities @ PS grid Interpolation of GNSS velocities @ PS grid Calculation of Up / East component Step 1 Step 2 Estimation of offset and trend (Up / East) Estimation of East, North and Up components 6 Introduction Database Combination Results

Combination approach PS interpolation @ levelling / GNSS locations Estimation of linear velocities Interferograms 1,2,...,n ------------------------------- ERS ascending ERS descending Envisat ascending Envisat descending Using time series of ERS/Envisat ------------------------------- ascending descending PS interpolation @ PS grid Joint ERS/Envisat Interpolation displacement Interpolation Estimation of levelling of time linear series (Caro Cuenca et al., 2010) of GNSS velocities velocities velocities @ PS grid @ PS grid Calculation of Up / East component Step 1 Step 2 Estimation of offset and trend (Up / East) Estimation of East, North and Up components 6 Introduction Database Combination Results

Combination approach PS interpolation @ levelling / GNSS locations Estimation of linear velocities Interferograms 1,2,...,n ------------------------------- ERS ascending ERS descending Envisat ascending Envisat descending Using time series of ERS/Envisat ------------------------------- ascending descending PS interpolation @ PS grid Joint ERS/Envisat Interpolation displacement Interpolation Estimation of levelling of time linear series (Caro Cuenca et al., 2010) of GNSS velocities velocities velocities @ PS grid @ PS grid Calculation of Up / East component Step 1 Step 2 Estimation of offset and trend (Up / East) Estimation of Different reference East, North frames Residual atmospheric/orbit and Up effects Validation ofcomponents InSAR results 6 Introduction Database Combination Results

Combination approach PS interpolation @ levelling / GNSS locations Interferograms 1,2,...,n ------------------------------- ERS ascending ERS descending Envisat ascending Envisat descending PS interpolation @ PS grid Estimation of linear velocities Using time series of ERS/Envisat ------------------------------- ascending descending Estimation of linear velocities Interpolation of levelling velocities @ PS grid Interpolation of GNSS velocities @ PS grid Calculation of Up / East component Step 1 Step 2 Estimation of offset and trend (Up / East) Estimation of East, North and Up components 6 Introduction Database Combination Results

Interpolation of PS points (using Kriging) Step 1: At location of levelling/gnss points Step 2: At a 200 m grid (only in vicinity of PS points) 7 Introduction Database Combination Results

Interpolation of PS points (using Kriging) Step 1: At location of levelling/gnss points Step 2: At a 200 m grid (only in vicinity of PS points) for every Ifg 7 Introduction Database Combination Results

Interpolation of PS points (using Kriging) Step 1: At location of levelling/gnss points Step 2: At a 200 m grid (only in vicinity of PS points) for every Ifg 7 Introduction Database Combination Results

Linear velocities from PS time series y A,1 ta,1 3 t 2 A,1 t A,1 1 0...... x 3 y A,NA ta,n 3 t y B,1 = A A,N 2 t A,NA 1 0 A x 2 t B,1 3 tb,1 2 t B,1 1 1 x 1 + x. 0 e x..... y B,NB tb,n 3 t 2 B B,N t B,NB 1 1 B y A,i : Displacement in interferogram i, sensor A (ERS) y B,i : Displacement in interferogram i, sensor B (Envisat) N A : Number of interferograms of sensor A N B : Number of interferograms of sensor B t A : Acquisition time of sensor A t B : Acquisition time of sensor B x 0, x 1, x 2, x 3 : Parameters of a polynomial function x : Offset between sensor A and sensor B s 8 Introduction Database Combination Results

Linear velocities from PS time series y A,1 ta,1 3 t 2 A,1 t A,1 1 0...... x 3 y A,NA ta,n 3 t y B,1 = A A,N 2 t A,NA 1 0 A x 2 t B,1 3 tb,1 2 t B,1 1 1 x 1 + x. 0 e x..... y B,NB tb,n 3 t 2 B B,N t B,NB 1 1 B mm mm 20 10 0 10 20 1992 1994 1996 1998 2000 2002 Year 20 Envisat 10 0 ERS y A,i : Displacement in interferogram i, sensor A (ERS) y B,i : Displacement in interferogram i, sensor B (Envisat) N A : Number of interferograms of sensor A N B : Number of interferograms of sensor B t A : Acquisition time of sensor A t B : Acquisition time of sensor B x 0, x 1, x 2, x 3 : Parameters of a polynomial function s x : Offset between sensor A and sensor B 8 Introduction Database Combination Results 10 20 2002 2004 2006 2008 2010 2012 Year

Linear velocities from PS time series y A,1 ta,1 3 t 2 A,1 t A,1 1 0 0...... x 10 3 y A,NA ta,n 3 t y B,1 = A A,N 2 t A,NA 1 0 A x 2 20 t B,1 3 tb,1 2 t B,1 1 1 x 1 + x. 0 e 1992 1994 1996 1998 2000 2002 Year 20 Envisat x..... 10 y B,NB tb,n 3 t 2 B B,N t B,NB 1 1 B mm mm 20 10 0 10 ERS 10 0 ERS Envisat 20 2002 2004 2006 2008 2010 2012 Year mm 10 s 20 1st order (linear) 30 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year 8 Introduction Database Combination Results

Linear velocities from PS time series mm s y A,1 ta,1 3 t 2 A,1 t A,1 1 0 0...... x 10 3 y A,NA ta,n 3 t y B,1 = A A,N 2 t A,NA 1 0 A x 2 20 t B,1 3 tb,1 2 t B,1 1 1 x 1 + x. 0 e 1992 1994 1996 1998 2000 2002 Year 20 Envisat x..... 10 y B,NB tb,n 3 t 2 B B,N t B,NB 1 1 B 10 0 10 1st order (linear) 20 2nd order 3rd order 30 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year 8 Introduction Database Combination Results mm mm ERS Envisat 20 10 0 10 ERS 20 2002 2004 2006 2008 2010 2012 Year Statistical test on linearity

Linear velocities from PS time series Temporal covariance matrix for the estimation: 6 10 20 30 40 5 4 3 [mm 2 ] 54 ERS Interferograms 17 Envisat Interferograms 50 2 60 1 70 0 10 20 30 40 50 60 70 8 Introduction Database Combination Results s

Linear velocities from PS time series Temporal covariance matrix for the estimation: 6 10 20 30 40 5 4 3 [mm 2 ] 54 ERS Interferograms 17 Envisat Interferograms 50 60 70 10 20 30 40 50 60 70 8 Introduction Database Combination Results 2 1 0 Correlation length from atmospheric filtering Variances q ii scaled w.r.t. relative Ifg and PS accuracy s

Linear velocities from PS time series mm mm 20 10 0 10 20 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year 20 10 0 10 20 ERS/Envisat combination: Accurate estimates for linear rates asc desc 9 Introduction Database Combination Results ERS Envisat ERS Envisat 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year

Linear velocities from PS time series mm mm 20 10 0 10 20 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year 20 10 0 10 20 Separation of non-linear movements asc desc 9 Introduction Database Combination Results ERS Envisat ERS Envisat 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year

Linear velocities from PS time series LOS velocities (desc) 9 Introduction Database Combination Results

Linear velocities from PS time series LOS velocities (desc) + non-linear grid points 9 Introduction Database Combination Results

Interpolation of levelling and GPS velocities 10 Introduction Database Combination Results

Interpolation of levelling and GPS velocities Standard dev. 10 Introduction Database Combination Results

Interpolation of levelling and GPS velocities Standard dev. High weight close to the data points Low weight in between 10 Introduction Database Combination Results

Mathematical fusion Using least squares adjustment: y = Ax + e y : Velocities from InSAR (asc and desc), GPS (East and North comp.) and levelling x : Velocities in East, North, Up V asc S asc,1 S asc,2 S asc,3 V desc V GPS,E = S desc,1 S desc,2 S desc,3 v E 1 0 0 v N + e V GPS,N 0 1 0 v U V lev 0 0 1 sin θ asc cos α asc S asc = sin θ asc sin α asc cos θ asc sin θ desc cos α desc S desc = sin θ desc sin α desc cos θ desc 11 Introduction Database Combination Results

Mathematical fusion Using least squares adjustment: y = Ax + e y : Velocities from InSAR (asc and desc), GPS (East and North comp.) and levelling x : Velocities in East, North, Up V asc S asc,1 S asc,2 S asc,3 V desc V GPS,E = S desc,1 S desc,2 S desc,3 v E 1 0 0 v N + e V GPS,N 0 1 0 v U V lev 0 0 1 σ 2 V asc 0 0 0 0 0 σv 2 0 0 0 desc Q yy = 0 0 σv 2 σ VGPS,E,N 0 GPS,E 0 0 σ VGPS,E,N σv 2 0 GPS,N 0 0 0 0 σ 2 V lev sin θ asc cos α asc S asc = sin θ asc sin α asc cos θ asc sin θ desc cos α desc S desc = sin θ desc sin α desc cos θ desc Covariance matrix using standard deviations of single technique estimates 11 Introduction Database Combination Results

Results Two test areas: Northern part, Southern part 3D velocity field Standard deviations 12 Introduction Database Combination Results

Results Northern Upper Rhine Graben 13 Introduction Database Combination Results

Results Northern Upper Rhine Graben 13 Introduction Database Combination Results

Results Northern Upper Rhine Graben Mean standard deviation Up: 0.10 mm/a 13 Introduction Database Combination Results

Results Northern Upper Rhine Graben 13 Introduction Database Combination Results

Results Northern Upper Rhine Graben Mean standard deviation East: 0.20 mm/a North: 0.24 mm/a 13 Introduction Database Combination Results

Results Northern Upper Rhine Graben Mean standard deviation East: 0.20 mm/a North: 0.24 mm/a 13 Introduction Database Combination Results

Results Southern Upper Rhine Graben 14 Introduction Database Combination Results

Results Southern Upper Rhine Graben 14 Introduction Database Combination Results

Results Southern Upper Rhine Graben Mean standard deviation Up: 0.12 mm/a 14 Introduction Database Combination Results

Results Southern Upper Rhine Graben 14 Introduction Database Combination Results

Results Southern Upper Rhine Graben Mean standard deviation East: 0.30 mm/a North: 0.36 mm/a 14 Introduction Database Combination Results

Results Southern Upper Rhine Graben Mean standard deviation East: 0.30 mm/a North: 0.36 mm/a 14 Introduction Database Combination Results

Conclusions Consistent approach to combine velocities from Different SAR sensors (ERS, Envisat) Different SAR tracks (asc, desc) Permanent GNSS sites Repeated levelling measurements Consideration of realistic covariance information Results for two test areas in the URG: Tectonic movements are well below 1.0 mm/a Standard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical) Next steps: Combined velocity solution for the whole URG area (300 km SAR stripes) Special cases: Overlapping SAR tracks, only ascending/descending 15 Introduction Database Combination Results

Conclusions Consistent approach to combine velocities from Different SAR sensors (ERS, Envisat) Different SAR tracks (asc, desc) Permanent GNSS sites Repeated levelling measurements Consideration of realistic covariance information Results for two test areas in the URG: Tectonic movements are well below 1.0 mm/a Standard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical) Next steps: Combined velocity solution for the whole URG area (300 km SAR stripes) Special cases: Overlapping SAR tracks, only ascending/descending 15 Introduction Database Combination Results

Conclusions Consistent approach to combine velocities from Different SAR sensors (ERS, Envisat) Different SAR tracks (asc, desc) Permanent GNSS sites Repeated levelling measurements Consideration of realistic covariance information Results for two test areas in the URG: Tectonic movements are well below 1.0 mm/a Standard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical) Next steps: Combined velocity solution for the whole URG area (300 km SAR stripes) Special cases: Overlapping SAR tracks, only ascending/descending 15 Introduction Database Combination Results

Conclusions Consistent approach to combine velocities from Different SAR sensors (ERS, Envisat) Different SAR tracks (asc, desc) Permanent GNSS sites Repeated levelling measurements Consideration of realistic covariance information Results for two test areas in the URG: Tectonic movements are well below 1.0 mm/a Standard deviations: 0.3 mm/a (horizontal) / 0.1 mm/a (vertical) Next steps: Combined velocity solution for the whole URG area (300 km SAR stripes) Special cases: Overlapping SAR tracks, only ascending/descending 15 Introduction Database Combination Results